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SOLVABILITY OF THE DIOPHANTINE EQUATION
z®> — Dy’ = = 2 AND NEW INVARIANTS FOR REAL
QUADRATIC FIELDS

HIDEO YOKOI

In our recent papers [3, 4, 5], we defined some new D-invariants for any
square-free positive integer D and considered their properties and interrelations
among them. Especially, as an application of it, we discussed in [5] the character-
ization of real quadratic field Q(vD) of so-called Richaud-Degert type in terms of
these new D-invariants.

Main purpose of this paper is to investigate the Diophantine equation 2t =
Dy2 = £ 2 and to discuss characterization of the solvability in terms of these
new D-invariants. Namely, we consider the equation zt = Dy2 = % 2 and first
provide necessary conditions for the solvability by using an additive property and
the multiplicative structure of D (Proposition 2). Next, we provide necessary and
sufficient conditions for the solvability in terms of an unit of the real quadratic
field Q(/D) (Theorems 1,2). Finally, we provide sufficient conditions for the sol-
vability in terms of new D-invariants (Theorems 3,4). It is conjectured with a
great expectation for these conditions to be also necessary conditions.

Throughout this paper, for any square-free positive integer D we denote by
ep = (ty + up VD) /2 (> 1) the fundamental unit of the real quadratic field
Q/D) and by N the norm mapping from Q(/D) to the rational number field Q.
Moreover, we denote ( /) the Legendre’s symbol and by [x] the greatest integer
less than or equal to x.

On Pell’s equation, we know already the following result by Perron (cf. [1],
p. 106-109):

ProprosiTioN 1 (O. Perron). For any positive square-free integer D ¥+ 2, at most
only one of the following three equations is solvable in integers:
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22— Dy*=—1, 22— Dy*=2, 2*—Dy*= —2.

We may first provide the following necessary condition for solvability of the
equation zt = Dy2 =+ 2:

PrOPOSITION 2. For any positive square-free integer D, if the Diophantine equa-
tion x° — Dy® = * 2 has an integral solution, then

D=2or3(mod4) and Ney =1

hold.
Moveover, if the equation zt = Dy2 = 2 is solvable, then

p= =1 (mod8)

holds for any odd prime factor p of D, and if the equation z’ = Dy2 = — 2 s solv-
able, then

g =1 or 3 (mod 8)

holds for any odd prime factor q of D.

Proof. When x’ — Dy®> = %+ 2 has an integral solution (z, y) = (a, b), if
we assume D = 1 (mod 4), then we get

a—Db¥=a>—b"=00r =1 (mod4),

which contradicts with @ — Db* = *+ 2.
Hence D = 2 or 3 (mod 4) holds.

On the other hand, if we assume Ne, = — 1, then the equation zt = Dy2 =
— 1 is solvable, which contradicts with solvability of zt = Dy2 = % 2 by Prop-
osition 1. Hence Ne, = 1 holds.

Moreover, if the equation z’ = Dy2 = 2 is solvable, then for any odd prime
factor p of D, we get (2/p) =1, and so p = £ 1 (mod 8) holds.

If the equation xt - Dy2 = — 2 is solvable, then for any odd prime factor ¢
of D, we get (— 2/q) = 1, and so ¢ = 1 or (mod 8) holds.

Now we may provide the following necessary and sufficient conditions
through an unit of the associated real quadratic field QYD) with the equation
zt = Dy2 =x2:

THuEOREM 1. For any positive square-free integer D, it is necessary and sufficient
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for the equation x° — Dy® =2 to be solvable that theve exists an unmit ¢ = (t +
wyD) /2 > 1 of the real quadratic field QWD) such that

Ne=1 and t=Dm+ 2

for a positive integer m satisfying m = 2 (mod 8).

