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The multiple colliding laser pulse concept formulated by Bulanov et al. (Phys. Rev.
Lett., vol. 104, 2010b, 220404) is beneficial for achieving an extremely high amplitude
of coherent electromagnetic field. Since the topology of electric and magnetic fields of
multiple colliding laser pulses oscillating in time is far from trivial and the radiation
friction effects are significant in the high field limit, the dynamics of charged particles
interacting with the multiple colliding laser pulses demonstrates remarkable features
corresponding to random walk trajectories, limit circles, attractors, regular patterns
and Lévy flights. Under extremely high intensity conditions the nonlinear dissipation
mechanism stabilizes the particle motion resulting in the charged particle trajectory
being located within narrow regions and in the occurrence of a new class of regular
patterns made by the particle ensembles.
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1. Introduction
Recent progress in laser technology has led to a dramatic increase of laser power

and intensity. The lasers are capable of producing electromagnetic field intensities
well above 1018 W cm−2, which corresponds to the relativistic quiver electron energy,
and in the near future their radiation may reach intensities of 1024 W cm−2 and
higher (Mourou et al. 2011). As a result, the laser–matter interaction will happen
in the radiation friction dominated regimes (Marklund & Shukla 2006; Mourou,
Tajima & Bulanov 2006; Di Piazza et al. 2012). In a strong electromagnetic field,
electrons can be accelerated to such high velocities that the radiation reaction starts

† Email address for correspondence: bulanov.sergei@qst.go.jp

https://doi.org/10.1017/S0022377817000186 Published online by Cambridge University Press

mailto:bulanov.sergei@qst.go.jp
https://doi.org/10.1017/S0022377817000186


2 S. V. Bulanov and others

to play an important role (Zel’dovich 1975; Zhidkov et al. 2002; Bulanov et al.
2004b; Di Piazza 2008; Harvey, Heinzl & Marklund 2011; Thomas et al. 2012;
Heinzl et al. 2015). The radiation friction effects change drastically the laser–plasma
interaction leading to fast energy losses (see Koga 2004; Koga, Esirkepov & Bulanov
2005, 2006) and to phase space contraction, as discussed in Tamburini et al. (2011).
Moreover, previously unexplored regimes of the interaction will be entered into, in
which quantum electrodynamics (QED) effects such as vacuum polarization, pair
production and cascade development can occur (Bell & Kirk 2008; Di Piazza et al.
2012).

An electromagnetic field intensity of the order of 1024 W cm−2 can be achieved
in the focus of a 1 µm wavelength laser of ten petawatt power. For 30 fs, i.e. for
a ten wave period duration, the laser pulse energy is approximately 300 J. Within
the framework of the multiple colliding laser pulses (MCLP) concept formulated in
Bulanov et al. (2010b) (see Bulanov et al. (2010a), Gonoskov et al. (2012, 2013),
Gelfer et al. (2015) for development of this idea), the laser radiation with given energy
Elas is subdivided into several beams each of them having 1/N of the laser energy,
where N is the number of beams. If the beams interfere in the focus in a constructive
way, i.e. their electric fields are summed, the resulting electric field and the laser
intensity are equal to EN =

√
NElas and IN = NIlas, respectively. Here Elas and Ilas are

the electric field and the intensity of the laser light. For a large number of beams there
is a diffraction constraint on the electric field amplitude in the focus region. In the
limit N→∞ the electromagnetic field can be approximated by the three-dimensional
dipole configurations (see Bulanov et al. 2010a) for which the electric field maximum
is given by (Bassett 1986)

Em = 8π

√
Plas

3cλ2
, (1.1)

where Plas, λ and c are the laser power, wavelength and speed of light in vacuum,
respectively.

Since the radiation friction and QED processes both depend on the particle’s
momentum, the strength of the present electromagnetic field and on their mutual
orientation, they are crucial in understanding the dynamics of charged particles in
an electromagnetic field in the regime of radiation dominance. Even in the simplest
MCLP case, two counter-propagating plane waves, the particle behaviour in the
standing wave is quite complicated. It demonstrates regular and chaotic motion,
random walk, limit circles and strange attractors as is shown by Mendonca (1983),
Bauer, Mulser & Steeb (1995), Sheng et al. (2002), Lehmann & Spatschek (2012,
2016), Gonoskov et al. (2014), Bashinov, Kim & Sergeev (2015), Bulanov et al.
(2015), Esirkepov et al. (2015), Jirka et al. (2016), Kirk (2016). As is well known,
the standing wave configuration is widely used in classical electrodynamics and in
QED theory. This is due to the fact that in the planes where the magnetic field
vanishes, the charged particle may be considered to be interacting with an oscillating
pure electric field. This provides great simplification of the theoretical description.
In addition, as has been noted above, in a standing wave formed by two colliding
laser pulses, the resulting electromagnetic (EM) field configuration facilitates QED
effects (see Bulanov et al. 2004a, 2006, 2010b). Computer simulations presented
in Gonoskov et al. (2016), Gong et al. (2017), Vranic et al. (2017) show that the
MCLP concept can be beneficial for realizing such important laser–matter interaction
regimes as, for example, the electron–positron pair production via the Breit–Wheeler
process (see Vranic et al. 2017) and the high efficiency γ -ray flash generation due
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to nonlinear Thomson or multi-photon Compton scattering, as shown in Gonoskov
et al. (2016), Gong et al. (2017). Another configuration for the generation of a γ -ray
flash is a single laser pulse irradiating an overdense plasma target (see Nakamura
et al. 2012; Ridgers et al. 2012; Corvan, Zepf & Sarri 2016; Levy et al. 2016). The
applications of the laser based γ -ray sources are reviewed in Gales et al. (2016). The
radiation friction effects on ion acceleration, on magnetic field self-generation and on
high-order harmonics in laser plasmas have been studied in Tamburini et al. (2010,
2011), Liseykina, Popruzhenko & Macchi (2016) and Tang, Kumar & Keitel (2016),
respectively.

