Combinatorics, Probability and Computing (2025), 34, pp. 445-485

: | CAMBRIDGE
doi:10.1017/5096354832500001X

UNIVERSITY PRESS

ARTICLE

Critical configurations of the hard-core model on square
grid graphs

1,2

Simone Baldassarri , Vanessa ]acquier3 and Alessandro Zocca?

'Universita degli Studi di Firenze, Firenze, Italy, 2 Aix-Marseille Université, Marseille, France, 3University of Utrecht,
Utrecht, The Netherlands, and 4\/'rije Universiteit Amsterdam, Amsterdam, The Netherlands
Corresponding author: Simone Baldassarri; Email: simone.baldassarri@unifi.it

(Received 14 September 2023; revised 18 December 2024; accepted 23 December 2024;
first published online: 4 February 2025)

Abstract

We consider the hard-core model on a finite square grid graph with stochastic Glauber dynamics
parametrized by the inverse temperature 8. We investigate how the transition between its two maximum-
occupancy configurations takes place in the low-temperature regime 8 — oo in the case of periodic
boundary conditions. The hard-core constraints and the grid symmetry make the structure of the criti-
cal configurations for this transition, also known as essential saddles, very rich and complex. We provide a
comprehensive geometrical characterization of these configurations that together constitute a bottleneck
for the Glauber dynamics in the low-temperature limit. In particular, we develop a novel isoperimetric
inequality for hard-core configurations with a fixed number of particles and show how the essential saddles
are characterized not only by the number of particles but also their geometry.
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1. Introduction

We consider a stochastic model, known in the literature as hard-core lattice gas model [10, 35],
where particles have a non-negligible radius and therefore cannot overlap. Assuming a finite vol-
ume, the hard-core constraints are modelled with a finite undirected graph A. More specifically,
particles can reside on the sites of A and edges connect the pairs of sites in A that cannot be
occupied simultaneously. In other words, any hard-core configuration is an independent set of A.
In this paper, we take A as a square grid graph with periodic boundary conditions. The resulting
hard-core particle configurations are then those whose occupied sites have all the corresponding
four neighbouring sites empty, see Figure 1 for an example of such configurations.

This interacting particle system evolves according to a stochastic dynamics that is fully char-
acterized by the Hamiltonian or energy function in (2.3) and is parametrized by the inverse
temperature fB. In particular, the appearance and disappearance of particles are modelled via a
Glauber-type update Markov chain {X;};cn with Metropolis transition probabilities induced by
the Hamiltonian, see (2.4) later for more details. The stochastic process is reversible with respect
to the corresponding Gibbs measure g, cf. (2.2), which is then its equilibrium distribution.
Specifically, for any independent set I on the graph A, the hard-core configuration with parti-
cles precisely on the vertices in I has stationary probability proportional to e?!l. Taking 8 =0,
this process can thus be used to sample uniformly independent sets of A.
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Figure 1. Example of a hard-core configuration on the 14 x 14 square grid with periodic boundary conditions. On the left,
the occupied sites in V, (resp. in V,) are highlighted in black (resp. in red). On the right, we depict the same configuration
using a different visual convention, in which we highlight the odd clusters that the configuration has by drawing only the
empty sites in Ve (in white), the occupied sites in V, (in black), and a black line around each odd cluster representing its
contour.

Considering a regime with large §, on the other hand, the same Markov chain can also be seen
as a randomized scheme with local updates to find maximum independent sets, which is an NP-
hard problem [45]. Indeed, in the low-temperature regime (i.e., 8 — 00), the most likely states
in view of 11 for this interacting particle system are those with a maximum number of particles.
These configurations correspond to the maximum independent sets of A and we will refer to
them as stable states. On the square grid graph A of even length, there are two such stable states,
corresponding to the two chessboard-like patterns.

When S grows large, however, it takes a very long time for the system to move from one sta-
ble state to the other, since such a transition involves visiting intermediate configurations that are
very unlikely in terms of ug. Such transitions become thus rare events and, as a consequence,
the stochastic process also takes a very long time to converge to stationarity, exhibiting so-called
slow/torpid mixing [31, 54]. It is natural to expect such slow mixing of hard-core dynamics for
a large B, since fast mixing in this regime would imply that the NP-hard problem of finding
maximum independent sets could be solved or approximated efficiently.

Several papers [19, 31-33, 36, 39, 42, 44, 53] studied the slow mixing of the hard-core model
by identifying how the mixing times of the Glauber dynamics scale on other graphs, depending
on the type of graph, the size, the boundary conditions or the maximum vertex degree. The com-
mon main idea behind this line of work has been to identify as precisely as possible the subset of
configurations that constitutes a bottleneck for the dynamics to transition from one stable state to
another. Some of these approaches also heavily rely on geometric features exhibited by the con-
figurations in this bottleneck part of the state space, like the so-called fault lines in [53] and fat
contours in [36].

In this paper, we look at a complementary aspect of the hard-core model in the low-temperature
regime, focusing on the hitting times between its stable states and the “bottleneck configura-
tions” visited along these trajectories. The asymptotic behaviour of the first hitting time between
the maximum-occupancy configurations of this model in the low-temperature regime g — oo
has already been studied in [47]. Denoting by ¢ the first hitting time of Markov chain {X;};en
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corresponding to hard-core dynamics on a grid graph A, in [47] the authors showed that there
exists a constant I'(A) > 0 such that for every € > 0,

lim Pg (eﬂ(F(A)_E) <1l < eﬂ(F(A)+€)> =1 (1.1)
p—o0 °
and
. 1
lim —logEz =T(A). (1.2)
B—o0 ,3

In particular, the authors showed in the same article how this constant I'(A), which characterizes
the order of magnitude of the first hitting time between the two stable configurations, depends on
the grid sizes and boundary conditions by means of an extension of the setting in [43].

However, instead of directly using the general strategy proposed in [43], which allows to jointly
derive the asymptotic behaviour of the transition time as f — oo together with a characterization
of the critical configurations, the authors of [47] adopted a novel combinatorial method to esti-
mate the energy barrier between the two stable states of the model, which is disentangled with
respect to the description of the critical configurations. Consequently, the geometrical description
of the critical configurations had yet to be addressed.

The main motivation of this paper is to fill this knowledge gap. Indeed, the geometrical char-
acterization of the critical configurations, also known as essential saddles, is a relevant goal both
from a probabilistic and a physical point of view since it provides insightful details of the dynam-
ical behaviour of the system. This represents a crucial point in describing the trajectories that
the system follows with high probability during the transition from one stable state to the other.
We remark that in several models analysed in the context of Freidlin-Wentzell Markov chains
evolving under Glauber dynamics, the essential gate, i.e., the set of the critical configurations, was
unique [1] but, in general, there may exist many minimal sets that are crossed with high probabil-
ity during the phase transition, either distinct or overlapping (see e.g., [5, 6] for this description
in the case of the conservative Kawasaki dynamics). Interestingly, this is what happens also for
our model despite evolving under the non-conservative Glauber dynamics. This peculiar feature
relies on the hard-core constraints and on the intrinsic symmetry of the system due to the exis-
tence of two stable states. This is also the case of Glauber dynamics for the Ising and Potts models
when there is no external magnetic field (see, e.g., [12]). In statistical physics, the study of such
transition between stable states is usually referred to as tunnelling. When the particle system does
not have an intrinsic symmetry or the symmetry of the system is broken, e.g., by an external mag-
netic field, the situation drastically changes. For interacting particle systems with a single stable
state, the main object of investigation then becomes their metastability, i.e., the transition from the
metastable state(s) to the stable one. Generally speaking, interacting particle systems that exhibit
tunnelling behaviour have a much larger and complex set of essential saddles. This is precisely the
case for the hard-core model on a square grid graph A, with the additional complication that the
only admissible configurations are its independent sets.

In order to geometrically characterize the critical configurations, we associate with each cluster
of particles its contour, that is, a union of edges on the dual graph of A. The equivalent represen-
tation of a configuration using its Peierls contour is a powerful tool that has been extensively used
in the literature to study the phase transition of the hard-core model, identify sharper bounds for
the critical temperature S, and to obtain high-fugacity expansion of macroscopic quantities of
the model; we refer the interested reader to, e.g., [18, 38].

As part of our proof strategy, we provide some results regarding the model-dependent isoperi-
metric inequality for the hard-core model on grid graphs. In particular, we show that for a fixed
area, the unique clusters that minimize the perimeter have a rhomboidal shape. However, the
energy landscape is much more complex as the periodic boundary conditions give rise to other
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types of clusters with minimal perimeter for a given area, such as the configurations having a
column containing a fixed number of particles.

We remark that our analysis yields a comprehensive geometrical description of the configu-
rations in the bottleneck part of the state space, together with an overview of the exact structure
of the bottleneck subset itself. However, pairing this analysis with precise counting arguments is
beyond the scope of the present paper. Hence, we do not explore the energy-entropy trade-off of
the hard-core model or shine more light on its phase transition.

In order to link geometrical properties of hard-core configurations with the properties of the
stochastic process {X;}:eN, in this paper we adopt the framework of the pathwise approach, intro-
duced in the context of metastability by [24], later developed in [50, 51], and summarized in the
monograph [52]. A modern version of this approach can be found in [26, 27, 43, 47]. The pathwise
approach has been widely adopted for studying the low-temperature behaviour of finite-volume
models with single-spin-flip Glauber dynamics, e.g., [1, 2, 11-14, 25, 49, 55, 56], with Kawasaki
dynamics, e.g., [4-7, 37, 46], and with parallel dynamics, e.g., [28-30]. The more involved infinite-
volume limit at low temperature was studied via this approach in [3, 34, 37]. A different method
to study the limiting behaviour of interacting particle systems is the so-called potential-theoretic
approach, initiated in [22] and later summarized in the monograph [23] (see, for instance,
[20, 21, 48] for the application of this approach to specific models both in finite and infinite
volume). Since these two approaches rely on different definitions of metastable states, they are
not completely equivalent. The situation is particularly delicate for infinite-volume systems, irre-
versible systems, and degenerate systems, as discussed in [15, 26, 27]. More recent approaches are
developed in [8, 9, 16, 17, 40, 41].

The paper is organized as follows. In section 2, we provide a detailed model description and
state our main result regarding the geometric features of the critical configurations, Theorem 2.1.
The rest of the paper is then devoted to the proof of this result. First, section 3 provides some
preliminary definitions and auxiliary results, and then finally the proof of the main theorem is
given in section 4. For the sake of clarity, the proofs of some auxiliary lemmas are deferred to a
later section, namely section 5. Lastly, section 6 concludes the paper and discusses some future
work.

2. Model description and main results

We consider the stochastic evolution of the hard-core model on finite two-dimensional square
lattices. More precisely, given an integer L > 2 we consider the L x L square grid graph A = (V, E)
with periodic boundary conditions, which we will refer to as L x L toric grid graph. We denote by
E the edge set of the grid graph A and by V the collection of its N = L? sites. We identify each
site v € A by its coordinates (vi, v2), that is, we take V:= {0,...,L — 1} x {0,...,L — 1} as set of
sites. In the rest of the paper, we will assume that L is an even integer, which guarantees that A is
a bipartite graph, and that L > 6, to avoid pathological trivial cases.

A particle configuration on A is described by associating a variable o (v) € {0, 1} with each site
v € A, indicating the absence (0) or the presence (1) of a particle on that site. Let X’ C {0, 1}N be
the collection of hard-core configurations on A, i.e.,

X:={oe€{0,}N |oc()o(w)=0, V(v,w) €E}, (2.1)

i.e., the particle configurations on A with no particles residing on neighbouring sites.

A site of A is called even (respectively odd) if the sum of its two coordinates is even (respectively
odd) and we denote by V. and V, the collection of even sites and that of odd sites of A. Clearly
|Ve| = |Vo| = L?/2. We denote by e (o, respectively) the particle configuration on A with particles
at each site in V (V,, respectively), i.e.,
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1 ifveV,, 0 ifveVe,
e(v):= and o(v):=
0 ifveV,, 1 ifveV,.

Both e and o are hard-core configurations due to the assumption that L is even.

Figure 1 shows an example of a hard-core configuration. Throughout the paper, all figures are
drawn using the following conventions. They all depict hard-core configurations on a 14 x 14
grid with periodic boundary conditions. The occupied (empty) sites in Ve (Ve, respectively) are
shown in black (white), and we draw a black line around each odd cluster representing its con-
tour. We tacitly assume that all the even (odd) sites outside the odd region are occupied (empty,
respectively) but they are not displayed to avoid cluttering the figures. See subsection 3.1 for more
precise definitions of odd clusters and odd regions.

