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On Complemented Subspaces of
Non-Archimedean Power
Series Spaces

Wiestaw Sliwa and Agnieszka Ziemkowska

Abstract. The non-archimedean power series spaces, A;(a) and Ao (), are the best known and most
important examples of non-archimedean nuclear Fréchet spaces. We prove that the range of every
continuous linear map from Ap(a) to A4(b) has a Schauder basis if either p = 1 or p = co and the set
Mj 4 of all bounded limit points of the double sequence (b;/a;); jen is bounded. It follows that every
complemented subspace of a power series space Ap(a) has a Schauder basis if either p = 1 or p = o0
and the set M, 4 is bounded.

1 Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field

IK which is complete under the metric induced by the valuation | - |: K — [0, 00).
For fundamentals of locally convex Hausdorff spaces and normed spaces we refer to
[9-11].

Any infinite-dimensional Banach space of countable type is isomorphic, i.e., lin-
early homeomorphic, to the Banach space ¢, of all sequences in K converging to zero
(with the sup-norm), so it has a Schauder basis [10, Theorem 3.16]. It is also known
that any infinite-dimensional Fréchet space of finite type is isomorphic to the Fréchet
space K" of all sequences in K with the product topology [13, Theorem 7], so it has
a Schauder basis, too.

Hence every closed subspace of ¢y and K™ has a Schauder basis. By [15, Propo-
sition 9], we have a similar fact for ¢ x KN. For c)) it is not true, since there exist
Fréchet spaces of countable type without a Schauder basis [ 14, Theorem 3] and every
Fréchet space of countable type is isomorphic to a closed subspace of ¢ [4, Remark
3.6]. In fact, every infinite-dimensional Fréchet space which is not isomorphic to
any of the following spaces (co, K", ¢y x KV) contains a closed subspace without a
Schauder basis [15, Theorem 7].

One of the most important problems for Fréchet spaces is the following one:

Let E be a Fréchet space with a Schauder basis. Does every complemented
subspace F of E have a Schauder basis?

For nuclear Fréchet spaces over the field of real or complex numbers, this problem
was posed by Pelczyniski in 1970, and it is still open.
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In [17, Proposition 9], it was shown that every quotient of ¢ has a Schauder basis.
Thus every complemented subspace of ;' has a Schauder basis [17, Corollary 10].

The power series spaces of finite type and infinite type, A;(a) and A (b), are the
best known and most important examples of nuclear Fréchet spaces with a Schauder
basis. In this paper we show that the range of every continuous linear operator from
Ap(a) to Ay(b) has a Schauder basis if either p = 1 or p = oo and the set M, , of all
finite limit points of the double sequence (b;/a;); jen is bounded (Corollary B.11).
It follows that every complemented subspace of a power series space A,(a) has a
Schauder basis, if either p = 1 or p = oo and the set M, , is bounded (Corol-
lary[3.13).

In this paper we use and develop some ideas of [8] (see also [6]).

2 Preliminaries

The linear span of a subset A of a linear space E is denoted by [A].

Let E, F be locally convex spaces. Amap T: E — Fis called an isomorphism if it is
linear, bijective and the maps T, T~! are continuous. If there exists an isomorphism
T: E — F, then we say that E is isomorphic to F and write E ~ F. The family of all
continuous linear maps from E to F we denote by L(E, F). The range of T € L(E, F)
is the subspace T(E) of F.

Sequences (x,) and (y,) in a locally convex space E are:

* equivalent if there exists an isomorphism P between the closed linear spans of (x,,)
and (y,) in E, such that Px, = y, for every n € N;

* quasi-equivalent if there exist (o,) C (K\ {0}) and a permutation 7 of N such
that the sequences (o, X (,)) and (y,) are equivalent.

A finite sequence (xi, ..., X,) in a finite-dimensional locally convex space E is a
Schauder basis in E if there exist fi, ..., f, € E' such thatx = Y_"_| fi(x)x; for every
x € E and fi(x;) = §;; forall 1 < i,j < n; clearly, every Hamel basis in E is a
Schauder basis in E.