It is not surprising that the dynamics of the electron interacting with three-, four-,
etc. colliding pulses is even more complicated and rich with novel patterns.

The present paper contains the theoretical analysis of the electron motion in
the standing EM wave generated by two, three and four colliding focused EM
pulses. The paper is organized as follows. In the next section we introduce the
notations used, describe the field configurations and equations of motion and present
the dimensionless parameters characterizing the charged particle interaction with
a high intensity EM field. Then, in § 3 we briefly recover the main features of the
electron motion in two counter-propagating plane waves. In § 4 we formulate a simple
theoretical model of the stabilization of the particle motion in the oscillating field
due to nonlinear dissipation effects, which explains the radiative electron trapping
revealed earlier in Gonoskov et al. (2012, 2013), Ji et al. (2014), Bulanov et al.
(2015), Esirkepov et al. (2015), Jirka et al. (2016), Kirk (2016). Section 5 relates to
the regular and chaotic electron motion in three s-polarized laser pulses. The radiating
electron dynamics in the four s- and p-polarized colliding EM pulses is discussed
in § 6. Section 7 summarizes the conclusions.

2. Field configurations, dimensionless parameters and equations of motion
2.1. N colliding EM waves

Consider N monochromatic plane waves in vacuum with the same frequencies ω0 and
equal amplitudes an. We assume that the wave vectors kn are in the (x, y) plane. The
wave vector of the nth wave is equal to

kn = k0[sin(θn)ex + cos(θn)ey], (2.1)

where k0 =ω0/c, θn = 2π(n− 1)/N, n= 1, 2, 3, . . . ,N and ex and ey are unit vectors
in the x and y directions.

It is convenient to describe the s-polarized EM waves with the electric field normal
to the (x, y) plane, i.e. E=Ezez with the unit vector ez along the z direction, in terms
of Ez(x, y, t) equal to

Ez = En

N∑
n=1

sin
{
ω0

[
t− sin(θn)x− cos(θn)y

c

]}
. (2.2)

Here the amplitude of the nth wave is En = E0/
√

N where E0 = Elas. The magnetic
field can be expressed by using Maxwell’s equations: (1/c)∂tBx = −∂yEz and
(1/c)∂tBy = ∂xEz.

In the case of p-polarized EM waves with the magnetic field normal to the (x, y)
plane, B= Bzez, the Bz field of colliding N pules is given by

Bz = Bn

N∑
n=1

cos
{
ω0

[
t− sin(θn)x− cos(θn)y

c

]}
(2.3)
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with Bn = Elas/
√

N and the electric field components expressed via Maxwell’s
equations as (1/c)∂tEx = ∂yBz and (1/c)∂tEy =−∂xEz, respectively.

2.2. Dimensionless parameters characterizing interaction of laser radiation with
charged particles

Introducing the normalized variables, we change the space and time coordinates to
x/λ→ x and tω/2π→ t.

The interaction of charged particles with intense EM fields is characterized by
several dimensionless and relativistic invariant parameters (Nikishov & Ritus 1964a;
Di Piazza et al. 2012; Bulanov et al. 2015).

The first parameter is

a= e
√

AµAµ

mec2
, (2.4)

where Aµ is the 4-potential of the electromagnetic field with µ= 0, 1, 2, 3, 4. Here and
below summation over repeating indexes is assumed. This parameter is relativistically
invariant for a plane EM wave. It is related to the wave normalized amplitude
introduced above. When it is equal to unity, i.e. the intensity of a linearly polarized
EM wave is IR= 1.37× 1018(1 µm/λ)2 W cm−2, the quiver electron motion becomes
relativistic.

The ratio, eE/meωc, the dimensionless EM field amplitude, measures the work in
units of mec2 produced by the field on an electron over the distance equal to the field
wavelength. Here, e and me are the charge and mass of an electron, E and ω are the
EM field strength and frequency and c is the speed of light.

The second dimensionless parameter is εrad:

εrad = 4πre

3λ
= 1.18× 10−8

(
1 µm
λ

)
, (2.5)

which is proportional to the ratio of the classical electron radius re= e2/mec2= 2.8×
10−13 cm to the laser radiation wavelength, λ. It essentially determines the strength of
the radiation reaction effects for an electron radiating an EM wave.

When one micron wavelength laser intensities exceed 1023 W cm−2, the nonlinear
quantum electrodynamics effects begin to play a significant role in laser plasma
interactions (e.g. see Bulanov et al. (2015) and literature cited therein). These
effects manifest themselves through multi-photon Compton and Breit–Wheeler effects
(Nikishov & Ritus 1964a,b; Ritus 1985) (see Narozhnyi & Fofanov (1996), Boca
& Florescu (2009), Ehlotzky, Krajewska & Kamiśki (2009), Heinzl, Ilderton &
Marklund (2010a), Heinzl, Seipt & Kämpfer (2010b), Mackenroth & Di Piazza
(2011), Krajewska & Kamiński (2012), Titov et al. (2012), Harvey, Heinzl & Ilderton
(2009) for recent studies), i.e. through either photon emission by an electron or
positron, or electron–positron pair production by a high energy photon, respectively.
The multi-photon Compton and Breit–Wheeler processes are characterized in terms
of two dimensionless relativistic and gauge invariant parameters (Nikishov & Ritus
1964a):

χe =
√|Fµνpν|2

ESmec
and χγ = λC

√|Fµνkν|2
ES

. (2.6a,b)

where pν and h̄kν denote the 4-momenta of an electron or positron undergoing the
Compton process and a photon undergoing the Breit–Wheeler process, the 4-tensor
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of the electromagnetic field is defined as Fµν = ∂µAν − ∂νAµ, with the critical QED
electric field

ES = m2
ec3

eh̄
. (2.7)

This field is also known as the ‘Schwinger field’ (Beresteskii, Lifshitz & Pitaevskii
1982). Its amplitude is approximately 1018 V cm−1, which corresponds to the radiation
intensity ≈1029 W cm−2. The work produced by the field ES on an electron over the
distance equal to the reduced Compton wavelength, λC = h̄/mec = 3.86 × 10−11 cm
equals mec2. Here h̄ is the reduced Planck constant.