Consider the Gibbs measure on X given by

¢~ BH()

nglo):= , oedX, (2.2)

Zﬁ’A
where H is the Hamiltonian H : X — R that is taken to be proportional to the number of present
particles, namely

H(o):= — Z o(v), (2.3)

veV

with Zg 5 == 3, . € PP being the normalizing constant. The two hard-core configurations
on the L x L toric grid graph A introduced above have energy equal to
LZ
H(e) = H(0) = ——,
which is the minimum value the Hamiltonian can take on X' [47].
We assume the interacting particle system described evolves according to stochastic Glauber-

type dynamics described by a single-step update Markov chain {Xf }ten on X with transition
probabilities between any pair of configurations o, " € X’ given by

Py(o,0”)im glo,o")e PHE-HOI | if o 2 o/, -
’ I—Zﬂ#g Pg(o, ), ifo =0/,

where [-]7 =max{-,0} and q is the connectivity matrix that allows only single-step updates,
ie., for every o, 0’ € X we set

I%], if{{ve V:a(v);éo’(v)}|=1,
g(o,0’):= {0, if {{ve Vo) ;éa’(v)}| > 1. (2.5)
1=3 20 4q(0,n), ifo=0".

The resulting dynamics Pg is reversible with respect to the Gibbs measure ug given in (2.2).
The triplet (X, H, q) is usually referred to as energy landscape and (2.4) as Metropolis transition
probabilities.

The connectivity matrix g given in (2.5) is irreducible, i.e., for any pair of configurations o, o’ €
X, 0 # o', there exists a finite sequence w of configurations w1, . . .,w, € X’ such that w1 =0,
wp =0’ and q(wj, wit+1) > 0, fori=1,...,n— 1. We will refer to such a sequence as a path from
o to o’ and denote it by w:0 — o’'. Given a path w = (w1, . . . , @y,), we define its height ®,, as

&, := max H(w;). (2.6)

i=1,...,n
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The communication energy between two configurations o, ¢’ € X is the minimum value that has
to be reached by the energy in every path w: 0 — o”, i.e.,

®(0,0'):= min ®,= min max H(p). (2.7)
w:oc—>0’ w:o—>0o’ NEw

Let X* C X denote the set of global minima of the Hamiltonian H on X, to which we will refer
to as stable states.

In [47] it has been proved that for the hard-core model on a finite L x L square grid graph the
following statements hold:

(i) There are exactly two stable states
XS ={e,0}; (2.8)
(ii) The communication energy between the two stable states is equal to
®(e,0) —H(e)=L—+1; (2.9)
(iii) The corresponding energy landscape has no deep wells, i.e.,
l;lea))(( [®(0,{e,0}) —H(o)] <L < ®(e,0) — H(e). (2.10)

Together, these facts imply that the value of the constant appearing in the asymptotic
statements (1.1) and (1.2) for the first hitting time 7 is I'(A) =L + 1.

2.1 Essential saddle characterization

Our results give insight into the way the transitions between e and o most likely occur in the
low-temperature regime. This is usually described by identifying the optimal paths, saddles, and
essential saddles that we define as follows.

« S(e, 0) is the communication level set between e and o defined by
S(e,0):={o € X [Jw e (e— 0)opt, :0 €wand H(o) = O, = (e, 0)},

where (€ — 0)qp is the set of optimal paths from e to o realizing the minimax in ®(e, o),
ie.,

(e — 0)opt := {w:e— 0| Dy = D(e, 0)}.

+ The configurations in S(e, 0) are called saddles. Given an optimal path w € (e — 0)opt,
we define the set of its saddles S(w) as S(w) := {0 € w | H(o) = &, = ®(e,0)}. A saddle
o € S(e, 0) is called essential if either

(i) 3w € (e — 0)qpt such that S(w) = {0}, or

(i) 3 € (e — 0)opt such that o € S(w) and S(w') € S(w) \ {0} Vo' € (e— 0)opt.
A saddle o € S(e, 0) that is not essential is called unessential saddle or dead-end, i.e., for
any w € (e = 0)opt such that w N {0’} # ¥ we have that S(w) \ {0’} # ¥ and there exists &’ €
(e = 0)opt such that S(w') € S(w) \ {o'}.

o The essential gate G(e, 0) C X is the collection of essential saddles for the transition e — o.

The aim of the present paper is to accurately identify the set G(e, 0) of essential saddles for the
transition from e to o for the Metropolis dynamics of the hard-core model on a L x L grid with
periodic boundary conditions.
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Figure 3. An example of a configuration in C¢ (e, o) (on the left) and one in Cgp (e, 0) (on the right).

The set G(e, o) will be described as the union of six disjoint sets, each characterized by config-
urations with specific geometrical features. Although we refer the reader to section 4 for a precise
definition of these sets (cf. Definitions 4.2-4.6), we provide here some intuitive descriptions of the
geometrical features of the configurations in these sets. We denote by

s Cir(e, 0), Cgr (e, 0), and C,r(e, 0) the collections of configurations with a unique cluster of
particles in odd sites of rhomboidal shape with exactly two adjacent even empty sites as
in Figure 2 and Figure 3 (left). Roughly speaking, Ci (e, 0) contains the configurations
with (% — 1)? occupied odd particles and L? + 2 empty even sites; Cqr(e, 0) (resp. Cr(e, 0))
contains the configurations obtained from C;;(e, 0) (resp. Cq/(e, 0)) by removing some
occupied even sites attached to the rhombus and growing along one (resp. the longest)
side by adding some particles in the nearest odd sites of the rhombus.
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LS

Figure 4. An example of a configuration in Cp, (e, 0) (on the left) and one in Cj (e, 0) (on the right).

o Cy(e,0), Ciyp(e, 0), and Cj(e, 0) the collections of configurations with a unique cluster of
particles at odd sites with at most two additional empty even sites as in Figure 3 (right)
and in Figure 4. In particular, Cy(e, 0) contains the configurations with % — 1 particles
arranged in an odd column with two other empty even sites; C,,;(e, 0) contains the con-
figurations obtained from Cy (e, 0) such that there is at least one column or row with %
particles arranged in odd sites. Cj; (e, 0) contains the configurations obtained from Cy (e, 0)
without having column or row with ]5“ particles.

The following theorem characterizes the essential gate for the transition from e to o.
Theorem 2.1 (Essential saddles). Define the set
C*(e, 0) := Cir(e,0) U Cer(e,0) UCr(e,0) UCg(e,0) UC,,(e,0) UCiy(e, 0).

The essential saddles for the transition from e to o of the hard-core model on a L x L toric grid graph
A are all and only the configurations in C*(e, 0), i.e.,

G(e,0) =C*(e, 0).

Furthermore, the possible transitions at energy not higher than —1‘72 + L+ 1 among the six subsets
that form C*(e, o) are as detailed in Figure 5.

3. Definitions and auxiliary results

The main goal of this section is to introduce the notion of odd clusters, which are the basis of the
geometrical description of the configurations, and to inspect the relation between their shape and
perimeter.

In subsection 3.1 we define a geometrical representation of clusters associated with the occu-
pied odd sites, and in subsection 3.2 we introduce the notion of rhombi, which turns out to be
crucial in the description of the essential saddles. In subsection 3.3 we present two algorithms
that, combined together, return a path whose last configuration has a rhomboidal shape and such
that the energy along it never increases. We will use them to deduce that there exists a downhill
path from the configurations without a rhomboidal cluster towards e or o.
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Figure 5. Schematic representation of the set of essential saddles, where we highlight with arrows between the set pairs
that communicate at energy not higher than 7% + L+ 1 and the initial cycles C and C,, see section 3. The vertical lines
represent the partition of X’ in manifolds, see (4.1).

Along the lines of [43, eq. (2.7)], we define Ce:= {¢ € X | ®(¢, e) < P(e, 0)} to be the initial
cycle of e, that is the maximal cycle that includes e but does not include o, namely, it contains all
the configurations that can be reached by e by spending strictly less energy than the one needed for
the transition between e and o, i.e., the communication height ®(e, 0). The corresponding initial
cycle of o is defined analogously and is denoted by C,.

Given a configuration o € X, denote by AH (o) the energy difference with respect to either one
of the stable states, i.e.,

AH(o):= H(o)— H(e). (3.1)

3.1 0dd clusters and regions
For any subset of sites S C V we define the complement of S as S := V'\ §, the external boundary
971S as the subset of sites in S¢ that are adjacent to a sitein S, i.e.,
atS:= {veS|IweS:(v,w) €E},
and VS as the subset of edges connecting the sites in S with those in 78, i.e.,
VS:= {(v,w)€E|veS, wedTs).

A (connected) odd cluster C C V is a subset of sites that satisfies both the following conditions:

1. If an odd site v € V. belongs to C, then so do the four neighbouring even sites, i.e.,
at{vyc G

2. CN V. is connected as a sub-graph of the graph (Ve, E*), with E* := {(v,w) € Ve x
Ve | d(v, w) = 2}, where d(-, -) denotes the usual graph distance on A.

We denote by Co(A) the collection of odd clusters in A.

Consider the dual graph A’ = (V', E') of the graph A, which is a discrete torus of the same size.
Given an odd cluster C, consider the edge set VC that disconnects C from its complement C°. We
associate with VC the edge set y (C) C E’ on the dual graph A’ which consists of all the edges of A’
orthogonal to edges in VC. Such a set, to which we refer as the contour of the cluster C, consists of
one or more piecewise linear closed curves and, by construction, |y (C)| = |VC]|. Leveraging this
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fact, we define the perimeter P(C) of the odd cluster C as the total length of the contour y(C), i.e.,

P(C):= y(O)l. (3.2)
As proved in [57], the perimeter of the odd cluster C satisfies the following identity:
P(C)=4(CNVe| —|CN V,)). (3.3)

We call area of an odd cluster C the number of odd occupied sites it comprises. We say that an
odd cluster is degenerate if it has area 0 and non-degenerate otherwise.

We introduce a mapping O : X — 2V that associates to a given hard-core configuration o € X
the subset O(0) C V defined as

O)={rveVy|low)=1}U{ve Ve |o(v)=0}. (3.4)

In other words, O(o) is the subset comprising all occupied odd sites and even empty sites of the
configuration o. It is immediate to check that O is an injective mapping, and we will refer to the
image O(o) of a configuration o as its odd region.

The odd region O(o) of a configuration o € X' can be partitioned into its connected compo-

nents, say C1(0), . .., Cyu(0o) € Co(A), for some m € N, which are, by definition, odd clusters, that
is,
O(0)=|_| Ci(o). (3.5)

Using the partition (3.5) of the odd region O(¢) into odd clusters, the definitions of contour and
perimeter can be extended to the whole odd region in an obvious way, so that we can ultimately
define the contour y (o) of a configuration o € X as

y(0):=|_|y(Ci(o)), (3.6)

i=1

and its perimeter P(o’) as

P(o):= Z P(Ci(0)). (3.7)

i=1

As shown in [57], starting from (3.3), a double counting argument yields the following identity
that relates the perimeter P(0) of a hard-core configuration o € X’ with its energy H(o') (recall

(3.1)-(3.2))
P(c)=4 AH(o). (3.8)

Given a configuration o € X, we define the odd non-degenerate region ©O"%(c) as a subset of
O(o) containing only odd non-degenerate clusters. See Figure 7 for an example of an odd region
and an odd non-degenerate region.

3.2 0dd rhombi

Given an odd site n = (11, 12) € V,, and two positive integers £1, £, < L, the odd rhombus R, ¢,(n)
with reference site 17 and lengths ¢; and ¢ is the odd cluster defined as

Rt (1) = Sey,6,(1) U T Se,0,(m), (3.9)
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Figure 6. Example of four different rhombi, namely R1,, R4, Ro and Ry o (in clockwise order from the top-right corner).

where Sp, ¢,(n) C V, is the subset of odd sites given by

Sty (1) = U {n+k+jm+k=j)
0<k<t;—1,0<j<{,—1

={v=W,Lv)eVI|Ikel[0,]],jell0, 2]l :vi=m +k+j, va=n2+k—j}
(3.10)

In the latter definition, the sums and subtractions of coordinates are taken modulo L. In the
case £1¢, = 0, we can take 77 € V. and define the degenerate rhombus Ry, ¢, (1) as the odd cluster

Uogjigz{(nl +j; n2 _])} if¢;=0and ¢, #0,
R, (M) = Up<ker, {(m +k,ma —k)} if €1 #0and £, =0,
(n1,m2) if¢1=14¢,=0.

Note that, in this case, Ry, ¢,(n) is a subset of even sites. The area of Ry, ¢,(n) is the cardinality
of S¢,,¢,(n) in the non-degenerate case, whereas in the degenerate case it is equal to zero. Some
examples of rhombi and degenerate rhombi are shown in Figure 6. We observe that the non-
degenerate rhombus Ry, ¢, has £; diagonals of length ¢, and ¢, diagonals of length ¢; in the
opposite direction, which we will refer to as complete diagonals. We denote by Ro(A) C Co(A) the
collection of all odd rhombi on A including the degenerate ones. For every odd cluster C € Co(A),
we define the surrounding rhombus R(C) as the minimal rhombus (by inclusion) in Re(A) such
that C € R(C); see Figure 8 for an example.