Proof. If the equation z = Dy2 = 2 has an integral positive solution
(,y) = (n, ny),
i.e. n,> — Dn,” = 2 holds, then
(t, w) = @2n° — 2, 2n,n,)

is an integral positive solution of the Diophantine equation £ — Du’ = 4, and
hence e = (t + u /D) /2 > 1 is an unit of Q(YD) and satisfies Ne = 1.
Moreover, if we put m = 2n22, then

t=2n"—2=Dm+2
holds, and from #, = 1 (mod 4) we get immediately
m = 2n," = 2 (mod 8).

Conversely, if there exists an unit ¢ = (t+u+yD)/2 > 1 of Q(/D) such
that Ne =1 and t = Dm + 2 for a positive integer m satisfying m = 2(mod 8),
then from Ne = 1 we get

Di' =1 —4=DDm+ 4m, andso u’ = (Dm+ 4) m.

On the other hand, m = 2 (mod 8) implies (Dm + 4, m) = 2. Hence, there
exist two positive integers #,, #, such that

Dm+4=2n" m=2n", ((n,n) =1, u=2nn,),

and hence #,” — Dn,” = 2 holds.

Therefore, the equation z° - Dyz = 2 has an integral positive solution

(x,y) = (n, n,).

For the equation = Dyz = — 2, we can prove the following analogous
theorem:

TueorREM 2. For any positive square-free integer D, it 1is necessary and sufficient
for the equation e Dy2 = — 2 fo be solvable that theve exists an uwit € = (t +
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u/D) /2 > 1 of the real quadratic field Q(VD) such that
Ne=1 and t=Dm— 2

for a positive integer m satisfying m = 2 (mod 8).

For any positive square-free integer D, we put
A,={a:0=<a<D,a" = 4Ne, (mod D)},
and
(A, B)y=1{(a, b) :a € Ay, a° — 4Ne, = bD}.

Then, we obtained in [5] the following result:
There are uniquely determined non-negative integer my, and (a,, bp) in
(4, B), such that

{tD =D-my, + a,
u,’ = D-m,’ + 2a,-my, + b,

Now, we may prove first the following:

PROPOSITION 3.  Under the assumption D + 2,5,
ap, =2 ifand onlyif b, =0,
and
ap,=D—2 ifandonlyif b, =D — 4.
Proof. a, =2 implies b,D = a,’ — 4Ne, = 4(1 — Ng,), and hence from

D # 2, we get Ne, = 1 and b, = 0.
Conversely, b, = 0 implies

a, = byD + 4Ne, = 4N¢,,
and so we get
Nep, =1 and a, = 2.
Moreover, a, = D — 2 implies
byD = a,’ — 4Ne, = (D — 2)* — 4Ne, = (D — 4)D + 4(1 — Nep),

and hence from D # 2, we get
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Ney,=1 and b,=D— 4.
Conversely, b, = D — 4 implies
a,’ =b,D + 4Ne, = (D — 4)D + 4Ne, = (D — 2)* — 4(1 — Ney),
and hence from D # 5, we get
Nep, =1 and ap,=D— 2.
We can now provide the following sufficient conditions of the equation z° -
Dy’ = + 2 in terms of such invariants a,, by and m,, :
Tueorem 3. If (ap, by,) = (2,0) holds, then we have the following:

(1) NED = 1r
(2) my = 2(mod 8),
(3) zt = Dy2 = 2 is solvable in integers.

Proof. We assume (a,, by) = (2,0), i.e.
ty=Dmy+ 2 and u,’ = Dm," + 4m,.
Then, we can first get
4Ne, = t," — Du,’ = 4,

and hence Nep = 1.

Next, we assert (Dmy, + 4, m,) = 2.