In three-dimensional (3-D) notation the parameter χe given by (2.6) reads

χe = γe

ES

√(
E+ pe ×B

mecγe

)2

−
(

pe ·E
mecγe

)2

. (2.8)

For the parameter χγ defined by (2.6) we have

χγ = h̄
ESmec

√(ωγ
c

E+ kγ ×B
)2 − (kγ ·E)2

. (2.9)

Here γe, pe, ωγ and kγ correspond to the representation of the electron 4-momentum
pν and of the photon 4-wavenumber kν as pν = (γemec, p) and kν = (ωγ /c, kγ ),
respectively. The parameter χe can also be defined as the ratio of the electric field
to the critical electric field of quantum electrodynamics, ES, in the electron rest
frame. In particular, it characterizes the probability of the gamma–photon emission
by an electron with 4-momentum pν in the field of the electromagnetic wave, in the
Compton scattering process.

The parameter χγ characterizes the probability of electron–positron pair creation by
the photon with the momentum h̄kν interacting with a strong EM wave in the Breit–
Wheeler process.

The probabilities of the Compton scattering and of the Breit–Wheeler processes
depend strongly on χe and χγ , reaching optimal values when χe ∼ 1 and χγ ∼ 1
(Nikishov & Ritus 1964a).

In the case of an electron interaction with a plane EM wave propagating along the
x-axis with phase and group velocity equal to speed of light in vacuum the parameters
of the interaction can be written in terms of EM field strength, normalized by the QED
critical field given by (2.7), and either the electron γe-factor or the photon energy h̄ωγ :

χe = E
ES

(
γe − px

mec

)
(2.10)

and

χγ = E
ES

h̄(ωγ − kγ ,xc)
mec2

. (2.11)

For an electron interacting with the EM wave the linear combination of the electron
energy and momentum,

he = γe − px/mec, (2.12)

on the right-hand side of (2.10) is an integral of motion (Landau & Lifshitz 1982).
Its value is determined by initial conditions.
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(a) (b)

FIGURE 1. Regimes of electromagnetic field interaction with matter on the plane
of parameters: (a) the normalized EM wave amplitude aε1/3

rad and the parameter χe;
(b) accordingly the (ln(E/E∗), ln(ω/ω∗)) plane, where E∗ and ω∗ are given by (2.14)
and (2.15), respectively. The parameter planes are subdivided into 4 domains: (I) electron
– EM field interaction in the particle dominated radiation reaction domain; (II) electron
– EM field interaction is dominated by the radiation reaction; (III) electron – EM field
interaction is in the particle dominated QED regime; (IV) electron – EM field interaction
is in the radiation dominated QED regime.

If an electron/positron or a photon co-propagates with the EM wave, then
in the former case the parameter χe is suppressed by a factor (2γe,0)

−1, i.e.
χe ' (2γe,0)

−1(E/ES), where γe,0 is the electron gamma-factor before interaction with
the laser pulse. In the later case, when the gamma–photon co-propagates with the EM
wave, the parameter χγ is equal to zero, χγ = 0, because ωγ = kγ ,xc. On the contrary,
the parameter χe can be enhanced to approximately 2γe,0E/ES, when the electron
interacts with a counter-propagating laser pulse. Therefore the head-on collision
configuration has an apparent advantage for strengthening the electron–EM wave
interaction and, in particular, for enhancing the γ -ray production due to nonlinear
Thomson or/and Compton scattering.

Depending on the energy of charged particles and field strength the interaction
happens in one of the following regimes parametrized by the values of a, χe and χγ :

(i) a> 1, the relativistic interaction regime (Mourou et al. 2006);
(ii) a > ε

−1/3
rad , the interaction becomes radiation dominated (Zhidkov et al. 2002;

Bulanov et al. 2004b; Bashinov & Kim 2013);
(iii) χe >1 the quantum effects begin to manifest themselves (Di Piazza, Hatsagortsyan

& Keitel 2010; Bulanov et al. 2011a, 2015); and
(iv) χe > 1, χγ > 1 marks the condition for the EM avalanche (Bulanov et al.

2010a; Fedotov et al. 2010; Elkina et al. 2011; Nerush et al. 2011; Bulanov
et al. 2013), which is the phenomenon of exponential growth of the number of
electron–positrons and photons in the strong EM field, being able to develop.
These conditions can be supplemented by αa > 1, which indicates that the
number of photons emitted incoherently per laser period can be larger than unity
as has been noted by Di Piazza et al. (2010). Here the parameter εrad is given
by (2.5) and α = e2/h̄c≈ 1/137 is the fine structure constant.

As one can see two dimensionless parameters, a and χe, can be used to subdivide
the (a, χe) plane into four domains shown in figure 1(a) (see also Bulanov et al. 2015;
Bulanov 2017). The χe=1 line divides the plane into the radiation reaction description
of the interaction domain (χe< 1) and QED description of interaction domain (χe> 1).
The a= ε−1/3

rad line divides the plane into radiation dominated (a> ε−1/3
rad ) and particle

dominated (a < ε
−1/3
rad ) regimes of interaction domains. We note that the a = ε−1/3

rad
threshold comes from the requirement for an electron to emit the amount of energy
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per EM wave period equal to the energy gain from the EM wave during the wave
period. If one takes into account the discrete nature of the photon emission, then the
same condition will take the form a mec2 = h̄ωγ (λ/LR) (Ritus 1985), where LR is the
radiation length is of the order of 2λ/a for χe�1 and λγ 1/3

e /a2/3 for χe�1 (Nikishov
& Ritus 1964a,b; Bolotovskii & Voskresenskii 1966; Ritus 1985). This condition in
the limit χe→ 0 tends to the classical limit a= ε−1/3

rad .
The intersection point, where arad = ε−1/3

rad and the parameter χe is equal to unity,
determines critical values of the EM wave amplitude ~aa∗ with

a∗ =
(

3c
2reω∗

)1/3

= h̄c
e2
= 1
α
, (2.13)

i.e. the wave electric field is ~a~ωE∗, where

E∗ = ESα, (2.14)

and the wave frequency ~ωω∗ with ω∗ given by

ω∗ = e4me

h̄3 =
mec2

h̄α2
. (2.15)