Most of the results for odd rhombi that will be proved are translation-invariant, the reason
why we will often refer to the rhombus Ry, ¢, (1) simply as Ry, ¢,, without explicitly specifying
the reference site 1. The next two lemmas, Lemmas 3.1 and 3.2, concern the properties of rhombi
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Figure 7. Example of a configuration o, in which the contour of the non-degenerate (degenerate) odd clusters is highlighted
in black (red, respectively). The contour y (o) of the configuration o is of the odd region O(o) is the union of black lines
(corresponding to @™ (o)) and red lines.

Figure 8. Example of a odd cluster C (on the left) and its surrounding rhombus R (C) = Rg 5 in red (on the right). On the left,
the red squares contain the antiknobs and the decreasing broken diagonals are highlighted with blue rectangles. On the
right, we highlight the decreasing shorter (resp. complete) diagonals with blue (resp. green) rectangles.

on a square L x L grid with periodic boundary conditions. Their proofs, being involved but not
particularly insightful, are deferred to Appendix A.

Lemma 3.1 (Set of sites winds around the torus). Given n = (1, n2) € Vo and two non-negative
integers L1, €2 < L such that £1 < { and £; > L/2, the following statements hold:
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(i) If €, <L —2, then

U tm+k+j-tm+k-pu  [J (n+k+j—Lm+k—))

0<k<ty £1+1<k<L-1
OH+1<j<L-1 0<j=<t,

c | tn+kti— 1,m+k—j)).
Ojkffl
0<j<t,

(ii) If¢, =L — 1, then

U (m+k+ji—Lm+k=pc |J (n+k+j—Ln+k-j} (3.11)
£1+1<k<L-1 0<k<ty
0<j<L—1 0<j<L—1
and

U tm+k+jim+k—ic J (m+k+im+k=p.  (312)
L/2<k=<t1-1 0<k<L/2—1
1<j<L-2 0<j<L-2

For any subset of sites A C V, we define the complement of A as the complementary set of A in
V,ie,as V\ A.

Lemma 3.2 (Properties of rhombi). Given n € Vo and two non-negative integers £1, £, <L, the
following statements hold:

(i) If max{€;,€2} <L—2 and min{l,,£¢,}>L/2, then the complement of the rhombus
Re,e,(n) is a thombus Ry g, —1,1—¢,—1(7]) for some ij € Ve.
(ii)) If max{{;, €} =L —1 and min{€,,£,} > L/2, then the complement of the rhombus
R, 0,(n) is the disjoint union of L — min{€, £,} odd sites.
(iii) If max{£1, €2} =L and min{{y, £} < L/2, then the rhombus Ry, ¢,(n) contains L€ odd
sites and L(£1 + 1) even sites.
(iv) If max{{;, £} =L and min{{y, €5} > L/2, then the rhombus Ry, ¢,(n) coincides with V.

These two lemmas will now be used to prove the next proposition, which gives a formula
for the perimeter of a rhombus Ry, ¢,. To this end, we will use the fact that a rhombus R, ¢,
and its complement in A have the same boundary for any 0 < ¢;, £, < L, and, in particular the
same perimeter. In addition, we will say that a rhombus Ry, ¢, winds vertically (resp. horizontally)

around the torus if there exists a set of % odd sites 71, . .., 112 in Ry, ¢, all on the same column
(resp. row). If the direction is not relevant, we will simply say that the rhombus winds around the
torus.

Proposition 3.3 (Formula for rhombus perimeter). Given a L x L toric grid graph A and any sizes
0 < {1, 4, <L, the perimeter of the rhombus Ry, ¢, satisfies the following identity

l1+4,+1 if min{¢;, £;} < L/2 and max{¢y,¢;} <L,

2L — (€1 + €, + 1) if min{éy,£,} > L/2 and max{{;, {,} <L,
P(Ryyp,) =4 x - (3.13)

L if min{¢;, ¢,} <L/2 and max{¢;, (>} =1L,

0 if min{¢;, £;} > L/2 and max{¢;, {2} = L.
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Proof. First of all, we identify which of the conditions in (3.13) imply that a rhombus winds
around the torus. Consider the rhombus Ry, ¢, () with n=(n1,1n2) € Vo. Let 0 =(01,02) €
Se,,e, (1) be such that o3 =1, and d(1;, 01) is the maximal distance along that horizontal axis.
Similarly, let & = (&1, &) € S¢,,¢,(7) be such that d(n;, &) is the maximal distance along the

vertical axis. Recalling (3.10), since 02 =1, we have k=j for any k,j=1, ..., €min — 1, where
£min = min{¢1, £>}. Thus, we obtain
or=n+k+j=n+2¢min—1), (3.14)

where the last equality follows from the fact that the maximal distance along the horizontal axis is
precisely the distance between o7 and n;. We note that if d(11, 01) < L — 2 then the rhombus does
not wind horizontally around the torus. Thus,

L
d(n1,01) =2(lmin — 1) <L —2 & Lmin < 3 (3.15)
Now, consider the distance between 1, and &;. Let £;,.x = max{£y, £;,}. In this case, if d(1;, &) <
L — 2 then the rhombus does not wind vertically around the torus. Thus, we have

d(772,§2)=n‘11(31,x|772—(?72—k+j)|=€max—1§L—2- (3.16)
Jj

We conclude that if £,i, < % and £ax < L, then the rhombus does not wind around the torus and
the perimeter is the length of its external boundary. In view of (3.3), the claim follows. Otherwise,
there are three cases, which will be treated separately:

(@) €min > ]5 and €max <L —2;

(b) Zmin >

% and £ > L —2;

(C) emin < % and Kmax == L.

(a) Consider the complement of the rhombus R, ¢, (1) for some 5. By virtue of Lemma 3.2(i),
we know that its complement in V' is a rhombus with side lengths ly=L—¢; —1and{, =
L —¢; — 1. We claim that this complementary rhombus does not wind around the torus.
Using condition £pyin > %, we find that the maximal side length of the complementary
rhombus is

- - L
max{ﬂl,ﬁz} =max{L—€1 —1,L—4¥, — 1} =L—4lmin—1<L— E —1<L, (3.17)
that is, max{E~ 1> 572} < L. Moreover, the minimal side length is

-~ - L
min{Kl,ez}zmin{L—Kl—1,L—£2—1}=L—Zmax—ISL—Emin—lfL—5—1,
(3.18)

that is, min{¢1, £} < ]5“ Since the perimeter of the rhombus Ry, ¢, is the same as that of
Ri—¢,—1,L—¢,—1, the claim follows from (3.3).

(b) The claim follows from Lemma 3.2(ii)-(iii) and (3.3).

(c) The claim follows from Lemma 3.2(iv) and (3.3). 0

We say that an odd cluster C is monotone when its perimeter coincides with that of its sur-
rounding rhombus R(C) if it does not wind around the torus, i.e., P(C) = P(R(C)). Otherwise,
we say that an odd cluster C is monotone when its perimeter coincides with that of a bridge,
i.e,, P(C) =4L. Note that it immediately follows that a monotone odd cluster C has no holes,
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i.e,, empty odd sites with the four even neighbouring sites belonging to C. An empty odd site
n ¢ C is an antiknob for the cluster C if it has at least three neighbouring even empty sites that
belong to C. Figure 8 (left) highlights in red the antiknobs of a hard-core configuration.

Given an odd cluster C € Co(A) and an integer k > 1, we say that C displays an increasing
(resp. decreasing) diagonal broken in k sites if there exist a sequence of sites z; = (x;, y;) € Vo \ C,
i=1,...,k such that

e Xiz1=xi+1 and yiy1=yi+1 (resp. xipz1=x+1 and yiy;=y;—1) for any i=
1,...,k—1,and

o the two odd sites (x; — 1,y — 1) and (xx + L,y + 1) (resp. (x; — L,y1 + 1) and (x; +
1, yx — 1)) belong to the cluster C.

By construction of a broken diagonal, the two sites z; and zj are always antiknobs. If it does not
matter if an increasing or decreasing diagonal is broken, we simply say that a diagonal is broken.
Broken diagonals are visualized in blue in Figure 8 (left). Given an odd cluster C € Co(A) and an
integer k > 1, we say that C displays an increasing (resp. decreasing) shorter diagonal lacking in k
sites if there exist a sequence of sites z; = (x;, i) € (Vo NR(C))\ C,i=1,...,k, such that

e Xis1=xi+1 and yiy1=yi+1 (resp. xip1=x+1 and yiy;=y;—1) for any i=
1,...,k—1,and

« the two odd sites (x; —1,y1 — 1) and (xx + 1,y + 1) (resp. (x; — 1,y + 1) and (x; +
L, yx — 1)) do not belong to R(C).

Figure 8 (right) highlights the shorter diagonals in blue.

3.3 Expanding an odd cluster: the filling algorithms

We now describe an iterative procedure that builds a path w in X' from a configuration o with a
unique odd cluster to another configuration ¢’ that (i) displays a rhombus, and (ii) whose energy
H(o') is equal to or lower than H(o).

The path @ can be described as the concatenation of two paths, each obtained by means of
a specific filling algorithm. The reason behind this name is that, along the generated paths, any
incomplete diagonal in the odd cluster of the starting configuration is gradually filled by adding
particles at odd sites until a rhombus is obtained.

The two paths can be intuitively described as follows. The first path, denoted as @, starts from
a configuration with at least one broken diagonal and, by filling one by one all broken diagonals
in lexicographic order, arrives at a configuration without broken diagonals. Each broken diagonal
is progressively filled by removing a particle in the even site at distance 1 from an antiknob that
lies on that diagonal and adding a particle in the odd site where the antiknob is. The antiknobs
on the same diagonal are processed in lexicographic order. The second path, denoted as @, starts
from a configuration without broken diagonals (such as any ending configuration of the path @)
and arrives at a configuration displaying an odd rhombus. The construction of this second path
is similar to that of the first path, but in this case the particles are added in odd sites to fill all the
shorter diagonals.

The filling algorithms that generate the two paths @ and @ are designed so that the maxi-
mum energy along the resulting path o =@ U , i.e., ®,, is never larger than H(o) + 1. More
specifically, the perimeter of the odd cluster either decreases or does not change along @, whereas
it can increase and sequentially decrease by the same amount along @. Proposition 3.4, whose
proof is postponed to subsection 5.1, specifies the requirement for the starting configuration and
summarizes the properties of the path generated by the filling algorithm.
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Algorithm 1: Filling algorithm to build path ®

Input: a configuration o € X' consisting of a unique odd cluster C' with m > 1 broken
diagonals such that the j-th is broken in k; sites for j =1,...,m
Output: @ : o — G, with the configuration & € X’ consisting of a unique odd cluster with no
broken diagonals
09 = 0;
for j=1,....mdo
0j = 0j-1;
fori=1,...k; do
Consider the i-th antiknob (in lexicographic order) of the j-th broken diagonal in C
and denote it by z;; € V,
if @, has a neighboring occupied site T;, € Vo then
(ijvi’o).

9ji = 0; ;
_ ~(@5,i,1)
Oji = 05" 73
else
~ _ (xj,um.
0ji = 0y ;
0ji = Oji
end
Oj+1 = Ojk;s
Wji = (04,041,051, -y 0y 04i);
end
Wj = Wjk;;
Oj+1 = Ojik;s
end
0= Om;

@ is the concatenation of the paths @wy,..., @y,

To formally define these two algorithms, we introduce the following notation. Given two con-
figurations 0,0’ € X and a subset of sites W C A, we write o)y = al’W if o(v) =o' (v) for every
v € W. Given a configuration o € X', we let

o 09 be the configuration o’ € X such that GI/V\{V} =0|v\{y) and o’ (v) = 0; and
o o™ bethe configuration o’ such that Gl/V\{v} =ojy\(y ando’'(v) = 1.
In general, ¢ 1) may not be a hard-core configuration in X, since o may already have a particle
residing in one of the four neighbouring sites of v.

Algorithm 1 (resp. Algorithm 2) provide the detailed pseudocode for the filling algorithm that
yields o (resp. @).

Proposition 3.4 (Odd cluster expansion via filling algorithms). Let 0,0’ € X be two hard-core
configurations on A, o # o', and R a rhombus such that

(i) There exists a connected odd cluster C C O(o) such that R(C) =R;
(i) oja\R =05\
(iii) al/R =0o|R.
Then, there exists a path @ : 0 — o' such that ®,, — H(o') < 1. In addition, if C has at least one
broken diagonal, then P(o) > P(c"), otherwise P(o) = P(o”).
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Algorithm 2: Filling algorithm to build path &

Input: a configuration o € X consists of a unique odd cluster C' with no broken diagonal and
m > 0 increasing shorter diagonals. The quantity k; is the difference between the
length of the shorter diagonal and the corresponding one of the surrounding rhombus
forj=1,...m

Output: w: 0 — o, with the configuration ¢ € & having a unique odd cluster, which is a

rhombus
if m =0 then
| 0 =0 and w is trivial;
else
0y = 0;
for j=1,....,mdo
0j = 0j-1;
fori=1,...,k; do
Consider the i-th empty odd site (in lexicographic order) not belonging to the j-th
shorter diagonal in C' but in the corresponding complete diagonal of the
surrounding rhombus and denote it by z;; € V,
if x;; has a neighboring occupied site T;; € V, then
5']'71‘ = U](mj’ho);
0= 6.](,111',1':1);
else
G = U](-Ij‘i’l);
0ji = 0j;
end
Oj+1 = Ojk;5
Wji = (05,051,041, 0jis 0ji);
end
(I)j = ‘Dj,kj;
Oj+1 = Ojk;>
end
0= Om;
Obtain w as the concatenation of the paths wy,..., Wy,
end

We note that conditions (i), (ii), and (iii) mean that there is a unique odd cluster in o different
from a rhombus, i.e., there exists at least one broken or shorter diagonal.

