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This article sheds light on the asymptotic behavior of diagonal elements of pro-
jection matrices associated with instruments or regressors under many instru-
ment/regressor asymptotics. When the diagonal elements do not exhibit variation
asymptotically, certain results in the many instrument/regressor literature lead to
elegant solutions and conclusions. We establish conditions when this happens,
provide relevant examples, and analyze instrument designs, for which this property
does or does not hold.

1. INTRODUCTION

A seminal paper by Bekker (1994) spurred the development of alternative asymp-
totic tools for models with many instrumental variables and/or regressors. In the
conclusions implied by these theories, diagonal elements of projection matrices
associated with instruments/regressors play a special role. A critical question is
whether the diagonal elements do or do not exhibit variation asymptotically, a
situation sometimes referred to as an (asymptotically) ‘balanced design’. When
this happens, certain results become attainable from a theoretical viewpoint, and
become more convenient and elegant from a practical perspective. In particular,
when the diagonal elements are asymptotically constant, asymptotic variances
of estimators or test statistics may lose their complexity, as shown in van Hasselt
(2010), Hansen, Hausman and Newey (2008), Lee and Okui (2012) and Hausman,
Newey, Woutersen, Chao and Swanson (2012, HNWCS henceforth).1 This means
that variance estimates may be simplified, which, in addition to facilitating com-
putations, should improve asymptotic approximations. Under asymptotically bal-
anced design, the LIML estimator in an instrumental variables model can be
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shown to be asymptotically efficient in a certain class of IV estimates (Anderson,
Kunitomo and Matsushita, 2010; Kolesár, 2015). Moreover, the LIML estima-
tor keeps its consistency and asymptotic efficiency properties even under ‘weak
heteroskedasticity’ (Kunimoto, 2012). Wang and Kaffo (2016) use the assumption
of asymptotically balanced design to show the validity of their modified boot-
strap procedure based on LIML estimation with many instruments. Last, but not
least, if the diagonal elements do not vary asymptotically, robust chi-square and
F-tests become immediately available (Anatolyev and Gospodinov, 2011;
Calhoun, 2011; Anatolyev, 2012). It is important to know the circumstances under
which an asymptotically balanced design may or may not occur, on the one hand,
and how much distortion a failure of this property may create, on the other.2

One well-known example encountered in previous literature is the case of
grouped data (Bekker and van der Ploeg, 2005) where the instruments are indica-
tor variables. If group sizes are equal, it is known that the diagonal of the instru-
ment projection matrix is asymptotically homogeneous (e.g., van Hasselt, 2010),
and is asymptotically heterogeneous otherwise.3 Another example where the
instruments are jointly normal is presented in Anatolyev (2012). To the best of our
knowledge, there are no systematic studies of this phenomenon in a random sam-
pling setting, although the common presumption in the many instrument/regressor
literature is that the property under consideration is not likely to hold.

In this article, we formulate sufficient conditions under which the diagonal el-
ements are asymptotically nonstochastic. We provide relevant examples in which
this property of diagonal elements holds, and work out setups often referenced
in the literature for when it does not. In particular, situations that deal with inde-
pendent instruments (including gaussian), that deal with instruments drawn from
a log-concave distribution (again including gaussian), that deal with instruments
following a factor model, as well as some others, belong to the case of diagonal
elements displaying asymptotic constancy. On the other hand, several situations
that are considered in the many instrument literature, such as those of dummy
instruments—both stand-alone and those that interact with other instruments, as
in Angrist and Krueger (1991)—are characterized by nontrivial asymptotic varia-
tion in diagonal elements. The asymptotic variance turns out to take fancy forms,
often involving Poisson distributions or a mixture thereof. We consider each of
these examples in some detail and numerically characterize the dependence of
asymptotic variation on the ratio of instrument numerosity to the sample size.

In our derivations, we use some results from random matrix theory, which is
a widely used tool in high-dimensional statistics, machine learning theory, and
mathematical physics (e.g., Bai and Silverstein, 2010). The impediment to im-
mediate application of the random matrix theory to the present setting is the
typical assumption that the entries of the design matrix are IID not only across
rows but also across columns; the existing relaxations of this condition are not
sufficient to cover interesting cases arising in regression contexts. Some of the
results we derive here are themselves on the edge of today’s research in random
matrix theory.
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The article is organized as follows. The setup and objectives are described in
Section 2. In Section 3 we give some theoretical results that are useful in design-
ing further examples. Section 4 contains examples with asymptotically balanced
design, while Section 5 describes settings under which the diagonal elements do
exhibit variation in the limit. Section 6 concludes. Proofs of most substantive
results are listed in Section 7, while more technical propositions and auxiliary
proofs are relegated to an online Appendix available at is.gd/diagPz.

2. SETUP

Let Zl be an n × l random matrix with rows {z′
lk}n

k=1 distributed independently
and identically as z′

l , where l ≤ n. To simplify notation, we will further omit in-
dex l if there is no ambiguity. The vectors {zk}n

k=1 comprising the matrix Z are
associated with n IID observations on instruments or regressors (which we will
refer to as instruments throughout) in a random sampling framework. The ob-
ject of our study is the projector P = ∥∥Pij

∥∥n
i, j=1 on the linear span of columns

of Z , and particularly its diagonal elements {Pkk}n
k=1. If Z has full rank, then

P = Z(Z ′Z)−1 Z ′ and Pkk = z′
k(Z ′Z)−1zk for any k. In general, (Z ′Z)−1 should

be replaced by (Z ′Z)+, the Moore–Penrose generalized inverse of Z ′Z , and then
rk(P) = rk(Z) = ∑n

k=1 Pkk . Note that for any l × l nondegenerate matrix C ,
the linearly transformed instruments {Czk}n

k=1 correspond to the same projection
matrix P as the initial instruments {zk}n

k=1. Therefore, when necessary, we may
assume that the instruments are normalized so that E[zz′] = Il .

Throughout, the maintained assumption is that of many instruments, first intro-
duced by Bekker (1994): as n → ∞,

l

n
= α + o (1) (MI)

for some α ∈ (0,1). The rate of convergence is sufficient for our purposes,
although it has to be faster in order for asymptotic properties of various estimators
and tests to take place.

We are interested in the asymptotic behavior of the following two quantities:4

αn = 1

n

n∑
k=1

Pkk

and

�n = 1

n

n∑
k=1

(Pkk −αn)
2.