Here α= 1/137 is the fine structure constant and ~a and ~ω are constants of the order
of unity. The normalized EM wave amplitude equals a∗ = 137 with corresponding
wave intensity I∗ = 2.6 × 1022 W cm−2. The corresponding photon energy is h̄ω∗ =
mec2/α2 ≈ 27 eV. We note that the value of a∗ = 1/α corresponds to one of the
conditions for the charged particle interaction with the EM field to be in the QED
regime, αa> 1 (see also Di Piazza et al. 2010).

Concrete values of the coefficients ~a and ~ω depend on the specific electromagnetic
configuration. For example, in the case of a rotating homogeneous electric field (which
can be formed in the antinodes of an electric field in the standing EM wave) analysed
in Bulanov et al. (2015), they are ~a = 3 and ~ω = 1/18, respectively, which gives
~aa∗= 411, with the intensity equal to 2.3× 1023 W cm−2, and ~ωh̄ω∗=mec2α2/18≈
1.5 eV.

Here we would like to attract attention to the relationship between the well-known
critical electric field of classical electrodynamics Ecr, the critical electric field of
quantum electrodynamics ES and the electric field E∗. They can be written as
Ecr= e/r2

e , ES= e/reλC and E∗≈ e/λ2
C, respectively. In other words we have ES=Ecrα

and E∗ = Ecrα
2.

Using the relationships obtained above we find that on the line aε1/3
rad = 1 the wave

electric field is proportional to the frequency in the 2/3 power, i.e. E/E∗= (ω/ω∗)2/3,
and on the line χe = 1 we have E/E∗ = (ω/ω∗)1/2.

Figure 1(b) shows the (ln(E/E∗), ln(ω/ω∗)) plane with 4 domains. The lines
intersect each other at the point (0, 0), i.e. at the point where E= E∗ and ω=ω∗.

2.3. Radiation friction force with the QED form factor
In order to describe the relativistic electron dynamics in the electromagnetic field we
shall use the equations of electron motion:

dp
dt
= e

(
E+ v

c
×B

)
+ Frad, (2.16)

dx
dt
= p

meγ
, (2.17)
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where the radiation friction force, Frad=Gef rad, is the product of the classical radiation
friction force, f rad, in the Landau–Lifshitz form (Landau & Lifshitz 1982):

f rad =
2e3

3mec3γ

{
∂t + (v∇)E+ 1

c
[v× (∂t + (v∇)B]

}
+ 2e4

3m2
ec4

{
E×B+ 1

c
[B× (B× v)+E(v ·E)]

}
− 2e4

3m2
ec5
γ 2v

{(
E+ 1

c
v×B

)2

− 1
c2
(v ·E)2

}
(2.18)

and a form factor Ge, which takes into account the quantum electrodynamics
weakening of the radiation friction (Sokolov, Klepikov & Ternov 1952; Schwinger
1954; Erber 1966; Beresteskii et al. 1982; Sokolov et al. 2010). Discussions of the
relationship between the Landau–Lifshitz and Lorentz–Abraham–Dirac forms of the
radiation friction force and what form of the force follows from the QED calculation,
can be found in Bulanov et al. (2011b), Ilderton & Torgrimsson (2013), Zhang (2013)
and in the literature cited therein.

As we have noted above, the threshold of the QED effects is determined by the
dimensionless parameter χe given by (2.8). For example, if an electron moves in the
magnetic field B, the parameter is equal to χe≈ γe(B/BS), where BS =m2

ec3/eh̄ is the
QED critical magnetic field (see also (2.7)). The energy of the emitted synchrotron
photons is

h̄ωγ =mec2γe
χe

2/3+ χe
. (2.19)

In the limit χe � 1 the frequency ωγ is equal to (3/2)ωBeγ
2
e in accordance with

classical electrodynamics (see Landau & Lifshitz 1982). Here ωBe = eB/mec is the
Larmor frequency. If χe� 1 the photon energy is equal to the energy of the radiating
electron: h̄ωγ =mec2γe.

The radiation friction force in the limit γe→∞, i.e. the last term on the right-hand
side of (2.18) retained, can be written in the following form (see also Sokolov et al.
(1952), Schwinger (1954), Erber (1966), Sokolov et al. (2010), Bulanov et al. (2015)
and literature cited therein)

f rad =−
2αcGe(χe)χ

2
e

3λC
p. (2.20)

Here the QED effects are incorporated into the equations of the electron motion by
using the form factor Ge(χe) (see Sokolov et al. 1952), which is equal to the ratio of
full radiation intensity to the intensity of the radiation emitted by a classical electron.
It reads

Ge(χe)= 3
4

∫ ∞
0

[
4+ 5χex3/2 + 4χ 2

e x3

(1+ χex3/2)4

]
Φ ′(x)x dx, (2.21)

where Φ(x) is the Airy function (Abramovitz & Stegun 1964). In (2.20) we neglect
the effects of the discrete nature of the photon emission in quantum electrodynamics
(see Duclous, Kirk & Bell 2011; Brady et al. 2012; Thomas et al. 2012; Bulanov
et al. 2013; Bashinov et al. 2015; Esirkepov et al. 2015; Jirka et al. 2016).
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In the limit χe� 1 the form factor G(χe) tends to unity as

Ge(χe) = 1− 55
√

3
16

χe + 48χ 2
e + · · ·

≈ 1− 5.95χe + 48χ 2
e + · · · . (2.22)

For χe� 1 it tends to zero as

Ge(χe) = 32π

27 35/6Γ (1/3)χ 4/3
e
− 1
χ 2

e

+ · · ·

≈ 0.5564

χ
4/3
e
− 1
χ 2

e

+ · · · . (2.23)

However, expression (2.21) and the asymptotical dependences (2.22) and (2.23) are
not convenient for implementation in computer codes. For the sake of calculation
simplicity we shall use the following approximation

GR(χe)≈ 1
(1+ 8.93χe + 2.41χ 2

e )
2/3
. (2.24)

Within the interval 0<χe < 10 the accuracy of this approximation is better than 1 %.