Thanks to Proposition 3.4, we are able to characterize the configurations with minimal perime-
ter for a fixed number of occupied odd sites. This finding is formalized in the following two results,
Proposition 3.6 and Corollary 3.7, whose proofs are deferred to subsection 5.1.

To state the precise results, we first introduce the notion of bars as follows. We define a verti-
cal (resp. horizontal) bar B of length k as the union of particles arranged in odd sites xi, . . ., Xk
belonging to the same column (resp. row) such that d(x;, xi41) =2 foranyi=1,...,k — 1.In the
case of k = 1, we will refer to it as protuberance. If in the same column (resp. row) there are m dis-
joint vertical (resp. horizontal) bars, each of them of length k;, we say that the total length of the
bars is k=k; + . ..+ ky,. Similarly, we can define a diagonal bar and note that it can correspond
to a shorter or complete diagonal. If it does not matter whether the bar is vertical, horizontal, or
diagonal, we simply refer to it as a bar. Finally, we will say that a bar B is attached to a cluster C
when all the particles belonging to B are at distance two from C. Note that in Figure 8 (right) the
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shorter diagonals of lengths three and one are diagonal bars. See Figure 8 (left) for examples of
vertical bars.

Lemma 3.5. For any n positive integer there exist two positive integers s and k, with 0 < k < s, such
that either (i) n=s(s — 1) + k or (i) n = s*> + k.

Proof. See the first part of [26, Lemma 6.17]. O

Proposition 3.6 (Perimeter-Minimal rhombi). Consider n < L(L — 2) and let s, k be the unique
integers as in Lemma 3.5. The set of odd clusters with area n that have minimal perimeter contains
either a rhombus Rss—1 or Re_1, with a bar of length k attached to one of its longest sides if n =
s(s — 1) + k and a rhombus R with a bar of length k attached to one of its sides if n = s> + k.

Corollary 3.7 (Minimal perimeter). Consider n < L(L — 2) and let s, k be the unique integers as in
Lemma 3.5. The perimeter P of an odd cluster with area n satisfies the following inequalities:

(5_1)22{411 ifs<L/2,
4 2(L*> —2n) ifL/2<s<L.

In addition, for all s < L we have that
P>4(2y/n+1) (3.19)
and for s < % the equality holds if and only if the odd cluster is the rhombus R .

Lastly, in the next lemma, we derive an isoperimetric inequality assuming the total number of
odd and even occupied sites is fixed. To this end, we first define the real area of a configuration o
as

n(o)=o0(o) +e(o), (3.20)

where o(0) (resp. (o)) denotes the number of occupied odd (resp. empty even) sites of the
configuration .

Lemma 3.8 (Perimeter-Minimal rhombi with fixed real area). Given 1 </{ < %, the unique odd
cluster with real area it = 20% + 2¢ + 1 and minimal perimeter is the rhombus Ry . In particular,
forn= L; — L + 1 this rhombus is R%_l,%_l.

We use this lemma to characterize the critical configurations with an odd cluster of rhom-
boidal shape that does not wind around the torus. Indeed, we identify the shape of protocritical
configurations ¢ with minimal perimeter and fixed real area LTZ — L+ 1 such that R(O"(5)) does
not wind around the torus, and we show that if the trajectory visits another type of configuration
with such a real area, then the corresponding path would not be optimal. The proof is given in
subsection 5.1.

4. Essential saddles: proof of the main theorem

In this section, we first formally introduce in subsection 4.1 the six sets appearing in the statement
of Theorem 2.1 and then prove the same theorem in subsection 4.2 by showing that the elements
of those six sets are all essential saddles for the transition from e to o.

4.1 Preliminaries

We say that a configuration o € X has a odd (resp. even) vertical bridge if there exists a column in
which the configuration o perfectly agrees with o (resp. e). We define odd (resp. even) horizontal
bridge in an analogous way and we say that a configuration ¢ € X has an odd (resp. even) cross
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Figure 9. Examples of configurations displaying an odd horizontal bridge (on the left) and an odd cross (on the right).
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Figure 10. Examples of configurations displaying an odd horizontal double (2-uple) bridge (on the left) and an odd vertical
triple (3-uple) bridge (on the right).

if it has both vertical and horizontal odd (resp. even) bridges (see Figure 9). In addition, we say
that a configuration displays an odd (resp. even) vertical m-uple bridge, with m > 2, if there exist m
contiguous columns in which the configuration perfectly agrees with o (resp. e). Similarly, we can
define an odd (resp. even) vertical m-uple bridge (see Figure 10). We refer to [47] for more details.

The next lemma states that all configurations o € X with AH(o) < L must belong to one of the
two initial cycles.

Lemma 4.1 (Configurations with AH < L belong to one of the initial cycles). If a configuration
o € X is such that AH(o) < L, then there exists a path w:o0 — {e, 0} with &, <H(o)+ 1. In
particular, either 0 € Ce or o € C,.

Proof. If AH(o) < L, then there exists both a horizontal and a vertical bridge. Due to the hard-
core constraints, these L — 1 particles should all reside at sites of the same parity. Hence, o has
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either an even cross or an odd cross. Then, using the reduction algorithm introduced in [47], one
can build a path to either e or o, respectively, with the desired properties. U

Definition 4.2. A hard-core configuration o € X on the L x L toric grid graph A belongs to Ci,(e, 0)
if the following conditions hold:

1. the odd region O(c) contains only a non-degenerate cluster C and a degenerate rhombus
D e {R1,0, Ro,1} at distance two from C;

2. the cluster C is monotone;

3. Cisarhombus RL_; 1_;
2 >2
4. 01A\(CUD) = €|A\(CUD)-
See Figure 2 (left) for an example of configurations in C;,(e, 0).

Definition 4.3. A hard-core configuration o € X onthe L x L toric grid graph A belongs to Cyr(e, 0)
(resp. Ccr(e, 0)) if the following conditions hold:

1. the odd region O(c) contains only a non-degenerate cluster C and a degenerate rhombus
D =Ry at distance one from an antiknob;

2. the cluster C is monotone;
3. Cis a rhombus R%—l,%—l (resp. R%A’%) with a single bar of length k, fork=1,. .., ]5“ -1
(resp. k=1,..., % — 2), attached to one of its sides;
4. 01a\(CuD) = €|A\(CuD)-
See Figure 2 (right) and Figure 3 (left) for an example of configurations in Cg(e, 0) and C, (e, 0),

respectively. Note that for any o € Cj;(e, 0) UCy (e, 0) the surrounding rhombus R(O(0)) is
R%%’% , while for any o € C,,(e, 0) the surrounding rhombus R(O(o)) is R%%

Definition 4.4. A hard-core configurationo € X onthe L x L toric grid graph A belongs to Cy,(e, 0)
if the following conditions hold:

1. the odd region O(o) contains only a non-degenerate cluster C and a degenerate region D
consisting of two even sites at distance one from the same antiknob;

2. the cluster C is monotone;
. . L .
3. Cis a single column or row of length 5 — 1;
4. O|A\(CUD) = €|A\(CUD)-
Note that the unique possibilities are that (i) D consists of two degenerate rhombi Rq as in
Figure 3 (right) or (ii) D € {RRo,1, R1,0} as in Figure 11 (left).

Definition 4.5. A hard-core configuration o € X on the L x L toric grid graph A belongs to
Cup(e, 0) if the following conditions hold:

1. the odd region O(c) contains only a non-degenerate cluster C and a degenerate rhombus
D =Ry at distance one from an antiknob;

2. the cluster C is monotone;
3. Cis composed either by:
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Figure 11. Anexample of a configuration in Csp (e, 0) that communicates with Cj (e, 0) and not with Cpp (e, 0) (on the left) and
an example of a configuration in Cj (e, o) (on the right).

o aodd (L — 3)-uple bridge, or

o an odd m-uple bridge, with 2 <m < L — 3, together with disjoint bars attached to either
side of the m-uple bridge with total length k, with k=0, . . ., % —1,0r

o an odd bridge, together with disjoint bars attached to the bridge with total length k, for
k=0,..., ]5 — 1, and C does not contain R%—l,%;

4. 0|A\(CUD) = €|A\(CUD)-

See Figure 4 (left) for an example of a configuration in C,,;(e, 0). Note that any configuration
o € C,p(e, 0) is such that R(O(o)) winds around the torus. Thus, the assumption that the non-
degenerate cluster C is monotone implies that in condition 3 not every choice of the bars is
allowed. Indeed, in order for the cluster to be monotone, the bars on the right (resp. left) of the
m-uple bridge can be adjacent only to a longer (resp. shorter) bar in lexicographic order. This
implies that all bridges are in contiguous rows or columns. Furthermore, the length of a bar is
inversely proportional to its distance from the nearest bar composing the bridge.

Definition 4.6. A hard-core configuration o € X on the L x L toric grid graph A belongs to Cj,(e, 0)
if the following conditions hold:

1. the odd region O(c) contains only a non-degenerate cluster C and a degenerate rhombus
D =Ry at distance one from an antiknob;

2. the cluster C is monotone and does not contain RL_, 1_;
2 >2

3. Cis composed either by:

o one column (or row) B with % — 1 particles in odd sites or
o two neighbouring columns (or row) B with % — 1 particles in odd sites each;
In addition, in the other columns (or rows) there are k particles arranged in odd sites, for
k=o,..., Ii‘ — 1 —j, where j is the distance from B;
4. R(C) is not contained in RL_, 1_;
2 >2
5. O|A\(CUD) = €|A\(CUD)-

See Figure 4 (right) and Figure 11 (right) for examples of configurations in Cj (e, 0).
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Next, we provide several results investigating the main properties of the optimal paths con-
necting e to 0. To this end, we introduce the following partition in manifolds of the state space

X for every m = —%2, ces % we define the manifold as the subset of configurations where the
difference m(c) := —e(o) 4 0o(o) between odd and even occupied sites is equal to m € N, i.e.,

m = {o e X |m(o)=m}, (4.1)

where e(o) := ZveVe o(v) (resp. o(o):= ZveVo o(v)) is the number of the even (resp. odd)
occupied sites in 0.

Lemma 4.7. For any hard-core configuration o € X, the following properties hold:

(a) The only configurations accessible from o with a single nontrivial step of the dynamics belong
10 Vin(o)—1 U Vin(o)+1. In particular, any path from e to o must intersect each manifold Vy,

2 2
at least once for every m = —%, ceo %

(b) The quantities m(o) and AH (o) always have the same parity, i.e., m(c) = AH(c) (mod 2).

The proof of (a) is immediate by noticing that at every step of the dynamics either e(c) or o(o)
can change value and at most by 1 and that of (b) follows from the fact that AH(o) = —e(o) —

o(o) + ]“72 and that L is even.

A special role in our analysis will be played by the non-backtracking paths, i.e., those paths
that visit each manifold exactly once. Lemmas 4.8-4.10 below ensure the existence of a optimal
path connecting e to o, which can be constructed as a suitable composition of the paths described
below, and passing through the six sets that define C*(e, 0). The optimality of this path is guaran-
teed by the conditions on the height of each path described below. In addition, Lemma 4.11 below
shows that some of the sets composing C*(e, 0) do not communicate directly. Later, in subsec-
tion 4.2.2, combining these lemmas, we will show that the communication structure of these six
sets at energy not higher than H(e) + L + 1 is the one illustrated in Figure 5. The proof of these
lemmas is deferred to subsection 5.2.

Lemma 4.8. The following statements hold.

(i) For any configuration n € Ci,(e, 0) there exists a non-backtracking path w : e — n such that
&, — H(e) = AH(n) =L+ 1 and arg maxgc,, AH(E) = {n}.

(ii) For any configuration n € Cg(e, 0) there exists a non-backtracking path w : e — 1 such that
&, — H(e) = AH(n) =L + 1 and arg maxgc,, AH(§) = {n}.

Lemma 4.9. The following statements hold.

(i) For any configuration neCy(e,0) there exist a configuration 1 e€Cgple,0) and
a non-backtracking path w:n—n such that ®,—H(e)=AH(n)=L+1 and
arg maxge H(§) S Cy(e, 0) UCip(e, 0).