Note that if Z has full rank, then αn = l/n
A= α, but in general αn = rk(Z)/n

A≤ α.
It is the limits plimαn and plim�n that explicitly appear in asymptotic vari-
ances of many estimators and test statistics (see references in the Introduction).
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We are mainly interested in whether

�n
p→ 0

within the asymptotic framework (MI), i.e., if there is no variation in the diagonal
elements of P, asymptotically. In this case, the asymptotic variances of estima-
tors simplify, certain estimators gain attractive properties, robust chi-square tests
become available, etc. (see references in the Introduction).

We will use the following notation. Let λmin(A), λ∗
min(A), and λmax(A) be

the least eigenvalue, the least nonzero eigenvalue, and the largest eigenvalue of
a symmetric positive semidefinite matrix A, respectively. Define also the L2

(Euclidean) norm ‖a‖ = √
a′a for any vector a. Negative indexing of a matrix

means deletion of a corresponding row. By I{A} we denote the indicator function
for event A, by U [0,1] we denote the uniform distribution on [0,1], and by Po(a)
we denote the Poisson distribution with parameter a.

3. SOME USEFUL NOTIONS AND INTERMEDIATE RESULTS

A matrix relationship useful for many derivations is the Sherman–Morrison for-
mula (Sherman and Morrison, 1950), which states that, for each a ∈ R

l and any
l × l nondegenerate matrix A,(

A + aa′)−1 = A−1 − A−1aa′A−1

1 + a′A−1a
(1)

and, as a result,

a′ (A + aa′)−1
a = a′ A−1a −

(
a′ A−1a

)2

1 + a′A−1a
= a′ A−1a

1 + a′A−1a
. (2)

In particular, this relationship helps us to write out a typical diagonal element of
P as a function of a quadratic form whose vector and matrix are independent:

Pkk = z′
k

(
Z ′−k Z−k

)−1
zk

1 + z′
k

(
Z ′−k Z−k

)−1
zk

. (3)

Recall that Z−k denotes the matrix obtained from Z by removing k-th row from
Z .

The critical technical condition we will be constantly using is

Condition A. There is δ > 0 such that P(λmin(Z ′Z) > δn) → 1 as n → ∞.

Condition A allows one to control expressions like (Z ′Z)−1. Note that it im-

plies that Z ′Z has full rank with probability approaching one, and thus αn
p→ α

as n → ∞. Heuristically, Condition A allows us to show that

tr(Z ′−k Z−k)
−1 ≈ tr(Z ′Z)−1 ≈ Etr(Z ′Z)−1

for n that is large enough. Condition A holds given the following set of conditions.
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LEMMA 3.1. Let Ezl z′
l = Il and E|a′zl | ≥ c > 0 for some c > 0, any l ≥ 1,

and all a ∈ R
l with a′a = 1. There exists an absolute constant K > 0 such that, if

α ≤ K c2, then Condition A holds.5

A version of Condition A, among other things, guarantees that all diagonal
elements of P are bounded away from unity; see Lemma A.1 in the online Ap-
pendix. This property is intensively used as an additional assumption in recent
works on many instrument asymptotics (e.g., Hansen, Hausman and Newey, 2008;
HNWCS, 2012; Bekker and Crudu, 2015).

Let us now introduce a property that plays an important role in random matrix
theory (see, for example, chapter 19 in Pastur and Shcherbina, 2011).

Definition. An array of random vectors {xl}l≥1 with xl ∈ R
l and a non-negative

random variable d satisfy property P if, for any sequence of l ×l positive semidef-
inite symmetric matrices {Al}l≥1 with maxl λmax(Al) < ∞, we have

x ′
l Al xl − d tr(Al)

l

p→ 0

as l → ∞.

Property P is a form of the weak law of large numbers for quadratic forms.
Namely, if d = 1 and Exl x ′

l = Il , then tr(Al) = Ex ′
l Al xl and, as a result, Property

P states that (x ′
l Al xl −Ex ′

l Al xl)/ l
p→ 0.

Property P is preserved when a finite number of components to random vectors
satisfying it is added; see Lemma A.2 in the online Appendix. The conditions
under which Property P implies Condition A are stated in Lemma A.3 in the
online Appendix.

In important special cases, Property P allows us to obtain explicit analytical
formulas for the limit of diagonal elements of P , as the following theorem shows.

THEOREM 3.2. Let ({zl}l≥1,d) satisfy Property P and {(zlk,dk)}n
k=1 be IID

copies of (zl ,d). If α ∈ (0,P(d > 0)) and Condition A holds, then

Pkk
p→ cdk

1 + cdk

for any fixed k as n → ∞, where c > 0 solves

E
cd

1 + cd
= α. (4)

Heuristically, when Property P holds, we have z′
k(Z ′−k Z−k)

−1zk
d≈

dk tr(Z ′−k Z−k)
−1, and, using (3) and the implication of Condition A,

Pkk
d≈ dk tr(Z ′−k Z−k)

−1

1 + dk tr(Z ′−k Z−k)−1

d≈ dk Etr(Z ′Z)−1

1 + dk Etr(Z ′Z)−1 .
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Further,

α ≈ EPkk ≈ E
dk Etr(Z ′Z)−1

1 + dk Etr(Z ′Z)−1 ,

hence equation (4) for c. If d = 1, then Pkk
p→α for each fixed k, and then �n

p→ 0.
If d is a nongenerate random variable, Pkk are asymptotically different and

�n
p
� 0.

Remark 3.3. If α > P(d > 0) in Theorem 3.2, then Z ′ Z = ∑n
k=1 zlk z′

lk may
be degenerate with a large probability. Indeed, if α > P(d > 0) and zlk = √

dkulk

for IID l ×1 random vectors ulk and IID non-negative random variables dk , then

rank(Z ′Z) ≤
n∑

k=1

I{dk>0} = nP(d > 0)+ op(n) < l

for n that is large enough. As a result, det(Z ′Z) = 0.

Finally, the following lemma provides certain sufficient conditions for
Property P. These conditions will be used in the next section to construct examples

of instrument designs for which �n
p→ 0.