3. Electron motion in the standing EM wave formed by two counter-propagating
EM pulses

3.1. EM field configuration
An electron interaction with an EM field formed by two counter-propagating waves
has been addressed a number of times in high field theory using classical quantum
electrodynamics approaches because it provides one of the basic EM configurations
where important properties of a radiating electron can be revealed (e.g. see above
cited publications Mendonca 1983; Di Piazza et al. 2012; Lehmann & Spatschek 2012,
2016; Gonoskov et al. 2013, 2014; Bashinov et al. 2015; Bulanov et al. 2015; Chang
et al. 2015; Esirkepov et al. 2015; Lobet et al. 2015; Bashinov, Kumar & Kim 2016;
Grismayer et al. 2016; Jirka et al. 2016; Kirk 2016). Here, we present the results
of the analysis of electron motion in a standing EM wave in order to compare them
below with the radiating electron behaviour in a more complicated EM configuration
formed by three or four waves with various polarizations.

Here we consider an electron interaction with the electromagnetic field corre-
sponding to two counter-propagating linearly polarized waves of equal amplitude,
(a0/2) cos(t + x) and (a0/2) cos(t − x), forming a standing wave. The field is given
by the electromagnetic 4-potential

A= a0 cos t cos xez. (3.1)

This is a standing electromagnetic wave with zero magnetic and electric field nodes
located at the coordinates x = ±πn and x = ±π(n + 1/2) with n = 0, 1, 2, . . . ,
respectively.

Numerical integration of the electron motion equations with the radiation friction
force in the form (2.20) shows different features of the electron dynamics depending
on the electromagnetic wave amplitude and the dissipation parameter εrad.
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(a) (b)

(c) (d)

FIGURE 2. (a) Electron trajectories in the (x, z) plane for initial conditions: x(0)= 0.01,
z(0) = 0, px(0) = 0, pz(0) = 0. (b) Trajectory in the phase space x, px, pz; (c) electron
gamma-factor, γe, versus the coordinate x; (d) parameter χe versus the coordinate x, for the
same initial conditions. The electromagnetic field amplitude is a0= 617 and the dissipation
parameter is εrad = 1.2 × 10−8. The coordinates, time and momentum are measured in
2πc/ω, 2π/ω and mec units.

3.2. Relatively weak intensity limit
In the limit of relatively weak dissipation, which corresponds to domain I in
figure 1, the electron trajectory wanders in the phase space and in the coordinate
space as shown in figure 2. In this case the wave amplitude is a0 = 618. The
dissipation parameter equals εrad = 2 × 10−8. The normalized critical QED field is
aS = eES/meωc=mec2/h̄ω= 4× 105. The parameter values correspond to the vicinity
of the point (a/a∗ = 1, ω/ω∗ = 1) in figure 1(b). The integration time equals 75.

Figure 2 demonstrates a typical behaviour of the electron in the limit of relatively
low EM wave amplitude. Figure 2(a,b) shows that the electron performs a random-
walk-like motion for a long time, being intermittently trapped and untrapped in the
vicinities of the zero electric field nodes, where the electric field vanishes. For this
parameter choice the equilibrium trajectory at the electric field antinodes is unstable
according to Bulanov et al. (2010a) (see also Gong et al. 2016). The maximum value
of the electron gamma-factor, γe, whose dependence on the coordinate x is plotted
in figure 2(c), reaches 700. In an oscillating electric field of amplitude a = 618 it
would be equal to 618. The parameter χe (see figure 2d) changes between zero and
approximately 0.7, which corresponds, within an order of magnitude, to (a0/aS)γe.
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FIGURE 3. Electron coordinate z versus time for initial coordinates x(0)= 0.01–1, 0.2–2,
0.49–3, other parameters are the same as in figure 2.

FIGURE 4. The Poincaré sections showing the particle positions in the phase plane
(px, pz) at discrete times with the time step equal to the period of the driving force. The
parameters are the same as in figure 2 for x(0)= 0.01.

The particle coordinates z versus time in figure 3, for initial coordinates x(0)= 0.01–1,
0.2–2, 0.49–3 with other parameters the same as in figure 2, show its wandering
along the coordinate z. The particle over-leaping from one field period to another with
small-scale oscillations in between seen in figure 3 may correspond to Lévy flights
(see Lévy 1954; Metzler & Klafter 2000; Zaslavsky 2002; Metzler et al. 2007).

Figure 4 shows the Poincaré section for the motion of the particle with x(0)= 0.01
positions in the phase plane (px, pz) at discrete times with the time step equal to the
period of the driving force. The parameters are the same as in figure 2. The Poincaré
section demonstrates that this process is stochastic.