(ii) For any configuration 1 € Cy (e, 0) there exist a configuration 1) € Ci;(e, 0), a configuration
11 € Cip(e, 0) and two non-backtracking paths w : 7 — n, ' : 7 — n such that

- @, — H(e) =L+ 1 and arg maxzc,, H(§) C Cyr(e, 0) UCjr(e, 0);
- @, — H(e) =L+ 1 and arg maxcy H(§) C Cyr(e, 0) UCjp(e, 0).

(iii) For any configuration n € C,p(e, o) there exist a configuration 1 € Cy(e, 0), a configuration
11 € Cip(e, 0) and two non-backtracking paths w : 17 — 1, o' : i) — n such that
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- &, — H(e) =L+ 1 and arg maxge,, H(§) S Cpp(e, 0) U Cqy(e, 0);
- &, — H(e) =L+ 1and argmaxgcy H(E) S Cyppp(e, 0) UCip(e, 0).

(iv) For any configuration n € C,(e, 0) there exist a configuration 1) € Cg (e, 0), a configuration
1 € Cyp(e, 0) and two non-backtracking paths w : i) — n, ' : ij — n such that

- @, — H(e) =L+ 1 and arg maxzc, H(&) C Ccr(e, 0) U Cqr(e, 0);
- &, —H(e) =L+ 1and argmaxgcy H() C Cir(e, 0) U Cpyp(e, 0).

Lemma 4.10. The following statements hold.

(i) For any configuration n € C.,(e, 0) there exists a non-backtracking path w : n — o such that
&, — H(e) =L+ 1 and arg maxgc,, H(E) C Cir(e, 0).

(ii) For any configuration 1 € C,,;(e, 0) there exists a non-backtracking path w : n — o such that
®, — H(e) =L+ 1 and arg maxg e, H(E) € Cyppp(e, 0).

Lemma 4.11. The following statements hold.

(i) For any configurations n € Cir(e, 0) and n’ € Cy(e, 0), there is no optimal path w:n— n’
such that arg maxg ¢, € Cir(e, 0) U Cjp(e, 0).

(ii) For any configurations n € Cjy(e, 0) and n’ € Cy (e, 0), there is no optimal path w:n— n’
such that arg maxg ¢, C Cer(e, 0) U Cjp(e, 0).

(iii) For any configurations n € Cir(e, 0) and ' € C,,5(e, 0), there is no optimal path w:n — 1’
such that arg maxg ., € Cir(e, 0) U Cpyp(e, 0).

(iv) For any configurations n € Cg(e, 0) and n' € Cpyp(e, 0), there is no optimal path w :n — 1’
such that arg maxge,, < Cr(e, 0) U Cyppp(e, 0).

4.2 Proof of Theorem 2.1

This section is entirely devoted to the proof of Theorem 2.1. More specifically, we prove that any
essential saddle belongs to the set C*(e, 0) in subsection 4.2.1, we describe how the transitions
between essential gates can take place in subsection 4.2.2, and we prove that all the saddles in
C*(e, 0) are essential in subsection 4.2.3.

4.2.1 Every essential saddle belongs to C*(e, o)
In this subsection, we will show that any essential saddle o belongs to the subset C*(e, 0). This
readily follows from Proposition 4.12 below.

Proposition 4.12. Let o be an essential saddle. Then, the following statements hold:

(i) IfR((’)”d(a)) and R(O(0)) do not wind around the torus, then o € Cir(e, 0) U Cg (e, 0).

(ii) IfR(O”d(a)) does not wind around the torus, R(O(0)) does, and o belongs to w € (e —
0)opt that crosses the set Ci;(e, 0) U Cyr(e, 0), then o € Cr(e, 0).

(iii) If’R(O”d(a)) does not wind around the torus, R(O(0)) does, and o belongs to w € (e —
0)opt that does not cross the set Cir(e, 0) U Cgr (e, 0), then o € Cy,(e, 0) U Cip(e, 0).

(iv) IfR(O”d(J)) winds around the torus, then o € C,,;;(e, 0).

We observe that these four cases (i)-(iv) listed in Proposition 4.12 cover all possibilities and thus
form a partition of the set G(e, 0) of essential saddles for the transitions e — o.
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Before presenting the proof, note that given a configuration o € S(e, 0), if we know on which
manifold V,, it lies, then the quantities e(o) and o(c') are uniquely determined and can be explicitly
calculated as

m L[* L+1 m L[* L+1
- 4 =4 — — — 4.2
o(o) 5 + 1 5 and e(o) 5 + 2 5 (4.2)

This readily follows from the fact that AH(o) =L+ 1= —e(0) —o(0) + %2 and m= —e(o) +
o(0). Furthermore, since o € S(e,0), AH(o0c)=L+1 and m have to be odd integers by
Lemma 4.7(b).

To prove Proposition 4.12, we make use of an additional lemma (whose proof is deferred to
subsection 5.3), which characterizes the intersection between any optimal path and a specific
manifold, namely V,,» with m* := 3 — L.

Lemma 4.13 (Geometrical properties of the saddles on the manifold V). Any non-
backtracking optimal path @ : e — o visits a configuration o € Vy,» that satisfy one of the following
properties:

(i) If both R(O"(5)) and R(O(c)) do not wind around the torus, then o € Cj,(e, 0).
(ii) IfR(O”d(o)) does not wind around the torus but R(O(c)) does, then o € Cy(e, 0).
(iii) If both R(O"(5)) and R(O(c)) wind around the torus, then o € Cp(e, 0).

Proof of Proposition 4.12.

Case (i). Let o be an essential saddle such that R(O"(os)) and R(O(c)) do not wind
around the torus. If o € Vy», by Lemma 4.13(i)) we know that o €Cj (e, 0). Otherwise,
we assume that o ¢ V,«. First, we observe that o ¢V,, with m < m®*, otherwise the
saddle o is not essential. Indeed, every optimal path from e to o has to cross a
configuration 6 € V= in Cj(e,0) due to Lemma 4.13(i). Thus, we can write a gen-
eral optimal path w=(e,w1,..., W 0,...,0, @41, -->Wkrm>0) and define the path o' =
(€d15. .., Dps Ty Wk 15 - - - > Wym> 0), Where argmaxecies,, . o,5) HE) ={0}. This path o
exists thanks to Lemma 4.8(i). Thus, we are left to analyse the case o € V,, with m > m*. We
need to show that any essential saddle crossed afterward belongs to the set C, (e, 0). Using again
Lemma 4.13, the path w crosses a configuration o € C;,(e, 0) to reach o. Starting from it, there is
a unique possible move to lower the energy towards o along the path w, that is adding a particle
in the unique unblocked empty odd site. Afterward, the unique possible move is to remove a par-
ticle from an even site. If this site is at a distance greater than one from an antiknob, then there
is no more allowed move. Otherwise, the resulting configuration belongs to the set Cy (e, 0). By
iterating this pair of moves until the shorter diagonal of the rhombus is completely filled, we find
that all the saddles that are crossed belong to Cg,(e, 0). Moreover, from this point onward, it is
only possible to remove a particle from an even site at distance one from the antiknob, obtaining
a configuration in Cgr(e, 0) N V1.

Case (ii). By assumption, the path  crosses the set Ci;(e, 0) U Cgr (e, 0). Without loss of generality,
we may consider w as a non-backtracking path. If this is not the case, we can apply the following
argument to the last configuration visited by the path in the manifold V. In particular, in view
of the properties of the path w shown in case (i), we know that the last configuration crossed
in Cg4/(e, 0) belongs to V) and it is composed of a unique non-degenerate cluster R% Yy with
a degenerate cluster R at distance one from the antiknob. Starting from it, there is a unique
possible move to lower the energy towards o along the path w, that is, adding a particle in the
unique unblocked empty odd site. Afterward, the unique possible move is to remove a particle
from an even site. The resulting configuration is in C., (e, 0). By iterating this pair of moves until

https://doi.org/10.1017/5096354832500001X Published online by Cambridge University Press


https://doi.org/10.1017/S096354832500001X

Combinatorics, Probability and Computing 469

the shorter diagonal of the rhombus is completely filled, we find that all the saddles that are crossed
belong to C. (e, 0).

Case (iii). As in case (ii), we assume that the path @ is non-backtracking. By assumption, the
path @ does not cross the set Cj;(e, 0) U Cg (e, 0), thus for Lemma 4.13(ii) the path crosses the
set Cjp(e, 0), say in configuration 7. Let Vj the first manifold containing a configuration in
Cib(e7 0).

Consider first the case in which the saddle o is crossed by the path @ on the manifolds V,,
with m <m < m*. Since w crosses the set C;;(e, 0), we will show that the saddle o belongs to
the set Cy,(e, 0) U Cip(e, 0). To this end, we need to consider the time-reversal of the path w =
(e, w1,..., w17, ...,0), where 1 € C;(e, 0). Starting from 7, since AH(7j)) = L + 1, the energy of
configuration wy is less than that of 7. Moreover, the unique possible move is to add a particle
in the unique empty even site at distance one from an antiknob. Then, the unique possible move
from wy, to wg_1 is to remove a particle from an occupied odd site. The configuration wy_; belongs
to the set Cy (e, 0) if it contains at least one bridge, otherwise, it belongs to the set C;y(e, 0). By
iterating this argument, we obtain the desired claim.

Consider now the case in which the saddle o is crossed by the path w on the manifolds V,,
with m > m*. Since w crosses the set C;,(e, 0), we will show that the saddle o belongs to the set
Csp(e,0) UCyy(e, 0). Note that the unique admissible moves are the following: add a particle in
the antiknob and then remove a particle from an even site at distance one from an antiknob. By
iterating this couple of moves, we get that the resulting configuration belongs to the set C;(e, 0)
since R(O0™(c)) does not wind around the torus.

It remains to consider the case o € V,,;, with m < m. We will prove that any such o is not essen-
tial. Indeed, any non-backtracking optimal path that visits a configuration in Cj,(e, 0) has crossed
a configuration in Cg (e, 0) before, by using the same argument as in case (iii) of this proof for m <
m < m*. Thus, we can write w = (e, w1,..., W, 05 .. .,6,...,0,Wi]>-- - Wkrm>0) and define
thepatho' =(e,w},..., ), 6,...,0, W11, . .. Wkpm» 0), where & is a configuration in Cg (e, 0),
0 € Vy is a configuration in Cjp(e, o) thanks to Lemma 4.13(ii) and arg MaX¢ e, a)5) H(§) =
{&'}. This path ' exists thanks to Lemma 4.8(ii) and this concludes case (iii).

Case (iv). By Lemma 4.13(iii), we know that any optimal path w € (e — 0)opt crosses the manifold
Vy+ in a configuration & belonging to the set C,,; (e, 0).

If the essential saddle o € V;;+, then we deduce that o € C,;;(e, 0).

Suppose now that the saddle o belongs to the manifold V,,, with m > m™*. Starting from such
a saddle &, there is a unique possible move to lower the energy towards o along the path w, that
is, add a particle to the unique unblocked empty odd site. Afterward, the unique possible move
is to remove a particle from an even site. If this site is at a distance greater than one from an
antiknob, then there is no more possible move to reach o in such a way that the path w is optimal.
Otherwise, the resulting configuration belongs to the set C,,;,(e, 0). Indeed, by construction, we
deduce that the resulting non-degenerate odd cluster is still monotone due to the properties of the
bars attached to each bridge. By iterating this pair of moves until there is a row or a column that is
not a bridge, we obtain that all the saddles that are crossed belong to C,,;(e, 0). Finally, from this
point onward, it is only possible to remove a particle from an even site at distance one from the
antiknob, obtaining the last configuration in C,,;(e, 0). Afterward, the energy only decreases and
therefore no more saddles are crossed.

Suppose now that the saddle o belongs to the manifold V,,, with m < m*. Note that, starting
from such & € C,;;(e, 0), the unique admissible moves to get o are the following: add a particle to
the unique empty even site at distance one from an antiknob and afterward remove a particle from
an occupied odd site. By iterating this couple of moves, we get that the resulting configuration
belongs to the set C,,;(e, 0) as long as R(O" (o)) winds around the torus, otherwise the saddle o
does not satisfy the properties in the statement. U
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4.2.2 Communications between essential gates
In this subsection, we show that the six subsets composing the set C*(e, 0) communicate as
illustrated in Figure 5. The next proposition makes it precise.

Proposition 4.14. Any non-backtracking optimal path w :e — o crosses the set C*(e, 0) in one of
the following ways:

(i) w passes first through Ci;(e, 0), then through Ce (e, 0), and finally through C., (e, 0);

(ii) w passes first through Cy,(e, 0), then through Cj,(e, 0) and afterwards through Cy (e, 0) U
Cimb(e, 0). If @ passes Cqr(e, 0), then it eventually has to visit C,(e, 0), otherwise it does not
have to;

(iii) w passes first through Cy (e, 0) and then through C,,;(e, 0).