LEMMA 3.4. For each l ≥ 1, let xl be a centered random vector in R
l with

Exl x ′
l = Il , and let d be a random variable. Then ({dxl}l≥1,d2) satisfies Property

P if any of the following conditions holds:

(a) each xl = (ξ1, . . . ,ξl )
′ for some ξj that are infinite linear combinations of

{ek}k≥1 converging in mean square, where {ek}k≥1 are IID random vari-
ables with zero mean and unit variance;

(b) each xl = (ξ1, . . . ,ξl )
′ for some ξj as in (a), where {ek}k≥1 are independent

random variables with zero mean, unit variance, and E|ek |2+δ ≤ C for
some C,δ > 0 not depending on k;

(c) each xl is a random vector with a log-concave density;

(d) each xl = Fl(vm) for a centered Gaussian random vector vm in R
m, where

m = m(l), λmax(var(vm)) ≤ C for some C > 0 not depending on m, and
Fl : Rm → R

l is a c-Lipschitz map with ‖Fl (u) − Fl(v)‖ ≤ c‖u − v‖ for
all u,v ∈ R

m and some c > 0 not depending on l.

4. EXAMPLES WHEN �n
p→0

4.1. Indicator instruments with equal group sizes

A well-known example in the literature is the case of grouped data (Bekker and
van der Ploeg, 2005) where the instruments are indicator variables. The instru-
ment design in this example is deterministic and hence does not fit in our IID
framework. However, αn and �n can be computed by brute force. Assume that all
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observations are split into l groups. If group sizes are equal, any size equals n/ l.
The instrument matrix is comprised of indicator variables: Z = Il ⊗ ιn/ l , where
ιm is an m-vector of ones, and the diagonal elements of P are Pkk = l/n for all k.
Then it is easy to derive that αn = l/n and �n = 0.

The example in Subsection 5.2 shows how abruptly the situation changes when
dummy instruments have random design, even though group sizes stay equal on
average.

4.2. Gaussian instruments

Our first example in an IID environment is most straightforward. Let zl =
(1,v ′

l−1)
′ for a Gaussian random vector vl−1 in R

l−1.

THEOREM 4.1. As n → ∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and

�n
p→ 0.

See also a brute force proof in Anatolyev (2012, Appendix A). The conclu-
sion implies, in particular, that Gaussian designs for instruments in simulation
studies (e.g., Hahn and Inoue, 2002; Davidson and Mackinnon, 2006; Anderson,
Kunitomo and Matsushita, 2011) may have missed important effects of asymp-
totic heterogeneity of the diagonal of P present in general theoretical results.

4.3. Independent instruments

This example generalizes the case of Gaussian instruments. Let {ek}k≥1 be inde-
pendent random variables with zero mean, unit variance, and E|ek |2+δ ≤ C for
some C,δ > 0 not depending on k. Now, let zl = (1,e1, . . . ,el−1)

′.

THEOREM 4.2. As n → ∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and

�n
p→ 0.

This means that the instrument design with many independent instruments
drawn from different distributions (barring those with extremely thick tails) does
conform to the simplifying implication.

4.4. Instruments drawn from log-concave distribution

This example generalizes the case of gaussian instruments in a different direction.
Let zl = (1,v ′

l−1)
′ for an R

l−1-valued random vector vl−1 having a centered log-
concave density.6 Recall some useful properties of (probability) distributions with
log-concave densities or, more generally, log-concave distributions.7

This class of distributions generalizes the multivariate normal distribution. In
the one-dimensional case, it includes many common distributions, for example,
Weibull, Gamma, and Beta distributions when their parameters are greater or
equal to one (see Bagnoli and Bergstrom, 2005). Like the class of normal distribu-
tions, it is closed under affine transformations, formation of products of measures,
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marginalization, convolution, and weak limits (see Saumard and Wellner, 2014).
This is why the class of log-concave distributions is considered a natural nonpara-
metric generalization of the class of normal distributions.

THEOREM 4.3. As n → ∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and

�n
p→ 0.

4.5. Instruments distributed according to Gaussian copula

The results for Gaussian instruments can be extended to certain nonlinear trans-
formations of Gaussian vectors (e.g., Gaussian copulas). Let zl = (1,v ′

l−1)
′, where

vl−1 = Fl−1(ul−1) for a centered Gaussian random vector ul−1 in R
l−1 and, for

x = (x1, . . . ,xl−1)
′ ∈ R

l−1,

Fl−1(x) = ( f1(x1), . . . , fl−1(xl−1))
′.

Here fk : R → R are c-Lipschitz functions for some c > 0 (see Lemma 3.4(d)).
Each fk may depend on l, but c depends neither on k nor on l.

Suppose also every vl−1 has zero mean and there are constants λ,C > 0 such
that λmin(Evl−1v

′
l−1) ≥ λ and λmax(var(ul−1)) ≤ C for each l > 1.

THEOREM 4.4. As n → ∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and

�n
p→ 0.

4.6. Instruments that are sums of IID random variables

Let {ek}k≥1 be IID random variables with zero mean and unit variance. For each
j ≥ 1, let ξj be an infinite linear combination of ek that converges in mean square.
Assume that zl = (1,ξ1, . . . ,ξl−1)

′ and Ezl z′
l is nondegenerate for all l > 1.

THEOREM 4.5. As n → ∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and

�n
p→ 0.

4.7. Instruments following a factor model

Let zl = (1,v ′
l−1)

′ with vl−1 = �l−1,m fm + εl−1, where fm is an m ×1 vector of
latent factors, εl−1 is an (l −1)×1 disturbance term, and �l−1,m is an (l −1)×m
matrix of factor loadings. Suppose m satisfies m/ l < 1, fm = (σ1e1, . . . ,σmem)′,
and εl−1 = (σm+1em+1, . . . ,σm+l−1em+l−1)

′ for some constants {σk}l+m−1
k=1 and

independent random variables {ek}l+m−1
k=1 with zero mean, unit variance, and

E|ek |2+δ ≤ C for some C,δ > 0 not depending on k,l,m.