3.3. Random walk
Now we analyse the time dependence of the random walk, assuming that the particle
coordinates x(t) and z(t) are random variables, i.e. the particle displacement in the
(x, z) plane equal to r=√x2 + z2 is also a random variable. As is known in statistics
the behaviour of the random variable f is characterized by the expectation µ= E[ f ]
and variance σ 2 =Var[ f ] defined as

E[ f ] = lim
t→∞

1
t

∫ t

f (t) dt (3.2)

https://doi.org/10.1017/S0022377817000186 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000186


12 S. V. Bulanov and others

FIGURE 5. Dependences of Log(Var[r]/tq) on Log(t) for 0< q< 1.25 for the parameters
corresponding to figure 2.

and
Var[ f ] = E[( f − E[ f ])2]. (3.3)

The definition of an expectation in the form (3.2) implies that the probability density
function is taken to be a continuous uniform distribution equal to 1/t within the
interval [0, t]. We assume here that the ergodicity of the processes is expected.

If the random walk process is a Wiener process, which is also called ‘Brownian
motion’, the variance of the walker’s coordinate r(t) is proportional to time (e.g. see
Durrett 1991). To examine whether or not the random walk seen in figures 2 and 3
is a Wiener process we plot in figure 5 the dependences of Log(Var[r]/tq) on Log(t)
for 0< q< 1.75. For a Wiener process the parameter q should be equal to 1. As we
can see, in our case of a random walk process the variance is proportional to tq with
q≈ 1.

3.4. Moderate intensity regime
The situation qualitatively changes when the dissipation becomes more significant. In
figure 1 this corresponds to the domain II. This case is illustrated in figure 6, for
which the radiation friction parameter is εrad = 6× 10−9, the normalized critical QED
field is aS = 8 × 105 and the normalized laser field equals a0 = 778. In figure 6 we
present three trajectories for particles with initial conditions: x(0) = 0.01, z(0) = 0,
px(0)= 0, pz(0)= 0 (red); x(0)= 0.2, z(0)= 0, px(0)= 0, pz(0)= 0 (blue); x(0)= 0.49,
z(0)= 0, px(0)= 0, pz(0)= 0 (green). As seen in figure 6(a), where the trajectories in
the x, z plane are shown, independent of the initial position all three trajectories end
up in the vicinity of the plane x= 0.25. Here the EM wave electric field vanishes.

At the coordinate x= 0.25 the ponderomotive potential has a minimum. It is defined
as

Π(x)= 1
2π

∫ π

−π

(√
1+ A(x, t)2 − 1

)
dt (3.4)
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(a) (b)

(c) (d)

FIGURE 6. Electron motion in the standing EM wave for εrad= 6× 10−9, aS= 8× 105 and
a0= 778 for initial conditions: x(0)= 0.01, z(0)= 0, px(0)= 0, pz(0)= 0 (red); x(0)= 0.2,
z(0) = 0, px(0) = 0, pz(0) = 0 (blue); x(0) = 0.49, z(0) = 0, px(0) = 0, pz(0) = 0 (green).
(a) Trajectory in the x, z plane. Dashed line is the ponderomotive potential (3.4) versus the
x coordinate; (b) electron trajectories in the (x, px, pz) space. (c) Electron gamma-factor,
γe, versus the coordinate x. (d) Parameter χe versus the coordinate x, for the same initial
conditions.

with the vector potential A(x, t) given by (3.1). The dashed curve in figure 6(a)
presents the ponderomotive potential (3.4) dependence on the x coordinate. In
figure 6(b) electron trajectories in the (x, px, pz) space show the attractors, which
have been analysed in detail in Esirkepov et al. (2015) (see figure 7, where the
Poincaré section is presented for this case). Electron gamma-factor, γe, versus the
coordinate x presented in figure 6(c) correspond to the case when the dissipation limits
the particle energy, which does not exceed the value determined by the amplitude of
the EM wave being of the order of a. Since the parameter χe(x) plotted in figure 6(d)
is less than unity for all three trajectories, the equation of electron motion with the
radiation friction force is still valid for this parameter range.

In figure 7, we plot the Poincaré section for the particle with the same parameters
as in figure 6 for x(0)= 0.01. Here, the particle positions are in the phase plane (x, px)
at discrete times with the time step equal to the period of the driving force. The map
pattern corresponds to the stochastic regime developed in the particle motion.

3.5. High intensity regime
If we choose the parameters in a such the way that the dissipation becomes even
more significant, when we approach domain IV in figure 1, the particle behaviour
becomes counterintuitive, as can be seen in figure 8, for which the radiation friction
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FIGURE 7. The Poincaré sections showing the particle positions in the phase plane
(x, px) at discrete times with the time step equal to the period of the driving force. The
parameters are the same as in figure 6 for x(0)= 0.01.

parameter is εrad = 1.2 × 10−9, the normalized critical QED field is aS = 4 × 106

and the normalized laser field equals a0 = 1996. There we present three electron
trajectories for the same initial conditions as in figure 4: x(0) = 0.01, z(0) = 0,
px(0)= 0, pz(0)= 0 (red); x(0)= 0.2, z(0)= 0, px(0)= 0, pz(0)= 0 (blue); x(0)= 0.49,
z(0) = 0, px(0) = 0, pz(0) = 0 (green). Trajectories in the x, z plane (figure 6a)
are principally different depending on where the particle has been initially located.
For x(0) = 0.2 the trajectory remains in the vicinity of the ponderomotive potential
minimum similarly to the case discussed above (figure 6). The dashed line is the
ponderomotive potential (3.4) versus the x coordinate. In contrast, particles with
initial coordinates near the maximum of the ponderomotive potential are trapped
there (similar behaviour was noted in Gonoskov et al. (2014)).

In figure 8(b) the electron trajectories in the (x, px, pz) space show behaviour
typical for limit circles and attractors. The inset shows the zoomed trajectory for
x(0)= 0.2 corresponding to a strange attractor (Esirkepov et al. 2015). The trajectories
with x(0) = 0.01 and x(0) = 0.49 demonstrate regular limit circles. It follows from
figure 8(c) that the electron gamma-factor, γe, has a moderate value for the electron
trapped near the ponderomotive potential minimum (the inset shows zoomed γe(x) for
x(0)= 0.2), and the particles are efficiently accelerated when they are trapped in the
region at the ponderomotive potential maximum. For the parameters chosen, χe(x)
plotted in figure 8(d) remains less than unity for all three trajectories, i.e. the QED
effects are finite but relatively weak.