If we assume (Dmy, + 4, mp) = 1, then it follows from u,” = (Dm, + 4)m,
that there exist two positive integers #,, #, such that

2 2 .
Dmy, +4 =n",m,=n, with (n,n) =1, u, = nmn,,

and hence #,” — Dn,” = 4 holds.
However, since #; > 1, u, = nn, is greater than #,, which contradicts with mini-
mum property of %,

If we assume (Dmy, + 4, m,) = 4, then similarly there exist two positive
integers #,, #, such that

Dmy, + 4 = 4n’ my = 4n," with (n, n) =1, uy = dnm,,

and hence nlz - Dnz2 = 1 holds. However, u, = 4nn, is greater than #n,, which
contradicts with minimum property of #,,.
Therefore, we get
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(Dmy, + 4, my) = 2,

and moreover it follows from u,” = (Dm, + 4)m,, that there exist two positive
integers #,,#, such that

Dmy, + 4 =2n", my = 2n,° with (n, ) =1, u, = 2nm,,

and hence we get nlz - Dnz2 = 2.
Furthermore, since #, = 1 (mod 2), we get finally

my, = 2n," = 2 (mod 8).

THEOREM 4. If (ap, by) = (D — 2, D — 4) holds, then we have the following :

(1) Nep, =1,
(2) my =1 (mod 8),
(3) xt - Dy2 = — 2 s solvable in integers.

Proof. We assume (ap, bp) = (D —2, D —4),ie.
ty=Dm,+D—2 and u, =Dm,"+2(D—2)m,+ D— 4
Then, we can first get
4Ne, = t," — Du,’ = 4,
and hence we get Ne;, = 1. Moreover, we get immediately
u,” = (Dmy + D — 4) (my + 1).

Next, we assert (Dmp, + D —4,m, + 1) = 2.

If we assume (Dm, + D — 4, m, + 1) = 1, then it follows
from u,” = (Dmy, + D — 4) (m, + 1) that there exist two positive integers #,, #,
such that

Dmy+D—4=n’ my+1=un" with O, n) =1, u,=nmn,

and hence #,° — Dn,” = — 4 holds, which contradicts with Ne, = 1.
If we assume (Dmp + D — 4, m, + 1) = 4, then similarly there exist two
positive integers #,, #, such that

Dmy,+D—4= 4n,’, my+1= 4;122 with  (n,, n,) = 1, u, = 4nn,,

and hence #,” — Dn,” = — 1 holds, which also contradicts with Ne, = 1.
Therefore, we get
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(Dmy,+D — 4, my+ 1) = 2.

Moreover, it follows from u,” = (Dm, + D — 4) (m, + 1) that there exist
two positive integers #,, #, such that

Dmy,+D—4=2n" my+1=2n" with (i, n) =1, u,=2nm,,

and hence #,”° — Dn,” = — 2 holds.
Furthermore, since #, = 1 (mod 2), we get finally

my = 2n, —1 =1 (mod 8).

COROLLARY 1. In the case (ap, by) = (2,0) (resp. (D — 2, D — 4)), the integ-
val solution (x,y) = (ny, m,) of the equation x°— Dy’ =2 (resp. x° — Dy’ =
— 2) induced from the fundamental unit €, of QYD) in the proof of Theorem 3 (resp.
4) is the mintmal positive solution.

Proof. In the case (a,, by) = (2,0), let (x, y) = (n,, n,) be the integral
solution induced from the fundamental unit &, of Q(/D), and (z, y) = (m,,
m,) be the minimal positive integral solution of the equation i Dy2 = 2. Then,

n o= my, Ny, =m, and u,= 2nmn,
hold, and hence we get immediately
Uy = 2mMm,.
On the other hand, from the proof of Theorem 1
(z, ) = Cm," — 2, 2mm,)

is a positive integral solution of the equation z’ - Dy2 =4, and hence we get %,
= 2m,m,, by the minimum property of u, Therefore, we obtain u, = 2m,m,,
which implies #, = m,, n, = m,.

In the case (a@p, b)) = (D — 2, D — 4), we can also prove Corollary 1 in
analogous way to the case (ap, by) = (2,0).