THEOREM 4.6. As n → ∞, we have αn
p→ α, Pkk

p→ α for any fixed k, and

�n
p→ 0.
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5. EXAMPLES WHEN �n
p
�0

5.1. Indicator instruments with unequal group sizes

In the well known case of grouped data (Bekker and van der Ploeg, 2005), if
the group sizes are not equal, the diagonal of the instrument projection matrix is
generally asymptotically heterogeneous. Let us assume that all observations are
split into l groups and proceed by brute force. Denoting the size of the gth group
by ng , we observe that the instrument matrix is comprised of indicator variables:
Z = dg{ιng }l

g=1, where ιm is an m-vector of ones. Then the diagonal elements of

P are Pkk = n−1
g such that the kth observation belongs to gth group, and

αn = 1

n

l∑
g=1

ng
1

ng
= l

n

and

�n = 1

n

l∑
g=1

ng

(
1

ng
− l

n

)2

= 1

n

l∑
g=1

1

ng
−

(
l

n

)2

,

which need not equal zero. See Abutaliev and Anatolyev (2013) for a numerical
evaluation of the effects of asymptotic heterogeneity of the diagonal of P on the
asymptotic variance of LIML estimates.

5.2. Dummy instruments with disjoint supports

Let zl = (d1, . . . ,dl)
′, where d1, . . . ,dl are Bernoulli random variables subject to

the constraint
∑l

j=1 dj = 1. Each dj implicitly depends on l. We first consider
the design when the underlying factors have the same frequency of occurrence:
P(dj = 1) = 1/ l for any fixed j. Let ξ ∼ Po(1/α), and let

ζ = 1

ξ + 1
.

THEOREM 5.1. As n → ∞, we have αn
p→ Eζ, Pkk

d→ ζ for any fixed k, and

�n
p→ var(ζ ).

Figure 1(i) illustrates the dependence between a = plimαn = Eζ and � =
plim�n = var(ζ ) when α changes from 0 to 1.

Generally, when P(dj = 1) nontrivially depends on j and asymptotically be-
haves like O(1/ l), the distribution of ξ will be a mixture of Poisson distributions.
To see this, consider the following design. Let u be a random variable with
values in [0,1] and a bounded density f = f (u), u ∈ [0,1]. Set dj = 1 if
( j − 1)/ l ≤ u < j/ l, 1 ≤ j ≤ l, and dj = 0 otherwise.
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FIGURE 1. Illustrations for examples of Section 5.
Notes: each figure illustrates one of examples of Section 5: (i) Theorem 5.1 with a = plimαn and � = plim�n .
(ii) Theorem 5.3 with a = plimαn and � = plim�n . (iii) Theorem 5.6 with a = plimαn and � = plim�n .
(iv) Theorem 5.7 for z ∼ U [0,1] with a = Ev′V (ξ)v and � = var(v′V (ξ)v).

COROLLARY 5.2. Let ξ satisfy

P(ξ = m) =
∫ 1

0

e−λ(u)λ(u)m

m!
f (u)du, m = 0,1, . . . ,

for λ(u) = f (u)/α. Then the conclusion of Theorem 5.1 holds.

The case under consideration is related to the famous setup of Angrist and
Krueger (1991) where dummy variables with disjoint supports are used. One
group of such instruments (30 units) is formed as the products of year-of-birth
and quarter-of-birth dummies. Another group of instruments (150 units) is formed
as the products of state-of-birth and quarter-of-birth dummies. The diagonal el-
ements of projection matrices for each group can be analyzed along the lines
of Corollary 5.2. The case when the instrument set includes both groups is less
amenable to analysis because of the complicated structure of (Z ′Z)−1.
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5.3. Many instruments interacted with dummy variables

We consider the case of one dummy variable first. Let ul be one of a set of random
vectors zl from Subsection 4.2 through 4.7 with nondegenerate Eulu′

l . Construct
zl as zl = uld, where d is a Bernoulli random variable. Let also zlk = ulkdk for
each k, where {(dk,ulk)}n

k=1 are IID copies of (d,ul ).
By Remark 3.3, Z ′Z is degenerate with large probability when l/n = α + o(1)

and α > P(d = 1). We will consider the case with α < P(d = 1).

THEOREM 5.3. Let α < P(d = 1), and let ul , l ≥ 1, be independent of d. As

n → ∞, we have αn
p→ α,

Pkk
p→ α

dk

P(d = 1)

for any fixed k, and

�n
p→ α2 P(d = 0)

P(d = 1)
.

Figure 1(ii) illustrates the dependence between a = plimαn = α and � =
plim�n in Theorem 5.3 when P(d = 1) = 1/2 and α changes from 0 to 1/2.

We now consider the case of several dummy variables. Let

zl = d ⊗ ul = (
d1u′

l , . . . ,dmu′
l

)′
,

where d = (d1, . . . ,dm)′ is a vector of m Bernoulli random variables subject to the
constraint d1 + . . .+ dm ≤ 1, and m is a fixed number. Write zlk = (djk)

m
j=1 ⊗ ulk

for each k, 1 ≤ k ≤ n, where {ulk ,(djk)
m
j=1}n

k=1 are IID copies of (ul ,d).
Again, it can be shown (cf. Remark 3.3) that Z ′Z is degenerate with large

probability when α > minj P(dj = 1).

COROLLARY 5.4. Let α < minj P(dj = 1), and let ul , l ≥ 1, be independent

of d. As n → ∞, we have αn
p→ αm,

Pkk
p→

m∑
j=1

αdjk

P(dj = 1)

for any fixed k, and

�n
p→

m∑
j=1

α2

P(dj = 1)
− (αm)2.

Remark 5.5. The independence of d and ul in Theorem 5.3 and Corollary
5.4 can be relaxed as long as Condition A holds. In general, Condition A may
not hold. For example, let ul = (1,e1, . . . ,el−1)

′ for IID {ek}k≥1 and e1 = (1−d)
ζ/var(d), where ζ is independent of d and has Eζ = 0 and Eζ 2 = 1. Then de1 = 0
and λmin(Z ′Z) = 0.
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5.4. Instrument interactions with many dummy variables

This artificial example is encountered in the simulation sections of many recent
theoretical studies, in particular, HNWCS (2012), Anatolyev (2013), and Bekker
and Crudu (2015). Let

zl =
(

1,v,v2,v3,v4,vu′
l−5

)′
,

where ul−5 = (d1, . . . ,dl−5)
′ contains IID Bernoulli random variables dj with

P(dj = 0) = P(dj = 1) = 1/2, and v ∼ N (0,1) is independent of ul−5. Write
zlk = (1,vk, . . . ,v

4
k ,vk u′

l−5,k)
′ for each k, 1 ≤ k ≤ n, where {(vk,ul−5,k)}n

k=1 are
IID copies of (v,ul−5).