A sequence (x,) in an infinite-dimensional locally convex space E is a Schauder
basis in E if each x € E can be written uniquely as x = Z;’il aux, with (o) C K,
and the coefficient functionals f,: E — K, x — a,,(n € N) are continuous.

By a seminorm on a linear space E we mean a function p: E — [0, 00) such that
plax) = |a|p(x) forall @ € K, x € Eand p(x + y) < max{p(x), p(y)} for all
x,y € E. Aseminorm p on Eis a norm ifker p := {x € E: p(x) = 0} = {0}.

The set of all continuous seminorms on a locally convex space E is denoted by
P(E). A nondecreasing sequence (p,) of continuous seminorms on a metrizable lo-
cally convex space E is a base in P(E) if for every p € P(E) thereareC > 0Oand k € N
such that p(x) < Cpi(x) forallx € E.

A complete metrizable locally convex space is called a Fréchet space. Let (x,) be a
sequence in a Fréchet space E. The series )~ x, is convergent in E if and only if
limx, = 0.

A normable Fréchet space is a Banach space.

A metrizable locally convex space E is of countable type if it contains a linearly
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dense sequence (x,). A metrizable locally convex space E is of finite type if
dim(E/ ker p) < 00

for every p € P(E). Put Bx = {a € K : |a| < 1}. Let A be a subset of a locally
convex space E. The set

n
C0A = {Zaiai:nel\hal,...,aﬂEBIK,al,...,anEA}
i=1

is the absolutely convex hull of A; its closure in E is denoted by co*A. A subset A of a
locally convex space E is absolutely convex if co A = A.

A subset B of a locally convex space E is compactoid (or a compactoid) if for each
neighbourhood U of 0 in E there exists a finite subset A of E such that B C U + co A.

By a Fréchet-Montel space we mean a Fréchet space E such that every bounded
subset of E is compactoid.

Let E and F be locally convex spaces. An operator T € L(E, F) is compact if for
some neighbourhood U of zero in E the set T(U) is compactoid in F.

For any seminorm p on a locally convex space E the map p: E/ ker p — [0, 00) x+
ker p — p(x)is anorm on E, = E/ ker p.

A locally convex space E is nuclear if for every p € P(E) there exists g € P(E) with
q > p such that the map ¢4 ,: (E;,q) — (Ep, p),x +kerq — x + ker p is compact.
Any nuclear Fréchet space is a Fréchet-Montel space.

Let U be an absolutely convex neighbourhood of zero in a locally convex space E.
The Minkowski functional of U, py: E — [0,00), py(x) = inf{]a| : « € Kand x €
aU}, is a continuous seminorm on E.

Let E be a locally convex space. If A C Eand B C E’, then we put A° = {f € E :
|f(x)] < 1foreveryx € A} and °B = {x € E: |f(x)| < 1 for every f € B}. For
A C Eweput A° = ([{M : A € Kand |A| > 1} if the set |[K| = {|a| : & € K} is
dense in [0, c0), and A® = A otherwise.

An infinite matrix A = (a,,x) of real numbers is a Kothe matrix if 0 < a,x < a1
forall n,k € N, and sup, a, x > 0 for every n € N.

Let A be a Kothe matrix. The space

K(A) = {(ay,) CK: lim |ay,|a,x = 0 for every k € N}

with the base (py) of seminorms, where pi((cv,)) = max, |ay|ank, k € N, is a Fréchet
space. The sequence (e;), where e; = (4;,), is an unconditional Schauder basis in
K(A).

A Fréchet space E with a Schauder basis has the quasi-equivalence property if every
two Schauder bases in E are quasi-equivalent.

Any infinite-dimensional Fréchet space E with a Schauder basis is isomorphic to
K(A) for some Kothe matrix (see [1], Proposition 2.4 and its proof).