COROLLARY 2. If D = q or 2q for a prime number q congruent to 3 (mod 4),
then Nep, = 1 holds.

Moreover, if ¢ = — 1 (mod 8), then ap, = 2 holds and x> — Dy° = 2 is solvable
i integers.

If ¢ = 3 (mod 8), then ap = D — 2 holds and x° — Dy* = — 2 is solvable in
ntegers.
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Proof. 1f we assume Nep, = — 1, then Pell’s equation 22— Dy’ = —4 is
solvable in integers, and so ¢ = 1 (mod 4) holds for any prime factor ¢ of D
which contradicts with ¢ = 3 (mod 4). Hence Ne, = 1 holds.

Next, since ¢, = Dm, + ap, Ne, = 1 implies

Du’ =1t — 4 = my(Dm, + 2a,)D + (a,” — 4),
and hence
(a, — 2)(ap +2) = a,” — 4 =0 (mod D).
Therefore, in the case D = g,
ap, =2 or — 2 (mod D),
and hence
ap=2o0rD—2,
In the case D = 2¢q, t, = 0 (mod 2) implies @, = 0 (mod 2), and so
ap—2=a,+2=0, ie. g, =12 (mod?2).
On the other hand, a, = 2 or — 2 (mod ¢) holds, and so we get
a, =2 or — 2 (mod D),
which implies directly
a,=2orD—2.
Consequently, Corollary 2 is follows from Propositions 2,3 and Theorems 3.4.
With regard to insolubility of 2t — Dy2 = =& 2, we obtain easily the follow-
ing:
COROLLARY 3. If we assume

D =1p fora prime p congruent to 1 mod 4,

or
D =2p for a prime p congruent to 5 mod 8,
then
Nep,=—1
holds and
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1s insoluble.
Proof 1f D=p@Hp=1 mod4), or D=2p(p =5mod8), then we get

Ne, = — 1 (cf. for instance [2]).
Hence by Proposition 2 ' = DyZ = = 2 is insoluble.

(a,, by = (2,0)

t, = Dmy + a, n, = Dom, /22
uy,” = Dmy’ + 2a,m, + b, ny, = ymy/2
a,’ —4=b,D ty = Dm, + 2
up = 2n,°n,
my = [t,/D] = 2n," = 2 (mod 8) n’— Dn, =2
D type hy, v my, 7, 7,
7 q 1 -2 2 3 1
14 2q 1 -2 2 4 1
23 q 1 -2 2 5 1
31 q 1 98 39 7
34 2p 2 -2 2 6 1
46 2q 1 1058 156 23
47 q 1 -2 2 7 1
62 2q 1 -2 2 8 1
71 q 1 98 59 7
79 q 3 -2 2 9 1
94 2q 1 45602 1464 151
103 q 1 4418 477 47
119 Y, 2 -2 2 11 1
127 q 1 74498 2175 193
142 2q 3 -2 2 12 1
151 q 1 22889378 41571 3383
158 2q 1 98 88 7
167 q 1 -2 2 13 1
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D type hp 7 my, n n,
191 q 1 94178 2999 217
194 2% 2| -2 2 14 1
199 q 1 163479362 127539 9041
206 2q 1 578 244 17
223 q 3 — 2 2 15 1
238 2pq 2 98 108 7
239 q 1 51842 2489 161
254 2q 3 -2 2 16 1
263 q 1 1058 373 23
287 pq 2 — 2 2 17 1
302 2q 1 28322 2068 119
311 q 1 108578 4109 233
322 | 24,4, 4| =2 2 18

359 q 3 -2 2 19

383 q 1 98 137

386 2p 2 578 334 17
391 Pq 2 37538 2709 137
398 2q 1 — 2 2 20 1
431 q 1 703298 12311 593
439 q 5 — 2 2 21 1
446 2q 1 494018 10496 497
479 q 1 12482 1729 79
482 2p 2 — 2 2 22 1