Let c > 0 solve the equation

E
cv2

1 + cv2
= α.

THEOREM 5.6. As n → ∞, we have αn
p→ α,

Pkk
p→ cv2

k

1 + cv2
k

for any fixed k, and

�n
p→ var

(
cv2

1 + cv2

)
.

Figure 1(iii) illustrates the dependence between a = plimαn = α and � =
plim�n when α changes from 0 to 1.

5.5. Instruments that are splines

Hansen, Hausman and Newey (2008), HNWCS (2012) and other recent treat-
ments propose to approximate an unknown nonlinear reduced form by a linear
combination of many approximating functions. A common approach is to use
B-splines with a sufficient degree of smoothness and uniformly spaced knots.
Below we will study (a simple version of) this case.

Let z be a [0,1]-valued ‘basic’ instrumental variable. Let

zl = (B1(z), . . . , Bl+1(z))
′,

where Bj = Bj (z), j = 1, . . . ,l + 1, are B-splines in their natural order. To pro-
duce results that are as clear as possible, we consider only linear B-splines with
uniformly spaced knots {sj }l+1

j=−1 with sj = j/ l. All results can be rewritten to
accommodate higher-order B-splines (e.g., cubic B-splines).
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Note first that Bk(z)Bj (z)= 0 for all z ∈ [0,1] when |k − j |> 1. Hence, Z ′Z is a
tridiagonal matrix for linear B-splines (it would be 9-diagonal for cubic B-splines,
for example). The inverse (Z ′Z)−1 is a matrix with a complicated structure (e.g.,
see Meurant, 1992). To proceed, we simplify by setting zl = (ζ1,ζ2, . . . ,ζ2l)

′,
where ζ2 j−1 = Bj (z)I{sj−1≤z<sj } and ζ2 j = Bj+1(z)I{sj−1≤z<sj } for 1 ≤ j ≤ l.
For linear B-splines, by definition, if z ∈ [0,1), then B1(z) = ζ1(z), Bj (z) =
ζ2 j−2(z)+ ζ2 j−1(z) for j = 2, . . . ,l + 1, and Bl+1(z) = ζ2l(z).

In this case, Z ′Z is a block diagonal matrix with 2 ×2 diagonal blocks, and its
inverse (Z ′Z)−1 has a similar structure. Let {ui }∞i=0 be IID random variables with
ui ∼ U [0,1]. Define vi = (ui ,1 − ui)

′, i ≥ 0, v = v0, and

V (0) = 1

v ′v
, V (m) =

(
m∑

i=0

viv
′
i

)−1

, m ≥ 1.

THEOREM 5.7. Let z ∼ U [0,1]. As n → ∞, we have Pkk
d→ v ′V (ξ)v for any

fixed k, where ξ ∼ Po(1/α) is independent of all other random variables involved.

Under the conditions of Theorem 5.7, η = v ′V (ξ)v has the following cumula-
tive distribution function:

P(η ≤ x) =
∞∑

m=0

exp{−1/α}P(v ′V (m)v ≤ x)

αm m!
.

As in Corollary 5.2, one can show that the result of Theorem 5.7 still holds if z has
a bounded density f = f (z), z ∈ [0,1], and that the distribution of ξ is a mixture
of Poisson distributions from Corollary 5.2. The proof is available on request.

We also conjecture that αn
p→ Ev ′V (ξ)v and �n

p→ var(v ′V (ξ)v), though we
do not have a formal proof. Figure 1(iv) illustrates the dependence between a =
plimαn = Ev ′V (ξ)v and � = plim�n = var(v ′V (ξ)v) when α changes from 0
to 1/2 (recall that the number of instruments is 2l ≈ 2αn).

6. CONCLUSION

We have derived sufficient conditions for asymptotic homogeneity of a diagonal
of the projection matrix under many instrument/regressor asymptotics. We have
analyzed several examples when asymptotic homogeneity holds, and several ex-
amples when the diagonal is asymptotically heterogeneous. Intuitively, whether a
given instrument design leads to the former or the latter case depends on whether
there is enough mixing inside the utilized instruments, or whether there are in-
stead common factors in a non-negligible fraction of them. This circumstance
validates or, conversely, precludes the validity of a law of large numbers for cer-
tain quadratic forms.

We have also calibrated the amount of variation in the diagonal elements,
plim�n , which sometimes attains values up to 0.25 and higher. Because this
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quantity explicitly appears in asymptotic variances of some estimators and test
statistics, it would be interesting to know how much distortion can be caused by
ignoring asymptotic heterogeneity and setting plim�n to zero. Let us look at the
asymptotic variance of the modified J-statistic (Lee and Okui, 2012; Anatolyev,
2013). The relative difference between this asymptotic variance and the same
quantity when the condition plim�n = 0 is imposed equals

κ

2α(1 −α)
plim�n,

where κ denotes excess kurtosis of the structural error. If the structural error is
even moderately leptokurtic, this formula and our calibration imply that suffi-
ciently high relative distortions are possible (e.g., up to 50%, if excess kurtosis
equals unity).

7. MAIN PROOFS

Proof of Theorem 4.1. We can normalize zl so that zl = (1,e1, . . . ,el−1)
′ for

ek ∼ IIDN (0,1) and apply Theorem 4.2 to obtain the desired result. �

Proof of Theorem 4.2. By Lemma 3.4(b) and Lemma A.2, ({zl}l≥1,1) satisfies
Property P. By note 5 and Lemma A.7, there is c > 0 such that E|z′

la| ≥ c for all

l ≥ 1 and a ∈ R
l with a′a = 1. By Lemma A.3, Condition A holds and αn

p→ α.

Moreover, by Theorem 3.2, Pkk
p→ α for any fixed k. Recall a version of the

Lebesgue dominated convergence theorem:

if ζn
d→ ζ and |ζn| ≤ 1 a.s. for all n, then Eζn → Eζ . (5)

By this theorem and the exchangeability of {(Pkk,αn)}n
k=1,

E�n = E
1

n

n∑
k=1

(Pkk −αn)
2 = E(P11 −αn)

2 → 0. �

Proof of Theorem 4.3. We can normalize vl−1 in zl by some affine trans-
formation so that Evl−1v

′
l−1 = Il−1. As a result, Ezl z′

l = Il for zl = (1,v ′
l−1)

′,
since Evl−1 has zero entries. Affine transformations preserve log-concavity of
distributions (see Proposition 3.1 in Saumard and Wellner, 2014). Therefore, the
normalized vl−1 still has a log-concave density.