Proof. Consider a non-backtracking optimal path w: e — o. If  visits at least one essential sad-
dle, then we conclude using Proposition 4.12. Thus, suppose that w visits unessential saddles only,
say o1, . . ., 0,. By definition of unessential saddle, we know that there exists another optimal path
@' :e— o such that S(0') C{o01,...,04-1}, say S(') C {01, ...,0n} with m <n — 1. Iterating
this argument, we deduce that there exists an optimal path @ : e — o such that S(w) = {01} and
this is a contradiction with the assumption that o} is an unessential saddle. Thus, we conclude
that any optimal path w:e— o visits the set C*(e, 0). It remains to prove that the entrance
in C*(e, 0) occurs in one of the ways described in (i)-(iii), which easily follows by combining
Lemmas 4.8-4.11. g

4.2.3 All the saddles in C* (e, o) are essential
In this first part of the proof, we will prove that every o € C*(e, 0) is an essential saddle by
constructing a non-backtracking optimal path @ : e — o that visits o.

Leveraging the fact that o € C*(e, 0), we construct the desired non-backtracking path w as a
concatenation of two paths as follows. First, using a suitable concatenation of the paths described
in Lemmas 4.9-4.10, we can define a path w, that starts from the considered configuration o to
the initial cycle Ce. We then construct another path w, that goes from o to the target cycle C, as a
suitable concatenation of the paths described in Lemmas 4.8-4.9. The desired non-backtracking
path w is the time-reversal of @; concatenated with w; and it is easy to show that it is also optimal.

Assume now by contradiction that ¢ is not essential, which means that there must exist another
optimal path o’ € (e = 0)op such that S(w’) C S(w) \ {o'}. Recall that by Lemma 4.7(a), such a
path ' that avoids o still needs to visit the manifold V,,,) where o lives at least once. Let 1 be
any such configuration in Vy,(») N @’. We claim that such a configuration 7 must satisfy

AH(n)=1 (mod 2).

This claim readily follows from Lemma 4.7(b) in combination with the facts that L is even and
AH(o) =L + 1 by construction.

If AH(n)>L+3, then @ is not an optimal path, since ®, —H(e)>L+3>L+1=
d(e,0) — H(e).

On the other hand, if AH() <L — 1, then from Lemma 4.1 it follows that 7 belongs to one of
the two initial cycles. Proposition 4.14 ensures that every non-backtracking optimal path crosses
C*(e, 0) in one of the three ways (i)-(iii) described therein, so that also the optimal path o’ pass-
ing through 7 has to visit C*(e, 0). Since, by assumption, the path «’ has to avoid the saddle
o, we deduce that there exists another saddle 7 obtained starting from 7 that does not belong
to Vyu(o). In particular, the two paths cross the set C*(e, 0) in three different ways according to
Proposition 4.14(i)-(iii). Thus, we deduce that S(’) ¢ S(w) \ {o}.

Thus, in view of the parity of AH(n), we must have AH(n) = L + 1, but then 7 is a saddle and,
by construction, it did not belong to S(w) and thus S(&’) ¢ S(w) \ {o'}.
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=

Figure 12. Example of a configuration o as in the statement of Proposition 3.4 (on the left), where we highlight in red the site
containing the target antiknob, and the configuration obtained from o by filling it after removing a particle from the even
site v (on the right), with highlighted in red the site containing the next target antiknob.

5. Proof of auxiliary results

In this section, we give the proof of some auxiliary results stated in Sections 3-4.

5.1 Results on the perimeter of an odd region

Proof of Proposition 3.4. The proof revolves around the simple idea that using the filling algo-
rithms introduced in subsection 3.3 we can expand the odd cluster C (i.e., progressively increase
the number of the occupied odd sites in C) in such a way that R remains the surrounding rhombus
and the energy of all configurations along such a path never exceeds H(o) + 1. Since by assump-
tion o # o/, the odd cluster C cannot coincide with R, in view of conditions (i), (ii), and (iii).
Thus, C contains at least a broken diagonal or a shorter diagonal than those of the surrounding
rhombus.

We can define the desired path w as the concatenation of the two paths returned by the filling
algorithms @ and w. If C has no broken diagonal, we take @ empty. If C has no shorter diagonal,
then C already has the shape of a rhombus, and therefore we take @ empty. By the definition of
these two paths, the energy increases by one only if an even site has to be emptied, but all these
moves are followed by the addition of a particle in an antiknob. Therefore, the energy along the
path w increases by at most one with respect to the starting configuration o. This procedure ends
when C coincides with R, which implies that the resulting configuration is o',

To conclude the proof, we need to show the properties claimed for the perimeter of o. If C con-
tains m > 1 broken diagonals, we argue as follows. Since the cluster C is connected, all the empty
odd sites in which the diagonals are broken are antiknobs, i.e., they have n € {3, 4} neighbouring
even sites belonging to C, see Figure 12. We distinguish the following two cases. If n = 3, then we
first need to remove a particle from the unique neighbouring occupied even site, like the site v
represented in Figure 12 on the left.

After that move, when the particle is added in the antiknob, the perimeter does not change in
view of (3.3), otherwise if # = 4 then the perimeter decreases (see Figure 12 on the right). This also
occurs when we add a particle in the target antiknobs except the last antiknob to obtain the com-
plete diagonal, for which by construction, we have that the perimeter decreases by 4. By iterating
this argument for every broken diagonal, we get
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P(o) > P(c)+4m > P(5).

If C does not contain any broken diagonal, we argue as follows. By construction, we deduce that
the first odd site we will fill, which is the nearest neighbour of the first shorter diagonal, has three
neighbouring even sites belonging to C. Thus, we need to remove a particle from the unique
occupied neighbouring even site and then, when the first particle is added to the unique possible
antiknob, the perimeter does not change thanks to (3.3). This also occurs when we iterate this
argument. U

Proof of Proposition 3.6. Given any » positive number, let C be an odd cluster with area n. If the
cluster C is not connected, by (3.3) it directly follows that C cannot minimize the perimeter of an
odd cluster with n particles. Indeed, when the cluster is not connected, the cardinality of CN V,
decreases, while the cardinality of C N V, is fixed equal to n. Consider now a connected cluster C.
First, we will show that the minimal perimeter is that of the surrounding rhombus. To this end,
we consider separately the following three cases:

1. There exists at least one broken diagonal. In this case, we have that P(C) > P(R(C)) by
applying Proposition 3.4.

2. There is no broken diagonal, but there exists at least one shorter diagonal with respect to
those of the surrounding rhombus. In this case, we have that P(C) = P(R(C)) by applying
Proposition 3.4.

3. All diagonals have the same length as those of the surrounding rhombus, namely, all the
diagonals are complete. In this case C =R (C), so it is trivial that P(C) = P(R(C)).

Lastly, we need to show that the minimizing rhombus is either R;_;5 or Ry, if n=
s(s—1)+k and Ry, if n=s> + k. We argue by induction over n. If n =1, then it is trivial that
the rhombus R;,; minimizes the perimeter and #n = 1 can be represented in the form s(s — 1) + k
choosing s =1 and k = 0. Suppose now n > 1 and that the claim is true for any m < n. Suppose that
n — 1 can be written as s(s — 1) + k. In the other case, where n = s* + k, we can argue in a similar
way. If n — 1 =s(s — 1) + k, with 0 <k <s — 2 (resp. k =s — 1), then either the rhombus R_;
or Rs_1 (resp. the rhombus R,;) minimizes the perimeter of an odd cluster with n particles.
Indeed, in any other case, the surrounding rhombus could be either Rs1 11 or Rs—1s4+1, which
has a strictly greater perimeter in view of (3.13). Note that assumption # < L(L — 2) is needed
to avoid rhombi with a maximal side equal to L, because in view of (3.13) we would lose the
uniqueness of the minimizing configuration. U

Proof of Corollary 3.7. We first consider the case in which the area # is of the form n =s(s —
1) + k. If s < L/2, we have that the perimeter of the odd cluster is P = 4(2s + 1). Since the cluster

is contained in a rhombus R, we have that n < s2 and, hence, (% — 1)2 >4n. If L/2<s<1,
then the perimeter of the odd cluster is P =4(2L — 2s — 1). Since the cluster is contained in a
rhombus R, and therefore the complement in V is a rhombus R;_;_1,1—s—1, we have that n >

% — (L —s—1)%. Hence

P 2
(Z - 1) =4(L—s—1)>>2(L% - 2n).

Consider now the other case, when the area nis of the formn=s* + k. Ifs < L /2 we have that the
perimeter of the odd cluster is P = 4(2s + 2). Since the cluster is contained in a thombus either
Rei1,6 OF Resy1, we have that n < s> 4+ 5. Thus, it holds

p 2
<Z_1> =02s+1)?=4(>+s)+1>4n+ 1.
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If L/2 <s < L, then the perimeter of the odd cluster is P =4(2L — 2s — 2). Since the cluster is
contained in either a rhombus R4 or Rsst+1 and therefore the complement in V is either a

rhombus Rp_s_p1—s—1 Or Rp_s_1,1—s—2, we have that n > LTZ — (L —s—1)(L —s—2). Hence,

P 2 12
(Z—l) =(2L—25—3)2=4(L—s—l)(L—s—2)+124(7—n)+1=2(L2—2n)+1.

Using condition n < L(L — 2), inequality (3.19) directly follows. U
Proof of Lemma 3.8. Let o be a configuration with real area 7 = 262 + 2¢ + 1. First, we suppose
that the set of odd clusters in o is composed only of j > 2 non-degenerate clusters. Each of them
has area n; and perimeter p; fori=1, . . ., j. Suppose by contradiction that o has minimal perime-

ter so that the area of the configuration o is n, = Z]i=1 n; and its perimeter is p, = 4(2,/ns + 1).
By (3.19), we have p; > 4(2,/n; + 1) foranyi=1, .. ., j. Then we obtain that

j
> ni+ 1) =402 ny +2), (5.1)

i=1

j j
Po=Y pi=y 4Q/m+1)=8

i=1 i=1

that is a contradiction.

Second, we suppose that the set of odd clusters in o is composed of k> 1 degenerate clus-
ters and of j > 1 non-degenerate clusters. Each of these non-degenerate clusters has area n; and
perimeter p; fori=1,...,j, so that n, = Z]izl n;. We denote by p; fori=1,. .., k the perimeter
of a degenerate cluster. Suppose by contradiction that o has minimal perimeter. By (3.19), we have
pi=>4(2/ni+1)foranyi=1,...,jand p, =4(2,/n, + 1). Thus, we obtain

j K j j
Pe= pit Y piz Y 42yni+1)+4k=8 | > ni+4j+4k>8

i=1 i=1 i=1 i=1

j
Y ni+a+4=4Qyn, +2), (5.2)
i=1
that is a contradiction. Thus, we obtain that k=0 and j=1. Since the real area 7 of the con-
figuration o is fixed, then also the area n, is fixed. Thus, given that o contains only one
non-degenerate cluster with minimal perimeter and with fixed area, by Corollary 3.7 we obtain
that the non-degenerate cluster is the rhombus R ¢, which has precisely real area 7. U

5.2 Results on optimal reference paths

Proof of Lemma 4.8. We start by proving (i). The desired path w = (e, w1,...,wky),n) is
obtained as follows. Starting from e, define the configuration w; as that in which one particle
is removed from an empty even site, say v; € V.. Similarly, we define w, as the configuration in
which a particle is removed from a site v, € Ve such that d(vi, v2) = 2. Similarly, by removing the
particles in v3, v4 € Ve in such a way d(v;, vj)) =2 for any i,j=1,...,4 and i # j, we define the
configurations w3 and w4. Note that AH(w4) =4 < L + 1. Thus, we can define the configuration
ws as that obtained from w4 by adding a particle to the unique unblocked odd site, i.e., the one at
distance one from v; for any i =1, . .., 4. See Figure 13 on the left.

We obtain that AH(ws) =3 < L + 1 and ws is composed of a unique non-degenerate odd clus-
ter, which is Rj,;1. To define the configuration we, we remove a particle from a site vs € V. such
that d(v;, v5) =2 for two indices i=1, ..., 4. Similarly, we define w; in such a way there is an
empty odd site with all the neighbouring even sites that are empty, see Figure 13 in the middle.
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Figure 13. Example of the configurations ws (on the left), w7 (in the middle) and w;3 (on the right) visited by the path
described in the proof of Lemma 4.8(i).

Note that AH(w7) =5 < L + 1. Then, we define wg by adding a particle in the unique unblocked
odd site, so that AH(wg) =4 < L+ 1. Note that wg contains an odd cluster R;,. By growing
the odd cluster in a spiral fashion, emptying the even sites that are strictly necessary, note that
the configuration w3 contains only the non-degenerate cluster R, (see Figure 13 on the right).
Then, our path visits all the configurations which have a unique non-degenerate odd cluster C
such that C=Ry¢and C=Ry ey forany3 <{ < % — 1 up to the configuration wyr)—;, whose
unique non-degenerate odd cluster is C=TR Loyl Then, the configuration wyr) is defined by

removing a particle from an even site w at distance two from C. Finally, the configuration 7 is
obtained by removing a particle from an even site at distance two from C and from w. Since the
procedure we defined is invariant by translation, given a fixed configuration 1 € C;,(e, 0) is pos-
sible to choose the position of the odd clusters in such a way the final configuration of the path
we described coincides with the desired . It remains to show that arg maxg ¢, H(§) = {n}. To this
end, since AH(n) =L 4+ 1 and therefore AH(wy()) =L and AH(wyz)—;) =L — 1, we need only
to show that

max H(E)<L+1.