Prime p is congruent to 1 mod 8 ; p = 1 (mod 8).
Prime q is congruent to — 1 mod 8 ; ¢ = — 1 (mod 8).

hp = — n means that Ne, = — 1 and 4, = 5.
7 represents the integer such that D = K+ v, —k<r=k and 4k = 0(mod )
for real quadratic field QYD) of R-D type.
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(ap, b)) =D —2,D—4)
t, = Dm, + a, no=Dlm, + /2 =2
uy’ = Dm,’ + 2a,m, + b, n, = (my, +1)/2
a,b—4=10b,D t, = DGm, +1) — 2
Uy = 2n,°n,
my = [t,/D] = 2n,’ — 1 =1 (mod 8) n'— Dn,' = — 2
D type’ T hy o oy 7, 7,
2 2 — 1 -2 1 1
3 q 1 -2 1 1 1
6 2q 1 2 1 2 1
11 q 1 2 1 3 1
19 q 1 17 13 3
22 2q 1 17 14 3
38 2q 1 2 1 6 1
43 q 1 161 59 9
51 bq 2 2 1 7 1
59 q 1 17 23 3
66 24,4, 2 2 1 8 1
67 q 1 1457 221 27
83 2q 1 2 1 9 1
86 24 1 241 102 11
102 2pq 2 2 1 10 1
107 q 1 17 31
114 24,4, 2 17 32
118 2q 1 5201 554 51
123 bq 1 1 11 1
131 q 1 161 103 9
134 2q 1 2177 382 33
139 q 1 1116017 8807 747
146 2p 2 2 1 12 1
163 q 1 786257 8005 627
178 2p 2 17 40 3
179 q 1 46817 2047 153
187 bq 2 17 41 3
211 ¢| 1] S SN R
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D type hy 7 mp n, n,
214 2q 1

227 q 1 2 1 15 1
246 2pq 2 721 298 19
251 q 1 29281 1917 121
258 2pq 2 1 16 1
262 2q 1 801377 10246 633
267 ba 2 17 49 3
278 2q 1 17 50 3
283 q 1 977201 11759 699
291 q 4 2 1 17 1
307 q 1 576737 9409 537
326 2q 3 1 18 1
339 bq 2 577 313 17
347 q 1 3697 801 43
354 2¢,4, 2 1457 508 27
358 2q 1

374 2pq 2 17 58

402 2q,4, 2 1 20

411 bq 2 241 223 11
418 2q,4, 2 161 184

419 q 1 1289617 16437 803
422 2q 1 33281 2650 129
443 q 3 2 1 21 1
451 bq 2 206081 6817 321
454 2q 1

467 q 1 6961 1275 59
498 29,4, 2 721 424 19
499 q 5 17 67 3

Prime p is congruent to 1 mod 8 ; p = 1 (mod 8)
Prime q is congruent to 3 mod 8 ; ¢ = 3 (mod 8).

REFERENCES

[1] O. Perron, Die Lehre von den Kettenbruchen, Chelsea Publ. Comp., 1929.

[2] T. Takagi, Syoto-sesuron-kogi (Japanese), Kyoritu Publ. Comp., 1953.

[3] H. Yokoi, Some relations among new invariants of prime number p congruent to
1 mod 4, Advances in Pure Math.,13 (1988), 493—-501.

https://doi.org/10.1017/5S002776300000489X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000489X

NEW INVARIANTS FOR REAL QUADRATIC FIELDS 149

[4] ——, The fundamental unit and bounds for class numbers of real quadratic fields,
Nagoya Math. J., 124 (1991), 181-197.
[5] —, New invariants and class number problem in quadratic fields, Nagoya Math.

J., 132 (1993), 175-197.

Graduate School of Human Informatics
Nagoya University

Chikusa-ku, Nagoya 464-01

Japan

https://doi.org/10.1017/5002776300000489X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000489X