Moreover, for any nonzero vector b ∈ R
l−1, u = v ′

l−1b/
√

b′b is a random
variable with zero mean, unit variance, and a log-concave density. Therefore,
by Theorem 1 in Adamczak, Latala, Litvak, Oleszkiewicz, Pajor, and Tomczak-
Jaegermann (2014), there is an absolute constant κ > 0 such thatP(|u|> κ t) ≤ e−t

for all t ≥ 1. This implies that Eu4 ≤ C for some absolute constant C > 0. Hence,
E|a′zl |4 ≤ 8a4

0 +8(b′b)2C ≤ 8+8C for any a = (a0,b′)′ with a0 ∈ R, b ∈ R
l−1,
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and a2
0 + b′b = 1. By note 5, there is c > 0 such that E|z′

la| ≥ c for all l ≥ 1 and
a ∈ R

l with a′a = 1.
By Lemma 3.4(c), Lemma A.2, and Lemma A.3, ({zl}l≥1,1) satisfies Property

P and Condition A holds. The rest of the proof follows the same lines as the proof
of Theorem 4.2. �

Proof of Theorem 4.4. We can normalize zl to zl = (1,w′
l−1)

′ for wl−1 =
(Evl−1v

′
l−1)

−1/2vl−1. Since λmax((Evl−1v
′
l−1)

−1/2) ≤ 1/
√

λ, vl−1 = Fl−1(ul−1),
and Fl−1 consists of c-Lipschitz functions, we can write wl−1 = Gl−1(ul−1) for
some (c/

√
λ)-Lipschitz map Gl−1 : Rl−1 → R

l−1. Hence, by Lemma 3.4(d) and
Lemma A.2, ({zl}l≥1,1) satisfies Property P.

Now, let us show that Condition A holds. Let ϕb : Rl−1 → R be defined by
ϕb(x) = x ′b for some b ∈ R

l−1 with b′b = 1. Then ϕb is a 1-Lipschitz function.
Arguing as in the proof of Lemma 3.4(d) and using Theorem 2.7 and Proposition
1.3 in Ledoux (2001), we arrive at the inequality P(|w′

l−1b−med(w′
l−1b)| > t) ≤

2exp{−C1t2}, t > 0, for some C1 = C1(c/
√

λ,C) > 0, where med(ξ) is a median
of a random variable ξ, and C > 0 satisfies λmax(var(ul−1)) ≤ C. By Proposition
1.8 in Ledoux (2001), there are Ck = Ck(C1) > 0, k = 2,3, such that

P
(∣∣w′

l−1b −E
(
w′

l−1b
)∣∣ > t

) = P
(∣∣w′

l−1b
∣∣ > t

) ≤ C3 exp
{
−C2t2

}
, t > 0.

Hence, E(w′
l−1b)4 ≤ C4(b′b)2 for some C4 > 0 and all b ∈ R

l−1. As a result,

E
(
z′

la
)4 ≤ 8a2

0 + 8E
(
w′

l−1b
)4 ≤ 8 + 8C4

for all a = (a0,b′)′ with a0 ∈R, b ∈R
l−1, and a2

0 +b′b = 1. By note 5, E|z′
la| ≥ c

for some c > 0 and all a ∈ R
l with a′a = 1. By Lemma A.3, Condition A holds.

The rest of the proof follows the same lines as the proof of Theorem 4.2. �

Proof of Theorem 4.5. We can normalize zl so that zl = (1,v ′
l−1)

′ satisfies
Evl−1v

′
l−1 = Il−1 (and Ezl z′

l = Il , since Evl−1 has zero entries), where vl−1 =
(ξ1, . . . ,ξl−1)

′ and each ξj is an infinite linear combination (in L2) of {ek}k≥1. By
construction, there is an (l − 1)×∞ matrix �l−1 such that vl−1 = �l−1e (in L2)
and Il−1 = Evl−1v

′
l−1 = E�l−1ee′�′

l−1 = �l−1�
′
l−1, where e = (e1,e2, . . .)

′.
Hence, for any a = (a0, . . . ,al−1)

′ ∈ R
l with a′a = 1, there is b = (b1,b2, . . .)

′
with a2

0 +b′b = 1 such that z′
la = a0 + e′b. One can take b = �′

l−1(a1, . . . ,al−1)
′.

The rest of the proof follows the same lines as the proof of Theorem 4.2. �

Proof of Theorem 4.6. The proof is similar to the proof of Theorem 4.5. �

Proof of Theorem 5.1. The instrument matrix Z is degenerate with positive
probability. If zlk = (dk1, . . . ,dkl)

′, 1 ≤ k ≤ n, then dkq dkr = 0 for all k,q,r with
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q �= r. As a result, (Z ′Z)+ is a diagonal matrix with diagonal entries

sq =
{

1/
∑n

k=1 dkq if
∑n

k=1 dkq > 0,

0 otherwise,
q = 1, . . . ,l.

Consider the case k = 1 without loss of generality. We have

P11 = z′
l1(Z ′Z)+zl1 =

l∑
q=1

d1q∑n
k=2 dkq + d1q

,

where 0/0 = 0. Let us show that P11
d→ 1/(ξ + 1), where ξ ∼ Po(1/α). By Pois-

son’s limit theorem,

P(P11 ≤ x) =
l∑

q=1

P

(
1∑n

k=2 dkq + 1
≤ x, d1q = 1

)

= P

(
1∑n

k=2 dk1 + 1
≤ x

)
→ P

(
1

ξ + 1
≤ x

)
for almost all x ≥ 0, where we used that nP(d11 = 1) = n/ l → 1/α. Hence,

P11
d→ ζ .

Consider normalized zl = √
l(d1, . . . ,dl)

′. Then Ezl z′
l = Il , λmax(Ezl z′

l) = 1,

and λ∗
min(Z ′Z) ≥ l. By Lemma A.5 and (5), αn

p→ limn→∞EP11 = Eζ and

�n = 1

n

n∑
k=1

P2
kk −α2

n
p→ lim

n→∞var(P11) = var(ζ ). �

Proof of Corollary 5.2. Note that P11 is same as in the proof of Theorem 5.1.