Se{e»wl )'H)wk(L)fZ}

First, we will show that AH(n) =3 + 2(£ — 1) by induction over the dimension £ =1, . . ., % -1
of the rhombus R¢,¢ composing the unique odd cluster of the configurations 5 visited by w. We
have already proven the desired property in the case £ = 1. Suppose now that the claim holds for
f,withl <t < % — 2, thus we will prove that it holds also for £ 4 1. To reach the configuration
displaying the rhombus Ry ¢4 starting from Ry, we need first to remove particles from two
even sites by increasing the energy by two. Then, we sequentially add a particle in an odd site and
remove a particle in an even site until the length of the shorter diagonal is £ — 1. Finally, the last
move is the addition of a particle in an odd site without the need to remove any particle from
an even site. Starting from Ry ¢4, to obtain Ry ¢4+1 we follow the same sequence of moves.
Thus, for a configuration n containing as unique odd cluster a rhombus R¢41,4+1 we deduce
that AH() =3+ 2(¢ — 1) + 2, which proves our claim for £ 4 1. Along the sequence of moves
from Ry ¢ to Ry+1,0+1, the energy is at most 3 4+ 2(€ — 1) + 3, which is strictly less than L + 1 for
< ]5“ — 1. Note that we do not to consider the case £ = % — 2, indeed the path w stops before
reaching the rhombus R Loy L This concludes the proof of (i).

Now, we prove (ii). The desired path w = (e, @1, . .., wk(), n) is obtained as follows. Starting
from e, define the configuration w, as that in which one particle is removed from an empty even
site, say v, € Ve. Similarly, we define w; as the configuration in which a particle is removed from
a site v, € Ve such that d(v;, v,) = 2. Similarly, by removing particles in v3, v4 € Ve in such a way
d(vi,vj) =2 for any i,j=1,...,4 and i #j, we define the configurations w3 and w4. Note that
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Figure 14. Example of the configurations ws (on the left), w7 (in the middle) and wy (on the right) visited by the path
described in the proof of Lemma 4.8(ii).

AH(w4) =4 < L+ 1. Thus, we can define the configuration ws as the one obtained from w4 by
adding a particle in the unique unblocked odd site, i.e., the one at distance one from v; for any
i=1,...,4. Weobtain that AH(ws) =3 < L + 1 and ws is composed of a unique non-degenerate
odd cluster, which is R 1, see Figure 14 on the left.

Next, we describe four steps that are used in the following iteration. The first step is to define
the configuration ws by removing a particle from a site vs € V, such that d(v;, vs) =2 for two
indicesi=1,. .., 4. The second step is to remove a particle from a site v € Ve in such a way there
is an empty odd site with two neighbouring empty even sites and the other one is occupied. In
this way, we obtain the configuration w; (see Figure 14 in the middle). The third step is to obtain
the configuration wg by removing the particle in the site v; € Ve such that d(v7, v5) = d(vy, vg) = 2.
Note that AH(wg) = 6 < L+ 1. Then, the last step is to define wg by adding a particle in the unique
unblocked odd site, so that AH(wg) =5 < L + 1 and the energy cost of these four steps is 2. Note
that w9 is composed of a non-degenerate odd cluster with two odd particles along either the same
column or the same row, see Figure 14 on the right.

From this point on, we iterate these four steps for other % — 3 times, until we obtain the con-
figuration wyy—; in which either a column or a row contains % — 1 odd particles. Note that
AH(wkry—1) =5+ 2(% —3)=L — 1. Then, we repeat the first two steps described above and
reach the configuration 1 € Cq,(e, 0) with AH(n) =L + 1. It is easy to check that arg maxz¢,, =
{n}. Indeed, we get

AH(w;)) =AH(wj_1)+1 ifl<i<4,
AH(wzi—1) = AH(wy) — 1 if3<i< @
AH(wy) =AH(wyio1)+3 if3<i<®_q
AH(wkr)) = AH(wkr)—1) + 2,

which concludes the proof of (ii). O

Proof of Lemma 4.9. We start by proving (i). Take the path described in Lemma 4.8(ii) until it
visits for the first time a configuration in Cy,(e, 0) as in Figure 11 on the left. Starting from such a
configuration, add a particle in the unique unblocked odd site. Then, remove a particle from an
even site at distance one from an antiknob, and finally add a particle in the unique unblocked odd
site. Afterward, iterate the sequence of these two moves up to the target configuration n € Cj,(e, o).
By construction, the resulting path has the desired property.

Let us now focus on case (ii). Consider the path described in Lemma 4.8(i) until it visits for
the first time a configuration in C;-(e, 0). Starting from such a configuration, add a particle in the
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antiknob, obtaining a configuration »’ that displays a unique non-degenerate odd cluster, which is
arhombus Rr_, L, with a single protuberance. Starting from 7', consider the path returned fill-
2 ’2

ing algorithm @ up to the configuration 1 € Cg (e, 0). The described path has the desired property
thanks to Proposition 3.4.

Consider now the concatenation of the paths described in Lemma 4.8(ii) and Lemma 4.9(i)
until it visits for the first time a configuration in Cj;(e, 0). Starting from such a configuration, by
iterating the pair of moves consisting of adding a particle to the unique unblocked odd site and
removing a particle at distance one from an antiknob, it is possible to obtain a configuration with
a unique non-degenerate cluster that contains R Loyl By construction, this resulting configu-

ration is in Cg (e, 0) and it is possible to iterate this couple of moves up to 7. By construction, the
resulting path has the desired property.

Consider now case (iii). Take the path described in Lemma 4.8(ii) until it visits for the first
time the configuration in Cg(e, 0) as in Figure 3 on the right. Starting from such a configuration,
add a particle in the unique unblocked odd site. Then, remove a particle from an even site at
distance one from an antiknob, and finally add a particle in the unique unblocked odd site. This
configuration is in Cp,; (e, 0). Afterward, iterate the sequence of these two moves up to the target
configuration 7. By construction, the resulting path has the desired property.

Consider now the concatenation of the paths described in Lemma 4.8(ii) and Lemma 4.9(i)
until it visits for the first time a configuration in Cj; (e, 0). Starting from such a configuration, with
the same procedure described above, it is possible to reach the target configuration n € C,,;(e, 0)
by visiting only saddles in C;;(e, 0) U C,,p(e, 0).

Let us now focus on case (iv). Consider the concatenation of the paths described in
Lemma 4.8(i) and Lemma 4.9(ii) until it visits for the first time a configuration in Cg, (e, 0). Starting
from such a configuration, add a particle in the antiknob, obtaining a configuration n’. Note that
n' is composed of a unique non-degenerate odd cluster, which is a rhombus R Loyl with a sin-

gle protuberance. Starting from 7’, consider the path returned by filling algorithm @ up to the
configuration n € C, (e, 0). The described path has the desired property thanks to Proposition 3.4.

Consider now the concatenation of the paths described in Lemma 4.8(ii) and Lemma 4.9(iii)
until it visits for the first time a configuration in C,,;(e, 0). Starting from such a configuration, by
iterating the pair of moves consisting of adding a particle in the unique unblocked odd site and
removing a particle at distance one from an antiknob, it is possible to obtain a configuration with a
unique non-degenerate cluster that contains R% Lk By construction, this resulting configuration

isin Cc(e, 0) and it is possible to iterate this couple of moves up to 7. By construction, the resulting
path has the desired property. U

Proof of Lemma 4.10. We start by proving (i). Arguing as in the proof of Lemma 4.9(ii) we can
show that there exists a path with the desired property that connects 7 to 1 € C..(e, 0), where the
unique non-degenerate cluster of 7 is R% Y with attached a bar of length % —2 and there is a

degenerate rhombus R, at distance one from an antiknob. Since the configuration displays two
antiknobs, it is possible to sequentially add two particles in odd sites. Thus, by proceeding in this
way the path reaches o without visiting any other saddle and so the described path has the desired
property.

Finally, consider case (ii). By arguing as in the proof of Lemma 4.9(iii)-(iv) we can show
that there exists a path with the desired property that connects n to 7 € Cg(e, 0) U C,pp (e, 0). If
1 € Cgr(e, 0), the claim follows by the previous argument. Otherwise, the configuration 7 has two
antiknobs after arguing as above. In either case, the described path has the desired property. U

Proof of Lemma 4.11. Consider first case (i). By construction, every non-backtracking optimal
path from e to o that crosses a configuration in Cj;(e, 0) has to visit a configuration in Cg (e, 0).
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Indeed, each move consists in adding a particle in an unblocked odd site or removing a particle
from an even site. Thus, it remains to consider backtracking optimal paths only. In order to visit
a saddle in Cj(e, 0), a column (or row) with precisely % — 1 particles arranged in odd sites needs
to be created along these paths. To proceed, since we are considering backtracking optimal paths,
the unique possibility is to visit a configuration in Cy (e, 0) before reaching Cj, (e, 0). Thus, case (i)
is concluded.

Consider now case (ii). The claim follows after noting that every configuration in C,(e, 0) con-
tains one odd vertical (resp. horizontal) bridge B, where the two neighbouring columns (resp.
rows) to B contains % — 1 odd particles each. Thus, all configurations in C.,(e, o) differ from a con-
figuration in Cj;(e, 0) in at least two odd sites. Then, suppose that n € C;;(e, 0) and 1’ € Cc,(e, 0)
such that they differ in only two odd sites. Starting from 7, if a bridge is created, then the result-
ing configuration is in C,,p(e, 0), while if the resulting configuration contains two neighbouring
columns (or rows) with exactly % — 1 particles in odd sites, then it belongs to Ce (e, 0). If the two
configurations differ in at least three sites, we argue as above.

Consider now case (iii). The claim follows after arguing as in case (i) and noting that, in order
to create a bridge, the path has to visit the set Cy,(e, 0). Lastly, in case (iv), the claim follows after
arguing as in case (iii). U

5.3 Results on the saddles lying in the manifold Vy,:

Proof of Lemma 4.13. We analyse separately the three cases.
Case (i). Suppose by contradiction that there exists a non-backtracking path @’ € (e = 0)qp that
crosses o € Vi \ Cir(e, 0) such that R(O"(5)) and R(O(c)) do not wind around the torus. First,
since 0 € Vy» and AH(o) <L+ 1, we get

o) =L -3

S (5.3)

olo) = LI - L+ %
Since o(0') > 0 for any L, we deduce that o cannot contain only degenerate clusters and therefore
contains at least an odd non-degenerate cluster. Thus, one of the following cases occurs:

(1) O(o) consists of at least two non-degenerate odd clusters;

(2) O(o) consists of a single non-degenerate odd cluster different from R Lol and possibly
some degenerate clusters;

(3) O(0) consists of a single non-degenerate odd rhombus equal to R Lot and at least one
degenerate odd cluster Rq at distance greater than one from the non-degenerate one.

We consider the rhombus surrounding the odd non-degenerate region for all the above cases.

Due to the isoperimetric inequality of Lemma 3.8, this thombus R has a perimeter P(R) greater
than or equal to P(R%_L%_l), i.e., P(R) > 4(L — 1). In particular, for cases (1) and (2) we have

P(R) > 4(L — 1) since O(0) # R%_l,%_l, and for case (3) we have P(R) = 4(L — 1). Let P; denote

the perimeter of the i-th cluster, with i=1, ..., k. Note that P(c') = ZLI P;. Welet k; > 0 (resp.
kuq > 1) the number of degenerate clusters R (resp. non-degenerate clusters) such that the total
number of clusters is k =k; + k,,g > 1.

Subcase (1). In this case k,; > 2, so that k> 2. Denote by ¢; (resp. 0;) the number of empty
even sites (resp. occupied odd sites) of the i-th cluster. Using (3.3), (3.7) and (3.8), we obtain
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k kg kna kna kna
AH(o) :Z(éz‘_oi)zzéi‘i‘Z(éi_oi)Eéd‘f‘ Zéi+2(knd_ 1)—201‘
i=1 i=1 i=1 i=1

i=1

kna kna (54)
=+ Y &—) o | +20kna—1)> 2+ L —1)+20kng— 1)
i=1 i=1

where ;= Zfil é;, the first inequality follows from the fact that the difference between the
perimeter of two disjoint non-degenerate clusters and that of the cluster obtained by attaching
the two is at least two, and the last inequality follows from the isoperimetric inequality applied
to the cluster obtained by attaching the k clusters forming o. Then, from inequalities (5.4) and
AH(o) < L+ 1, it follows that e; < 0, which is a contradiction since e; > 0.