Let I be the family of all non-decreasing sequences a = (a,,) of positive real num-
bers with lima, = co. Leta = (a,) € I'. Then the following Fréchet spaces are
nuclear (see [1,18]:
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* Aj(a) = K(B) with B = (b,x), by = e~/%
* Aoo(a) = K(B) with B = (b, 1), b, x = €.

Aq(a) and Ao (a) are the power series spaces (of finite type and infinite type, respec-
tively).

The power series spaces have the quasi-equivalence property [16, Corollary 6].

Let E be a locally convex space. A linearly dense sequence (x,,) in E is an orthogonal
basisin Eif (x,) C (E\{0}) and if there is a base (px) in P(E) such that forallk,n € N
and o, ..., a, € K we have pk(Z?zl X)) = max;<j<, prlaix;).

Every orthogonal basis in a locally convex space E is a Schauder basis and every
Schauder basis in a Fréchet space is an orthogonal basis [4, Propositions 1.4 and 1.7].

Let (E, || - ||) be a normed space and let t € (0,1). A sequence (x,) C E is #-
orthogonal if for allm € N, oy, . . ., auy € K we have

m
HZaixiH >t max |lox;|| .
P 1<i<m

If (x,) C (E\{0}) is t-orthogonal and linearly dense in E, then it is t-orthogonal basis
in E. Every t-orthogonal basis in E is a Schauder basis.

3 Results

We start with the following.

Theorem 3.1 Let E and F be Fréchet spaces and let T € L(E, F). Assume that there
exists a linearly dense absolutely convex compactoid K in E and an absolutely convex
neighbourhood U of zero in F such that py is a norm on F and the set

Wy = {S € L(E,F) : S(K) C T(K) and T"'(U) C S'(U)}

is equicontinuous. Then the range of T has a Schauder basis.

Proof Clearly, we can assume that the range of T is infinite-dimensional. The com-
pletion D of the normed space Fy = (F, py) is a Banach space and the set V = T(K)
is an absolutely convex compactoid in D. The closed linear span G of V in D is
a Banach space of countable type. Let « € K with || > 1 andlett € R with
|o] 7! < t < 1. Using [10, Lemma 4.36, Theorem 4.37], we infer that there exists a
t-orthogonal sequence (g,) in G with (g,) C (aV) \ {0} such that the closure A of
co{g, : n € N} in G includes V and limg, = 0 in G. Clearly, (g,) is linearly dense
in G, so it is a t-orthogonal basis in G. Let (g;) C G* be the sequence of coefficient
functionals associated with the Schauder basis (g,) in G. Since T(E) C mp cG
we have T(x) = Ziil g (T(x))gn in G for every x € E. It is easy to check that
A={>"7 angs: (ay) C Bk}. Thus |giT(x)| < 1forallx € K,n € N.

The set W = V" is an absolutely convex complete metrizable compactoid in F.
By [12, Theorem 3.2], we get T |w= 7y |w, where 7 and 7y are topologies of F and
Fy, respectively. Hence lim g, = 0 in F. Thus the series Y .~ | ¢+ T(x)g, is convergent
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in F for every x € [K]. Since T(x) = > 2, g+ T(x)g, in Fy for every x € [K] and
Ty C 7 wehave T(x) = > g+ T(x)g, in F for every x € [K].

Letm € N. Put T,,: E — F, Tpy(x) = Y., giT(x)g,. Clearly T,, € L(E,F).
For every n € N there exists z, € K such that g, = aT(z,). If x € K, then
Tw(x) = aT(X" gi T(x)z,) € aT(K);s0 T,u(K) C aT(K). Letx € T~ (U). Then
pu(Tx) < 1,50 max, |g: T(x)|pu(g,) <t 'pu(Tx) < |al. Hence py(T,(x)) < |al,
0 Tpy(x) € aU. Thus T~ 1(U) C aT,,'(U).

We have shown that (a™!T,,) C Wr, so T,,,m € N, are equicontinuous. Since
lim,, T,,(x) = T(x) in F for every x € [K], we infer that lim,, T,,,(x) = T(x) in F for
every x € E. Hence T(x) = Y7, g+ T(x)g, in F for all x € E.