Let us demonstrate that P11
d→ 1/(ξ +1), where ξ is given in Corollary 5.2. Note

that P11 takes values 1/(m +1) with m = 0,1, . . . By the independence of d1q and
{dkq }n

k=2, we have

P

(
P11 = 1

m +1

)
=

l∑
q=1

P

(
1∑n

k=2 dkq +1
= 1

m +1
, d1q = 1

)
=

l∑
q=1

P(ξq = m)pq ,

where ξq follows the Binomial distribution with parameters (n − 1, pq) and

pq =
∫ q/ l

(q−1)/ l
f (u)du.

As f is bounded by say C > 0, we conclude that pq ≤ C/ l for all q . Therefore,
by the Le Cam inequality,

∞∑
m=0

∣∣∣∣P(ξq = m)− e−(n−1)pq
((n − 1)pq)

m

m!

∣∣∣∣ ≤ 2np2
q ≤ 2n

(
C

l

)2

= o(1). (6)
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Thus,

P

(
P11 = 1

m + 1

)
=

l∑
q=1

pqe−(n−1)pq
((n − 1)pq)

m

m!
+ o(1).

Fix m and make gm(u) = exp{−u}um/m!, u ≥ 0. Also, define

fn(u) = l
∫ q/ l

(q−1)/ l
f (v)dv, (q − 1)/ l ≤ u < q/ l, (7)

for q = 1, . . . ,l and fn(1) = 0. Write

l∑
q=1

pqe−(n−1)pq
((n − 1)pq)

m

m!
=

∫ 1

0
gm((n − 1) fn(u)/ l) f (u)du.

By the Lebesgue differentiation theorem, (n − 1) fn(u)/ l → f (u)/α for almost
all u ∈ [0,1]. Hence, by the Lebesgue dominated convergence theorem,

P

(
P11 = 1

m + 1

)
=

∫ 1

0
gm((n − 1) fn(u)/ l) f (u)du + o(1)

=
∫ 1

0
gm( f (u)/α) f (u)du + o(1).

The latter is equivalent to P11
d→ 1/(ξ + 1).

The rest of the proof follows the same lines as the proof of Theorem 5.1. We
only need to note that, for normalized zl = √

l(d1, . . . ,dl)
′, λ∗

min(Z ′ Z) ≥ l and
λmax(Ezl z′

l) ≤ C , where C gives an upper bound for f = f (u). �

Proof of Theorem 5.3. We further assume that zl = dul is normalized so
that Eulu′

l = Il . By Lemma 3.4 and Lemma A.2, ({zl}l≥1,d) satisfies Property P
(recall that d2 = d). It was verified in the proofs of Theorems 4.2 through 4.6 that
E|u′

la| ≥ c0 for some c0 > 0, all l ≥ 1, and any a ∈ R
l with a′a = 1. Then, there

is c > 0 such that E|z′
la|I{d>0} = P(d = 1)E|u′

la| ≥ c. Therefore, by Lemma A.3,
Condition A holds.

Set π = P(d = 1). By Theorem 3.2,

Pkk
p→ cdk

1 + cdk
= αdk

π

for any fixed k, where c > 0 solves E(cd)/(1+cd)= πc/(1+c) = α. In addition,

by Lemma A.5 and (5), αn
p→ limn→∞EP11 = α and

�n = 1

n

n∑
k=1

P2
kk −α2

n
p→ lim

n→∞var(P11) = α2 1 −π

π
.

�

https://doi.org/10.1017/S0266466616000165 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000165


734 STANISLAV ANATOLYEV AND PAVEL YASKOV

Proof of Corollary 5.4. Inequalities
∑m

j=1 djk ≤ 1 that hold for any fixed k
imply that dikdjk = 0 for all i, j,k with i �= j . As a result, Z ′Z is a block-diagonal
matrix with diagonal blocks Z ′

j Z j , j = 1, . . . ,m, having the same structure as

Z ′ Z in Theorem 5.3, with dk replaced by djk, respectively. Hence, by d2
j k = djk,

Pkk = z′
lk(Z ′Z)−1zlk =

m∑
j=1

djku′
lk

(
Z ′

j Z j

)−1
ulk .

By Theorem 5.3, djku′
lk(Z ′

j Z j )
−1ulk

p→ αdjk/P(dj = 1) for any j = 1, . . . ,m.
Since m is fixed, we get

Pkk
p→

m∑
j=1

αdjk

P
(
dj = 1

) .

As shown in the proof of Theorem 5.3, Condition A holds for each block Z ′
j Z j .

Since the number of blocks is finite, Condition A holds for Z ′Z . By Lemma A.5

and (5), αn
p→ limn→∞EP11 = αm and

�n = 1

n

n∑
k=1

P2
kk −α2

n
p→ lim

n→∞var(P11) =
m∑

j=1

α2

P
(
dj = 1

) − (αm)2.
�

Proof of Theorem 5.6. Write zl = (w′
5,vu′

l−5)
′ for w5 = (1,v,v2,v3,v4)′ and

ul−5 = (d1, . . . ,dl−5)
′. We may further assume that w5 and ul−5 are normalized to

Ezl z′
l = Il by the linear transformation (w5,vul−5) → (w̄5,vūl−5), where w̄5 =

(Ew5w
′
5)

−1/2w5 and ūl−5 = (2d1 − 1, . . . ,2dl−5 − 1)′.
By Lemmas A.2 and 3.4, ({zl}l≥1,v

2) satisfies Property P. By the Khintchin
inequality, for any a ∈ R

5 and b = (b1, . . . ,bl−5)
′ ∈ R

l−5 with a′a + b′b = 1,

E
(
a′w5 + vb′ul−5

)4 ≤ 8E
(
a′w5

)4 +8Ev4
E

⎛⎝ l−5∑
q=1

bq
(
2dq −1

)⎞⎠4

≤ 8E
(
w′

5w5
)2 +C

for some constant C > 0. This and note 5 imply that E|z′
la|=E|z′

la|I{|v |>0} ≥ c for
some c > 0, all l ≥ 1, and a ∈ R

l with a′a = 1. Hence, by Lemma A.3, Condition
A holds.