Subcase (2). The unique non-degenerate odd cluster of o has a shape different from a rhombus
R%—l,%—l by assumption. In this case k,; =1 and k; > 0, so that k = k; + 1. Thus, we obtain

kg+1 kg
AH(o) =)  (&—0)=) &+ (@ —0kr1) > +L—1, (5.5)
i=1 i=1

where ¢; = Zfil e;, the first equality follows from the fact that ¢ contains only one non-
degenerate odd cluster, and the last inequality follows from the isoperimetric inequality applied to
the non-degenerate cluster. Then by (5.5) and the fact that AH(o) <L+ 1, we find é; < 1 and so
kg <1.

The configuration o thus falls in one of the following three subcases:

(2a) the only non-degenerate odd cluster of o is a rhombus Ry, ¢, # R%—l,%—l;

(2b) the non-degenerate odd cluster of o is a cluster with m > 1 empty odd sites corresponding
to some broken diagonal and q = 0 shorter diagonals;

(2¢) the non-degenerate odd cluster of o is a cluster with m > 0 empty odd sites corresponding
to some broken diagonal and g > 1 shorter diagonals.

We can ignore the case m = 0 and g = 0 as it corresponds to the thombus R _, L_;.
2 )
Subcase (2a). This case is not admissible since, if R¢, ¢, #RL_, L_,, we have
2 >2

+b+1+k; =L+1,
1+, +1 >L—1,

and this implies k; > 2, which is in contradiction with the assumption k; < 1.
Subcase (2b). From the assumptions on o, it follows that

b+l +1+k;+m =L+1, (5.6)
bi+46,+1 >L—1. ’

These give k; + m < 2, which, in view of the inequalities k; < 1 and m > 1, then imply that k; =0
and m = 1. Thus, we deduce that

e(c) = +1)L+1),

so that £1 4+ £, = L — 5 since o € V,,;+, but this contradicts the condition £; + £, + 1+ k; +m=
L+ 1in (5.6).

{0(0) =010, —1,
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Subcase (2¢). From the assumptions on o, it follows that

b+ +1+k;+m =L+1,
(5.7)

201+ £42+1)—¢q >2(L—1).

This implies that 2(k; + m) + g < 3, so we distinguish three subcases: (2¢-I) ky=m=0and g €
{1,2,3} (2¢-II) ky =1, m=0and g = 1; and (2¢-III) k; = 0, m = 1 and g = 1. The other subcases
are not possible in view of the conditions k; <1,m >0, and g > 1.

For subcase (2¢-I), k; =m =0and q € {1, 2, 3}. Thus, by letting s be the total number of empty
sites needed to be filled in order for the shorter diagonals to become complete, we deduce that

olc) =Ll —s,
e(c) =+ +1)—s5

so that £; 4+ ¢, = L — 4 since 0 € Vy», but this contradicts identity £ + €, + 1+ k;+m=L+1
in (5.7). The claims for (2¢-1I) and (2¢-III) follow by arguing as in case (2¢-I).

Subcase (3). First, note that k; < 2, otherwise AH(o') > L + 1 and therefore the path w would
not be optimal.

If k; = 2, using the non-backtracking property of the path w, it follows that there is no possible
move to cross the next manifold towards o along an optimal path.

If k; =1, then AH(o) = L so that the energy along the path can increase by at most 1 to reach
0. The unique possible move is to remove a particle from an empty site, obtaining a configuration
with k; = 2. We can then prove the claim by arguing as in case k; = 2.
Case (ii). Suppose by contradiction that there exists a non-backtracking path &’ € (€ — 0)p; that
crosses that crosses o € V,,+ \ Cjp(e, 0) such that R(O"(5)) does not wind around the torus and
R(O(0)) does. We observe that (5.3) holds for the configuration ¢ and, therefore, it contains at
least one odd non-degenerate cluster and it cannot contain only degenerate clusters. Thus, we
consider the following subcases:

(1) O(o) consists of at least two non-degenerate odd clusters;

(2) O(o) consists of a single non-degenerate odd cluster different from R Lol and possibly
some degenerate clusters;

(3) O(o) consists of a single non-degenerate odd rhombus equal to R% 1k and at least one
degenerate odd cluster R at distance greater than one from the non-degenerate one.

Subcase (1). Suppose that o contains k > 2 non-degenerate clusters Cy(0),. .., Ci(o). By
assumption, all the rhombi surrounding C;(¢') do not wind around the torus foranyi=1,...,k;
thus, we can argue as in case (i-2¢-II) above.

Subcase (2). By arguing as in case (i-2) above, we deduce that this case is possible only when
R(O"(5)) does not wind around the torus and R(O(c)) does, so that from (5.3) we deduce that
there exists only one column or row with less than L/2 particles, but this contradicts the fact that
o ¢Ci(e, 0).

Subcase (3). By arguing as in case (i-3) above, we deduce that this case is not possible.

Case (iii). Suppose by contradiction that there exists a non-backtracking path o’ € (e = 0)opt
that crosses that crosses o € Vy, \ C,,;p(e, 0) such that both R(O™(5)) and R(O(c)) wind around
the torus. We observe that (5.3) holds for the configuration o, and therefore, it contains at least
one odd non-degenerate cluster, and it cannot contain only degenerate clusters. Thus, we consider
the following subcases:
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(1) O(o) consists of at least two non-degenerate odd clusters;

(2) O(o) consists of a single non-degenerate odd cluster different from R Lot and possibly
some degenerate clusters;

(3) O(o) consists of a single non-degenerate odd rhombus equal to R Lol and at least one
degenerate odd cluster R at distance greater than one from the non-degenerate one.

Subcase (1). Suppose that o contains k > 2 non-degenerate clusters C(0), .. ., Cx(o). If the
rhombus surrounding C;(c’) does not wind around the torus for any i=1, ..., k, we can argue
as in case (i-1) above. Otherwise, suppose that there exists an index i such that R(C;(c)) winds
around the torus. Thus, there exists at least one row or column that contains % particles, say a
column. Since k > 2, this implies that there exists a row containing two odd particles that belong
to C;i(0') and another disjoint cluster. Thus, the energy difference contribution AH along this row
or column is at least two. In addition, all the other L rows or columns composing C;(c') have an
energy contribution of at least one. Thus, the total contribution is AH(o) >2+L—1=L+1,
where the strict inequality follows from k > 2. This contradicts the assumption AH(c) <L +1,
and therefore, this case is not admissible.

Subcase (2). By arguing as in case (i-2) above, we deduce that this case is possible only when
both R(0™(o) and R(O(c’) wind around the torus, so that from (5.3) we deduce that there exists
at least one column or row with strictly less than L/2 particles, but this contradicts the fact that
o ¢ Cmb(e’ 0).

Subcase (3). By arguing as in case (i-3) above, we deduce that this case is not possible. O

6. Conclusions and future work

This work concludes the analysis of the low-temperature behaviour for the hard-core model
on a square grid graph with periodic boundary conditions initiated by [47]. In that paper,
this interacting particle system was shown to have two stable states, and the energy barrier
between them was already identified. However, the argument carried out in that paper did
not provide any geometrical insight into the trajectories followed by the process in the low-
temperature limit and did not characterize the critical configurations, i.e., the states with the
highest energy in these limiting trajectories. The goal of this paper was precisely to fill this gap.
More precisely, we provide a geometrical description of all the essential saddles for this transi-
tion and highlight how these communicate with each other without exceeding the critical energy
barrier I'(A).

The extension to other types of lattices naturally arises in this context. Indeed, in [56], the
authors investigate the same model on the triangular lattice, studying the asymptotic behaviour
of the hitting times between stable states but without providing any information on the criti-
cal configurations. The type of analysis carried out in this paper could be useful to tackle that
problem, even if it looks more challenging since there are three stable states and isoperimet-
ric inequalities are probably harder to derive. This will be the focus of future work. Another
possible direction could be the study of the asymptotic behaviour of the hard-core model on
square grid graphs but with different boundary conditions or in the presence of some impuri-
ties. However, in this case, we expect the transition between two stable states to most likely occur
by heterogeneous nucleation starting from the boundary, hence breaking the intrinsic symmetry
and translation-invariance properties of the critical configurations. On the other hand, we expect
that the techniques and machinery developed in this paper will also be useful in identifying critical
configurations of other interacting particle systems on finite square lattices with similar blocking
effects, e.g., the Widom-Rowlinson model [55].
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A. Appendix A

Proof of Lemma 3.1. We start by proving (i). Given 0 <k < ¢; and £, + 1 <j} <L — 1, we want
to show that there exists 0 < k5 < ¢; and 0 <j; < £; such that

{ki‘ +ji=k+j; (modL), A1)

ki —ji=ks—j; (modL).

The choice j; =j7 + L/2 (mod L) and k5 =k} + L/2 (mod L) implies the claim in (i), since the
chosen indices j; and k satisfy (A.1) and they are modulo L such that

Azlb+1+L5>1,
AsL-14+Lf<e-1,
k=14,
K<ti+i<i-2<e-2
By interchanging the role of k{ and &} and arguing in the same way, the proof of (i) is concluded.

The two inclusions stated in (ii) can be proved by arguing in an analogous way. U

Proof of Lemma 3.2. In this proof, all the sums will be tacitly assumed to be taken modulo L.
Denote 1 = (11, 2) € Vo. We analyse each case separately.
Case (i). Considering S, ¢, (1) C Vo and 97 Sy, ¢,(n) C Ve, we observe that

VA Ry, (1) =V \ {Sey,0,(n) U T Se,0,(m)}
={Vo U Vel \ {St,,6,(n) U T S¢, 0,(m)}
{Vo \ {Se1,6,(0) U BT Sey0, (MU {Ve \ {Se,6,(m) U 97 Se, 6, ()}
{Vo \ St (M} U {Ve \ 87 Se,0,(m)}. (A2)

Thus, we want to show that the two subsets are equal to S}l i, (1) and 8+821 ?z(ﬁ) for some 0 <

21, 22 <L —1and 7 € Ve. In addition, we may write

Ve= |J {K+j.K=j) (A.3)
0<k,j’<L-1
and
0 S em= | (n+k+j—1 m+k—j). (A4)
0<k<ty
0<j<t>
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Thus, we have

Ve\otSe, = |J (K+j+m—LK=j+n)\ [J{n+k+j—1 m+k—j)
0<k,j<L-1 0<k<t;
0<j<ty

= U {G+i+m—-1Lk—j+m)

€1+1§I}§L—1
f+1<j<L-1

= U tk+i+a+a+24m-Lk-j+6—6+m) (A.5)
0<k<L—€,—2
0<j<L—t,-2

where at the second equality we used Lemma 3.1(i) and at the last equality we used the change

of variables k = k — (;14+1) and}':]’— (€2 + 1). Now, we consider n = (€1 + 4, + 1+ 11,41 —
£, + n;) € Ve and we obtain

Ve\otSe = | {k+j+ink—j+m) (A.6)
0<k<L—t,—2
0<j<L—{,—2

Thus, we have Ve \ 3%Sy,.0,(7) = St—¢,—1,.—,—1(17) € Ve. Arguing as above, we prove that V, \
Sere, () =0%S1—¢,—1,0-0,—1(7}) S V.

Case (ii). Without loss of generality we may assume £; = min{¢;, £2}. For n = (1, n2) € Ve, by
using (A.3) and (3.11), we have

Ve= |J (k+j+mk—j+mnu  |J {k+j+nk—j+n)

0<k=<t, £1+1<k<L-1

0<j<L-1 0<j<L-1 (A7)
= |J {k+j+nk—j+m)}=0"S, 100

0<k=<¢,

0<j<L—1

Thus, it follows that all even sites belong to the rhombus R¢, ¢, (1). In addition, by using (3.12) we

obtain
Seiam=|J (m+K+im+K-j)

0<k<t;—1
0<j<L—2
= U n+k+jim+k=pu | (Ghi+k+jd+k-j)
0<k<%i-1 L<k=t1-1
0<j<L-2 0<j<L-2
= U tn+k+im+k—pu  J AGi+ki+h} (A8)
0<k<Li—1 L/2<k<t;—-1
0<j<L-2

Thus, we deduce that the rhombus R, 1—1 (1) contains L?/2 — L+ £, odd sites, which implies
that its complement in V contains L — £; odd sites.
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Case (iii). Without loss of generality we may assume £; = min{¢;, £,}. In this case, after using the
same argument we have shown above, for some 7) = (7)1, 772) € V, we obtain that

Vo\Seem= | (i +k+jia+k—j} (A.9)
G <k=i-1
0<j<L—1
and
Ve\oTSe = () A(h+k+j—Liaa+k—j) (A.10)
O+1<k<L-1
0<j<L-1

This implies that the rhombus R, 1.(7) contains L £; odd sites and L(€; + 1) even sites.
Case (iv). By arguing as above, we can show that the complement of the rhombus Ry, ¢,(n) in V
has no even and odd sites and therefore Ry, ¢, = V. U
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