IfY > g =0inF, then ) a,g, = 0in G, so a, = 0,n € N. Thus (g,) is
a Schauder basis in T(E). [ |

By the first part of the proof of Theorem B.I]we get the following.

Proposition 3.2 Let F be a Fréchet space with a continuous norm. Then the linear
span of every compactoid in F has a Schauder basis.

Remark 3.3 Let F be a Fréchet space of countable type with a continuous norm
and without a Schauder basis (see [14]). Let (x,) be a linearly dense sequence in F.
For some («,) C (K\ {0}) we have lim, a,x, = 0 in F. Then the closure X of
co{a,x, : n € N} in F is a closed absolutely convex compactoid in F and [X] has no
orthogonal basis. However, by Proposition[3.2] [X] has a Schauder basis.

Using Proposition [3.2]we get the following.

Corollary 3.4 Let E and F be Fréchet spaces. Assume that F has a continuous norm.
Then the range of every compact linear operator T from E to F has a Schauder basis.

Remark 3.5 Weputx/y =0,ifx =y = 0;x/y = 00,ifx > 0 = y;and x-00 = o0,
ifx>0.If0<a<cand0<d < b, thena/b < c¢/d. Ifa> 0,b> 0,c> 0and
d > 0, then (ac)/(bd) = (a/b)/(c/d).

Let E and F be Fréchet spaces with non-decreasing bases (|| - ||s) and (|| - ||;) in P(E)
and P(F), respectively. Let Us = {x € E: ||x||y < 1} and V; = {x € F: ||x|; < 1}
fors,t € N. For T € L(E,F),D C Eands,t € Nwe put || T|p; = sup,¢p, [| Tyl and
ITlos = sup, co, I 71l

Let E and F be Fréchet spaces. We shall write
— (E,F) € R if the range of every continuous linear operator T from E to F has a

Schauder basis;

— (E,F) € R, if there exist non-decreasing bases (|| - ||s) and (|| - ||;) in P(E) and

P(F), respectively, and an absolutely convex compactoid D in E such that

AuVs3ACVYT € L(E,F) : ||T|;s < Cmax{||T|lps, || T|lsp}s

— (E,F) € R, if there exist Kothe matrices A and B with E ~ K(A) and F ~ K(B)
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such that

Hqu EImVn HC Vi, ] : bj7k/a,»7m S Cmax{bj‘m/a,-m, bj‘l,,/aﬁk}.
Theorem 3.6 Let E and F be Fréchet spaces of countable type such that (E,F) € R,.
Then (E,F) € R.

Proof Let D be an absolutely convex compactoid in E such that
(3.1) JuVk3Im3ICVYT € L(E,F) : || T||mx < Cmax{||T||pm, | T ||k}

Consider three cases.

Case 1: D is not linearly dense in E. Then F is normable. Indeed, the closure G
of the linear span of D in E is weakly closed in E [2, p. 257]. Thus there exists
f € (E'\ {0}) with f(G) = {0}. Let k > p with f(Uy) C Bk for some v € K.
Then for some m and C we have

(3.2) VT € LE,F) : || T||lmx < Cmax{||T||p,m || Tllkp}-

Lety € V,. Put T: E — F T(x) = f(x)y. Clearly, T € L(E,F),||T||p,n = 0 and
1Tk < 7| Thus || T||mx < Clyl|. Let B € (f(Up) \ {0}). Then Sy = Tz for some
z € Uy, 50 ||Bylk < || T|lmx < Clvy|. Hence ||y|lx < Cly371, thus V,, C AV for
some A € K. It follows that for every k > p the seminorm || - ||« is equivalent to || - || 4,
so F is normable. Thus (E, F) € R, since every normed space of countable type has a
t-orthogonal basis for t € (0, 1) [10, Theorem 3.16 and its proof].