Now, by Theorem 3.2, Pkk
p→ cv2

k /(1+cv2
k ) for any fixed k, where c > 0 solves

the equation E(cv2)/(1 + cv2) = α. Finally, by Lemma A.2 and (5),

αn
p→ lim

n→∞EP11 = E
cv2

1 + cv2
= α

and

�n = 1

n

n∑
k=1

P2
kk −α2

n
p→ lim

n→∞var(P11) = var

(
cv2

1 + cv2

)
. �
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Proof of Theorem 5.7. We need to introduce a few facts that derive from the
definition of B-splines. First, setting dq = 1 if (q − 1)/ l ≤ z < q/ l and dq = 0
otherwise, we see that dqdr = 0 for all q �= r. Second, let {ũq}l

q=1 be independent
random variables such that each ũq is independent of z and distributed as q − lz
conditionally on dq = 1. That is, the density of ũq is equal to f ((q − u)/ l)/ l,
u ∈ [0,1], where f (u) is the density of z. Then each variable

ūq =
{

q − lz if dq = 1,

ũq if dq = 0,

has the same distribution as ũq , and is independent of dq . Moreover, zl =
(ū1d1,(1 − ū1)d1, ū2d2,(1 − ū2)d2, . . . , (1 − ūl)dl)

′ for linear B-splines.
Suppose now that ((ūkq ,dkq ))l

q=1, k = 1, . . . ,n, are IID copies of

((ūq ,dq ))l
q=1. Then

zlk = (ūk1dk1,(1 − ūk1)dk1, . . . , (1 − ūkl)dkl)
′,

k = 1, . . . ,n, are IID copies of zl .
As the instrument matrix Z is degenerate with positive probability, set P =

Z(Z ′Z)+ Z ′. Since dkq dkr = 0 for all k,q,r with q �= r , (Z ′Z)+ is a block diag-
onal matrix with 2 ×2 diagonal blocks (Sq )+, where

Sq =
n∑

k=1

dkqvkqv ′
kq

and vkq = (ūkq ,1 − ūkq)′, q = 1, . . . ,l. Consider, without loss of generality, Pkk

for k = 1:

P11 = z′
l1(Z ′Z)+zl1 =

l∑
q=1

d1qv ′
1q

(
n∑

k=1

dkqvkqv ′
kq

)+
v1q .

Fix x ≥ 0. Using the independence of v1q and d1q , we deduce that P(P11 ≤ x) = I,
where I = ∑l

q=1P(Aq)P(d1q = 1), and

Aq =
{

v ′
1q

(
n∑

k=2

dkqvkqv ′
kq + v1qv ′

1q

)+
v1q ≤ x

}
. (8)

If z ∼ U [0,1], then {(dkq ,vkq )}n
k=1 are identically distributed over q . In partic-

ular, P(Aq) is constant over q, and I = P(A1) since P(d1q = 1) = 1/ l. Because
(d11,v11) is independent of

∑n
k=2 dk1vk1v

′
k1 and because (dk1)

n
k=1 and (vk1)

n
k=1

are independent collections of IID random elements, we have

I = P

⎛⎝v ′
⎛⎝ ξn∑

j=1

ṽ j ṽ
′
j + vv ′

⎞⎠+
v ≤ x

⎞⎠ ,
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where ξn = ∑n
j=2 dj1 is independent of all other random variables involved, and

(v, ṽ1, ṽ2, . . .) are IID copies of v11. Next, if z ∼ U [0,1], then v has the same

distribution as (z,1 − z)′. In addition, by the Poisson limit theorem, ξn
d→ ξ ∼

Po(1/α) since nP(d11 = 1) → 1/α. Hence,

I =
∞∑

m=1

P

⎛⎝v ′
⎛⎝ m∑

j=1

ṽ j ṽ
′
j + vv ′

⎞⎠+
v ≤ x

⎞⎠P(ξn = m)+P(v ′V (0)v ≤ x)P(ξn = 0)

=
∞∑

m=1

P

⎛⎝v ′
⎛⎝ m∑

j=1

ṽ j ṽ
′
j + vv ′

⎞⎠+
v ≤ x

⎞⎠P(ξ = m)

+P(v ′V (0)v ≤ x)P(ξ = 0)+ o(1)

= P(v ′V (ξ)v ≤ x)+ o(1).

This finishes the proof. �

NOTES

1. Notably, the example of efficiency ranking between LIML and HLIM provided on p.224 does
not attain its point when the sample variance of diagonal elements is zero in the limit.

2. Anderson, Kunitomo and Matsushita (2010) find that “the effects of non-normality of distur-
bance terms on the cdf of the LIML estimator are often very small”. However, this may have occurred
because their instrument design is asymptotically balanced due to joint normality of instruments, see
Subsection 4.2.

3. Abutaliev and Anatolyev (2013) numerically evaluate the effects of asymptotic heterogeneity of
the diagonal on the asymptotic variance of LIML estimates in a setting with indicator instruments and
Skewed Student errors.

4. Recall that in a linear regression of y on z, the kth diagonal element Pkk of P is the leverage
score of the kth observation, for the kth fitted value of y is

ŷk = Pkk yk +
∑
j �=k

Pkj yj .

If Pkk is too large, then yk is badly overfit. In particular, if Pkk is close to one, then ŷk is determined
solely by one observation. So, for the collection {Pkk }n

k=1, the sample mean αn can be interpreted
as the average leverage score, and the sample variance �n measures how far the leverage scores are
spread apart.

5. One can take K = 1/16 in Lemma 3.1 (see the proof of Corollary 3.4 in Yaskov, 2014;
see also Yaskov, 2016), but it is far from optimal. In addition, since E(a′zl )

2 = 1 when a′a = 1,
condition E|a′zl | ≥ c means that random variables a′zl are not too heavy-tailed. Indeed, if,

for example, Eu2 = 1 and E|u|2+δ ≤ C for some C,δ > 0, then 1 = E|u|
δ

1+δ |u|
2+δ
1+δ ≤

(E|u|)
δ

1+δ (E|u|2+δ)
1

1+δ and E|u| ≥ c = C−1/δ.

6. That is, a density whose logarithm is a concave function (setting log0 = −∞).
7. A log-concave distribution in R

d can be defined as a distribution supported on an affine subspace
H ⊂ R

d of dimension k ≤ d, where this distribution has a log-concave density w.r.t. the Lebesgue
measure on this subspace (see Theorem 3.2 in Borell, 1975).
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