In figure 9, we plot the Poincaré section showing the particle with x(0) = 0.49
position in the phase plane (x, px) at discrete times with the time step equal to the
period of the driving force. The parameters are the same as in figure 8 for x(0)= 0.49.
Although the map pattern is complicated it does not contain curve broadening, i.e.
does not indicate a stochastic regime of the particle motion.

In the next section we discuss the mechanism of dissipative particle trapping in
the vicinity of the ponderomotive potential maximum which can explain the observed
effects (see also Fedotov et al. 2014 and Esirkepov & Bulanov 2017).

4. Simple model of the stabilization of the particle motion in an oscillating field
due to the nonlinear friction
Let us consider a particle motion in a fast oscillating field in a way similar to

Landau & Lifshitz (1976). As in Landau & Lifshitz (1976) for the sake of simplicity
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(a) (b)

(c) (d)

FIGURE 8. Electron motion in the standing EM wave for εrad = 1.2× 10−9, aS = 4× 106,
a= 1996 for initial conditions: x(0)= 0.01, z(0)= 0, px(0)= 0, pz(0)= 0 (red); x(0)= 0.2,
z(0) = 0, px(0) = 0, pz(0) = 0 (blue); x(0) = 0.49, z(0) = 0, px(0) = 0, pz(0) = 0 (green).
(a) Trajectory in the x, z plane. Inset shows zoomed trajectory for x(0)= 0.2. Dashed line
is the ponderomotive potential (3.4) versus the x coordinate; (b) electron trajectories in the
(x, px, pz) space. Inset shows zoomed trajectory for x(0)= 0.2 corresponding to a strange
attractor (Esirkepov et al. 2015). (c) Electron gamma-factor, γe, versus the coordinate x.
Inset shows zoomed γe(x) for x(0) = 0.2. (d) Parameter χe versus the coordinate x, for
the same initial conditions.

of calculations we assume non-relativistic electron motion in one dimension, where
the force acting on the particle depends on the coordinate x and time t. In contrast
to the consideration in Landau & Lifshitz (1976), we take into account the effects of
the friction. The equation of particle motion is

ẍ+ κ(F)ẋ= F. (4.1)

Here a dot stands for the time derivative and κ(F) is the friction coefficient. It is
assumed to depend on the rapidly oscillating driving force,

F(x, t)= f1(x) cosωt+ f2(x) sinωt. (4.2)

We seek a solution of (4.1), assuming that it can be written as a sum of two parts,

x(t)= X(t)+ ξ(t), (4.3)

where X(t) slowly varies with time and ξ(t) is a small fast oscillating periodic
function, |ξ | � |X|.
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FIGURE 9. The Poincaré sections showing the particle positions in the phase plane
(x, px) at discrete times with the time step equal to the period of the driving force. The
parameters are the same as in figure 8 for x(0)= 0.49.

We also assume that the time average of the function ξ(t) over the oscillation period
2π/ω is zero. Introducing the notation

〈x〉 = ω

2π

∫ 2π/ω

0
x(t) dt, (4.4)

we obtain
〈ξ〉 = 〈ξ̇〉 = 〈ξ̈〉 = 0. (4.5)

Therefore, we have 〈x〉=X(t), i.e. the function X(t) describes the slow particle motion
averaged over the fast oscillations, 〈X〉 ≈ X(t).

Substituting (4.3) into the equation of particle motion (4.1) and expanding the
functions κ(x, t) and F(x, t) in powers of ξ , i.e. writing κ(x, t)≈ κ(X, t)+ ξ∂Xκ(X, t)
and F(x, t)≈ F(X, t)+ ξ∂XF(X, t), we obtain

Ẍ + ξ̈ + κẊ + κξ̇ + ξ Ẋ∂Xκ + ξ ξ̇∂Xκ = F+ ξ∂XF, (4.6)

where ∂X is the partial derivative with respect to the first argument of functions κ(X, t)
and F(X, t). This equation contains slowly varying and fast oscillating terms, which
apparently should be separately equal to each other. In the zeroth-order approximation
with respect to small function ξ and the time derivatives of the slow function X, we
find the equation for the fast oscillating term

ξ̈ + κξ̇ = F. (4.7)

Here we neglect the terms proportional to ξ . The time derivatives ξ̈ and ξ̇ are not
small, being proportional to ω2 and ω, respectively. They are assumed to be much
greater than Ẍ and Ẋ. The friction coefficient κ is not necessarily small.

Integration of (4.7), assuming X to be constant, yields

ξ = ξ0 +
∫ t

0
dτ
[

e−K(X,τ )ξ̇0 +
∫ τ

0
eK(X,τ ′)−K(X,τ )F(X, τ ′) dτ ′

]
, (4.8)

K(X, t)=
∫ t

0
κ(X, τ ) dτ . (4.9)
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Assuming that K(X, t) can be approximated by K(X, t)≈ 〈κ〉t, where 〈κ〉 is the time-
averaged friction coefficient, in the limit t� 1/〈κ〉 we obtain

ξ = (〈κ〉f1 −ωf2) sinωt− (〈κ〉f1 +ωf2) cosωt
ω(〈κ〉2 +ω2)

= − 1
〈κ〉2 +ω2

(
F+ 〈κ〉

ω2
∂tF
)
, (4.10)

with ∂tF = ∂F(X, t)/∂t|X=const. Here we assume the initial condition ξ0 = −( f2 +
ωξ̇0)/(〈κ〉ω).