Case2: |- ||, is not a norm. Then E is finite-dimensional. Indeed, let y € (F\ {0})
with ||y]|, = 0. Let k € Nwith y & AV} for some A € (K\ {0}). For some m and
C > 1 we have (3.2). Let 8 € K with |5] > C such that y € fV,,. Let f € D°
and T: E — E T(x) = f(x)y. Clearly, T € L(E,F),||T||lx, = 0and || T|lpm < |8
Thus || T|[mi < |B]% so f(Un)y C B*Vi. Hence f € (A\B72U,)°, since y & AVi.
Thus D° C (A\372U,,)°, so AB~*U,, C °(D°) = (D)* C D [11, Corollary 4.9,
Proposition 4.10]. It follows that E has a compactoid neigbourhood of zero. By
[3, Proposition 0.3], E is finite-dimensional; so (E, F) € R.

Case 3: Dislinearly densein Eand ||-||, isanormon F. Let § € Kwith |3 > 1. Let
T € L(E,F) and Wy = {S € L(E,F) : S(D) C T(D) and T~'(V,,) € S7'(V,,)}. For
allk,m € Nand S € Wr we have ||S||pm < | T||p,m and ||Sx||, < |8]||Tx||,,x € E,

50 ||S|lk < |BI| Tl pu- Clearly, ||T||p,m < oo for every m € N and there exists kg € N
such that ||T||x,, < oo for every k > ko. Hence, using (3.1, we infer that

FkoVk > ko IMICVS € Wyt [|S||ms < Cmax{||T||p.m, Bl T|lk}-

Thus the set Wr is equicontinuous. By Theorem 3.1} the range of T has a Schauder
basis. It follows that (E, F) € R. [ ]

Theorem 3.7 Let E be a Fréchet-Montel space and let F be a Fréchet space. Assume
that (E,F) € R,. Then (E,F) € K.
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Proof Let A and B be Kothe matrices with E ~ K(A) and F ~ K(B) such that
(3.3) IuVk3ImVn3ICVi, j: bjx/aim < Cmax{bj,./ain,bj,./air}

Without loss of generality we can assume that K(B) is non-normable (see the proof
of Theorem [B.6). and ay ,, by, € |K| for all k,n € N. Clearly, it is enough to show
that (K(A),K(B)) € R.
Let k € N. For some t > k we have sup; bj/bj,, = co. By (3.3) there exists s > ¢
such that
Vn3C, > 0Vi, j: bit < @max{ %, b]—”}

ais Ain Qi

and there is m > p such that

3 bjs X bim bi,
¥n3C, > 0Vi,j: L gcnmax{ j: L}

i,m Ain Qs

Let n € N. For some jo € N we have biyit/biou > C,C; clearly bj,+ > 0. Let
i,j € N. Then bj,/a;; < C, max{bj, s/ain,bj, ./ai.}. Hence

bju < amax{ bjvsbjpw bjoubjp }7

ais bioitin bjoiaiy
% b bi, b bim b
¢, Jobt gmax{Dn J‘-,u7 j-#} gmax{Dn J}m, j,#}
A s Ain Qi Ain  Aik
for D, = C,Cpbj, 5/bj,- It follows that
bik _ bis gmax{c,;bj—””,@},
Ai.m Aim Ain  Aik
where C! = max{C,, D, }.
We have shown that
b; bin b;
(3.4) Ik ImVnICe, > 1Vi, j: 2% < max{ Cin 2 A}
i,m Ain Ak

Let § € Kwith |3] > 1. Let C; = max({Cy, : k < t,n <t} U{ajp:i <t,k<t})
forallt € N. Then Cy,, < CxC, forall k,n € N, and d; = inf, C,/a;, > 0 for every
i €N. Forie Nletx; € Kwithd; < |x;| < |8]d;.

We shall prove that x = (x;) € K(A). Let k € N. Then |x;|a;; < C¢|f]| for all
i,t € N. Let W be an infinite subset of N. The space K(A) has no infinite-dimensional
normable closed subspace [5, Corollary 6.7]. Thus sup,, az /aix = oo for some
k > k. Hence inficw |x;|a;x = infiew \x,'|aij(a,<7k/ai}) < C4|p] infiew(ai,k/aij) =0.
It follows that lim; |x;|a; x = 0 for every k € N, so x € K(A).
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The set D = {(y;) € K(A) : |yi| < |x;| for every i € N} is compactoid i n K(A)
[7, Theorem 2.5]. Let k € N. Then there exists m € N such that

Vnvi, j: 25 < max{Ck‘,nbj_—”m, @}

Leti, j € N. For some n € N we have C,,/a; , < |x;|. Hence
Ck,n/ai,n = (Cn/ai.n)(ck.n/cn) < |x,‘|Ck;

thus

... bik bjy
Vi, j: == < maX{Ck\xz\b;m : }
a; k

aim i,

We have shown that

bjx bj,
Vk3Im3CVi, j: < Cmax{ |%i|Bm, A}
Qi k

’)m bl

Let T € L(K(A),K(B)). Let (¢;) and (f;) be the coordinate Schauder bases in
K(A) and K(B), respectively. For every i € N there exists (T; ]) °, C K such that
Te; = ZJ: T; i fj; clearly, ||Te;||; = max;|T; j|b;, foralli,t € N. Lets,t € N. Put
ds,t = supi’j |Ti,j|bj$,/a,;5.

Consider two cases:

Case 1:  There exists i € Nwith a; ; = 0 such that || Te;||; > 0. Then for every o € K
we have ae; € Us, so ||T|s, = || Te;||;/ais < ds;. Hence
||THs,t = dg;.

Case2: Foreveryi € Nwitha;; = 0, we have || Te;||; = 0. Pt W = {i e N: g; >
0}. Let y € U,. Then ||y||s = maxien |yilais < 1and

Te;
1Tyl =13 Tl < max ]| e, = max ]| e, < sup 1o
i=1 1€W 1.5

For every i € N there exists a, s € Kwith |os| = a;;. Hence for everyi € W we
have o;'e; € Us and 1 T(a;, 61)||z = ||Te;||; /ais. If follows that

T Te:
TStfsu Tyl = sup ” el”tzsu M: .
I p Ty p ‘
ye zEW dis ieN Qi '

st = sup; ;| Tij|bj./ais foralls,t € N.
Lett € N. For y € D we have

1Tyl = |l Z%Tezllr < max|yi[||Te;[|r < max|x||| Teilr < sup | T jllxilbj-

i=1
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Clearly, x;¢; € D and ||T(x,el)Ht = |xi|||Te;|; for every i € N. It follows that || T||p, =
Ti,jl|xilbj.s.
we get m € N and C such that

sup,ep | Ty|lc = sup;
Let k € N. Using (m)

3 T‘7'b“,
||T||mk—su 7' l]|] <Csupmax{|Ti7j|\x,-\bj,m,7| IJ| ”1}
a; i ai k

ij 1,m 2y

Tij|bj,
< Cmax{supI ety s0p 22} = C e[l T
17] l'r]

1,

for every T € L(K(A),K(B)). Thus we have proved that (K(A),K(B)) € R,. By
Theorem [3.6lwe infer that (K(A), K(B)) € ‘R.

By the proof of Theorem[3.7]we get the following.

Corollary 3.8 Let E be a Fréchet-Montel space and F a non-normable Fréchet space.
If(E7 F) S 9{2, then (E7 F) € ‘.Rl.

Now we shall prove the following result.

Proposition 3.9 Let A and B be Kothe matrices such that the Fréchet spaces E = K(A)
and F = K(B) have the quasi-equivalence property. Then (E, F) € R, if and only if

bk bim b,
Ik ImVn3CVi, j: X < Cmax {17#}

aim Ain Ak

Proof Assume that (E,F) € R,. Then there exist Kéthe matrices A’ and B’ with
K(A") ~ E and K(B’) ~ F such that

/

b’ b, b,
(3.5) Ju' VkImVYn3ICVi, j: 4= <C max{ L L } .
al ajy

i,m i.n

Let T: K(A’) — K(A) be an isomorphism. Let (¢;) and (e/) be the coordinate bases
in K(A) and K(A"), respectively. Clearly, (f;) = (T(e!)) is a Schauder basis in K(A),
so it is quasi-equivalent to (¢;). Thus there exist (;) C K\ {0} and a permutation
m of N such that («; fr(;)) and (e,) are equivalent. Therefore there is an isomorphism
P: K(A’) — K(A) with P(aje’ ) =€ for i € N. Hence

(1)
Vk3t3CVi: aix < Claylay, and |ailay ;) < Cajy.
Similarly there exist (3;) C (K\ {0}) and a permutation o of N such that

k3t 3CVj : bjg < C|B;lbL;), and |Bj[bl )« < Cbiy.

a(j)t
Hence 31 3C, Vj : |ﬂj\b[',(jm, < Cybj . Letk € N. Then

3K 3IC, Vi, j 1 aix < Colailag ) and bjx < Co|B)[by i) por-
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By (B.3) we get m’ € N such that

b’ b’ b’
.. ik’ im' O
VYn3aCs Vi, j: f §C3max{ ]/ ,#}
a; in  Gip

Moreover Jv3dC, Vi : |Oéi|ﬂ7lr(i),m/
Csbj . Letn € N. Then 3n’ 3C6 Vi : a;, < Ce|ailal; .- Thus foralli, j € Nwe

— 7(i),n

< Cyaiy and Im > v3CsVj : |6j|b(’,(j),m, <

have
bix _bix _ ClBjl Yo
S-S5 7
Ai,m iy C4 |Ot,‘| aﬂ(i),m’
. b, , b, .,
< c.cic, ! max{ o el
|cvi Ariyn Cri
Csb; Cib;
S C2C3C4 max{ ilj,m s ilj# }
Cg ain Cz a; k
Therefore
. bjk bjm bju
IuVkImVn3CVi, j : < Cmaxqy —/—, == ;.
im Ain Aik
The converse implication is obvious. ]

For the power series spaces we get the following.

Theorem 3.10 Leta,b € T'andp,q € {1,00}. If p =1, then (A,(a),Ay(b)) € Rs.
If p = oo, then (Ap(a), Ay(b)) € Ry if and only if the set My, of all finite limit points
of the double sequence (b;/a;); jen is bounded.

Proof Let A and B be the Kéthe matrices that define A, (a) and A4(b), respectively.

Assume that p = 1and g = 1. Letk € Nand m = 2k*. Letn,i, j € N. If a; < kbj,
then —(b;/k) + (a;/m) < —(bj/m) + (a;/n); if a; > kbj, then —(b;/k) + (a;/m) <
—bj + (ai/k). Thus for all n,i, j € N we have

—(bj/k) + (aj/m) < max{—(bj/m) + (a;/n), =b; + (a; /k)},

s0 e~ bilketi/m < max{e~bi/me/" e=ig%/k}, We have shown that

i,m

b; bim b
VkIm¥n¥i, j: 2% < maX{J—J—I}
Ain Aik
s0 (Ap(a),Aq(b)) € Ra.

Assume that p = 1and g = oo. Letk € Nand m = 2k. Letn,i,j € N. If
a; < 2k*bj, then kb +(a;/m) < mb;+ (a;/n);if a; > 2k*bj, then kb + (a;/m) < b;+
(ai/k). Thus for all n,i, j € Nwe get kb + (a;/m) < max{mb;+(a;/n),bj+(a;/k)},
hence e¥ie®/™ < max{e"ie%/", ¢be%/*}. We have proved that

bj bin b
VkImn©i, j: L gmax{fi, 171}

)
Ai.m Ain Gik
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s0 (Ap(a),Aq(b)) € Ry,

Assume that p = oo and My, is bounded. Let L € N with L > sup M, , and
by = 0. Then for every i € N there exists t; € N such that b;,_; < La; < by,. By
the definition of L and M, we get lim; by, /a; = oo. If k,n € N, then there exists
i(k,n) € Nsuch that b,, > 2kna; for all i > i(k, n). Put Cy,, = €"%tn,

Casel: g=1.Letk € Nandm = 2k+ L. Letn € N. Leti € N. If i < i(k,n),
then —(bj/k) — ma; < najg,y — (bj/m) — na; for all j € N. Let i > i(k,n); then

—(bj/k) — ma; < —(bj/m) — na; forall j > t; and —(b;/k) — ma; < —b; — ka, for
all j < t;. Hence for all i, j € N we have

efbj/kefma,- < Ckﬁn max{efly/mefna,-’ efbjefka,-}'
Thus
bk

Aim

SCmax{%—’m,@},

Ain Aik

VkIm¥n3CVi, j :

50 (A,(a), Ag(b)) € Ry

Case2: gq=o00.Letk € Nandm = k(L +1). Letn € N. Leti € N. If i < i(k, n),
then kb; — ma; < najy ) +mb; — na; forall j € N. Leti > i(k, n); then kb; — ma; <
mb; —na; forall j > t;,and kb; — ma; < b; —ka; forall j < t;. Henceforalli, j € N
we have elie=" < Cy , max{e™ie™" ebie=k 1 Thus

bj b:m b
Vk3mVn3CVi, j: X SCmaX{]’ 11}

)
Aim ai,n ai,k

so (Ap(a),Aq(b)) € Ra.

Assume that p = oo and (A,(a),A4(b)) € Rz Let (sx) = (—1/k) if g = 1 and
(sx) = (k) if g = oo. By Proposition 9 and [16], Corollary 6, we get

b, bim b;
JuvkIm¥n3CVi, j: X < Cmax{f—’,ﬂ};

i,m Ain  Aik
hence
Iuvk3ImVn3C Vi, j : skb; — ma; < Cy + max{s,,b; — na;,s,b; — ka;}.

Thus for k = p + 1 we have
b; C b; b;
ImVn3C, Vi, j: S#H—] —m< =L +max{sm—] — msu—]}.
a; a; a; a;

Hence for every x € My, we get s,.1x — m < max{s,x — n,s,x} foralln € N.
Taking enough large n we obtain s,,1x — m < s,x, 50 x < m/(su41 — s,). Thus My,
is bounded. [ |

By Theorems[3.7land B.I0 we get the following two corollaries.
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Corollary 3.11 Leta,b € T and p,q € {1, 00}. Then the range of every continuous
linear map from A, (a) to Ay(b) has a Schauder basis, if either p = 1 or p = oo and the
set My 4 is bounded.

Corollary 3.12 Leta,b € I'"and p,q € {1,00}. Let F be a closed subspace of Ay(b).
Assume that F is isomorphic to a quotient of A,(a). Then F has a Schauder basis, if
either p = 1 or p = 00 and the set My , is bounded.

Using Corollary[3.12] we obtain our next result.

Corollary 3.13 Letb € T'and p € {1,00}. Every complemented subspace of A,(b)
has a Schauder basis, if either p = 1 or p = oo and the set M, j, is bounded.

By Corollary[3.13]and the quasi-equivalence property of A,(b) [16, Corollary 6]
we get the following.

Proposition 3.14 Letb € T and p € {1,00}. Then every complemented subspace F
of A,(b) is isomorphic to A,(a) for some subsequence a of b, if either p = 1 or p = 00
and the set My, is bounded.

Proof Let G be a complement of F in A,(b). By Corollary B.I3} F and G have
Schauder bases (x,) and (y,), respectively. Put z;, = x, and z,_; = y, forn € N.
Clearly, (z,) is a Schauder basis in A,(b). Thus there exist (o) C (K '\ {0}) and a
permutation 7 of N such that (z,) is equivalent to (c,er(,)). Hence F is isomorphic
to the closed linear span H of (e(2s)); clearly, H is isomorphic to A,(a), where a is
the non-decreasing rearrangement of (b (2n))- [ |
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