Averaging (4.6) over time and taking into account that 〈F(X, t)〉 ≈ 0 for nearly
constant X(t), we obtain

Ẍ + (〈κ〉 + 〈ξ∂Xκ〉)Ẋ = 〈ξ∂XF〉 − 〈ξ ξ̇∂Xκ〉. (4.11)

Substituting expression (4.10) into the right-hand side of (4.11), for the first term
we obtain

〈ξ∂XF〉 =− ∂X( f 2
1 + f 2

2 )

4(〈κ〉2 +ω2)
− 〈κ〉( f2∂Xf1 − f1∂Xf2)

2ω(〈κ〉2 +ω2)
. (4.12)

The first term on the right-hand side of (4.12) is the well-known ponderomotive
force (Landau & Lifshitz 1976) where the friction effect is taken into account. The last
term on the right-hand side, proportional to the friction coefficient, can change signs
for f2∂Xf1 6= f1∂Xf2 depending on whether f2∂Xf1 > f1∂Xf2 or f2∂Xf1 < f1∂Xf2. It vanishes
if f2∂Xf1 = f1∂Xf2, f1 6= 0, f2 = 0 or f2 6= 0, f1 = 0.

The actual form of the last term on the right-hand side of (4.11) is determined
by the specific dependence of the friction coefficient κ on the driver force. As an
example, we consider the case when this dependence is quadratic, i.e. κ = νF2, with
a constant ν. Then we obtain

−〈ξ ξ̇∂Xκ〉 = ν〈κ〉∂X( f 2
1 + f 2

2 )
2

8(〈κ〉2 +ω2)2
+ ν(〈κ〉

2 −ω2)( f 2
1 + f 2

2 )( f2∂Xf1 − f1∂Xf2)

4ω(〈κ〉2 +ω2)2
(4.13)

and the time-averaged friction coefficient becomes 〈κ〉 = ν( f 2
1 + f 2

2 )/2. In addition,
〈ξ∂Xκ〉 = 0.

For the sake of simplicity we further assume that f2= 0 in expression (4.2) for the
driver force. Then, (4.12) and (4.13) are simplified and we finally obtain the equation
for the slowly varying function X(t):

Ẍ + νf 2
1

2
Ẋ =− ∂Xf 2

1

ν2f 4
1 + 4ω2

+ 2ν2∂Xf 6
1

3(ν2f 4
1 + 4ω2)2

. (4.14)

The first term on the right-hand side corresponds to the ponderomotive force, the last
term is the drag force induced by the friction.

As we can see, the ponderomotive force (4.12) and the drag force due to the
friction (4.13) have different signs in (4.14). If |ν| > 2ω/f 2

1 , the drag force exceeds
in magnitude the ponderomotive force.

Numerical integration of the equation of motion (4.1) with

F(x, t)= f0 exp(−(x/l0)
2) cosωt and κ = νF2 (4.15a,b)
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(a) (b)

(c) (d)

FIGURE 10. The solutions of (4.1) in the case of relatively weak driver force (a,b),
and for the case of relatively strong driver force (c,d). (a,c) Dependence of the particle
coordinate on time. (b,d) The particle trajectory in the phase plane (x, ẋ).

reveals the main features of the behaviour predicted within the framework of the
simple model approximation. The solutions for the cases of relatively weak and
relatively strong driver force are plotted in figure 10. The parameters are as follows.
The driver frequency and the friction coefficient values are ω = 1 and ν = 0.1,
respectively. The driver width equals l0 = 5. The initial coordinate and velocity are
x0 = 3 and ẋ0 = 1 in both cases. The driver amplitude is equal to f0 = 5

√
2ω/ν

in the case of the weak driver and is equal to f0 = 15
√

2ω/ν in the case of the
strong driver. As we see in figure 10(a,b), in the case of weak nonlinearity, the
particle being pushed outwards by the ponderomotive force having performed several
oscillations leaves the region where the driver force is localized. In contrast, in the
limit of strong nonlinearity, the friction drag force prevents the particle from leaving
the driver localization region resulting in its slow drift inwards (figure 10c,d).

On a trajectory corresponding to a quasi-periodic particle motion seen in figure 10,
the particle feels an almost constant driving force. This situation can be described in
the approximation

F(x, t)= f0 cosωt, κ = νf 2
0 cos2 ωt. (4.16a,b)

Substituting this driving force and friction coefficient into (4.1), we change variables
to (τ , y(τ )), t= τ/ω, x(t)= ( f0/ω

2)y(τ ) and introduce the constant

σ = νf 2
0 /ω. (4.17)

Thus, we obtain
y′′(τ )+ σ cos2(τ )y′(τ )= cos τ . (4.18)
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Here a prime denotes a differentiation with respect to the variable τ . Using (4.9) and
the generating function for the modified Bessel functions of the first kind, Ik, one can
cast the general solution to (4.18) in the form

y′(τ )= exp
(
−στ

2
− σ

4
sin(2τ)

)
[y′(0)− YLC(0)] + YLC(τ ), (4.19)

where the function YLC(τ ) is given by

YLC(τ ) = exp
(
−σ

4
sin(2τ)

) ∞∑
k=−∞

(−i)k+1Ik

(σ
4

)
×
{

exp[i(2k− 1)τ ]
4k− 2− iσ

+ exp[i(2k+ 1)τ ]
4k+ 2− iσ

}
. (4.20)

As one can see, any solution at τ →∞ tends to the limit cycle described by the
function YLC and determined by the constant y′(0)= YLC(0).

The function describing the limit cycle, (4.20), can be represented as a Fourier
series in terms of odd harmonics of the driving force frequency

YLC(τ )=
∞∑

n=1

[exp(i(2n− 1)τ )Cn(σ )+ exp(−i(2n− 1)τ )C1−n(σ )] (4.21)

with

Cn(σ )= in
∞∑

k=−∞

(−1)k+1

4k+ 2− iσ

[
Ik

(σ
4

)
− iIk+1

(σ
4

)]
Ik+1−n

(σ
4

)
. (4.22)

This gives the spectrum of the limit cycle trajectory. For the particle velocity
(corresponding to y′(τ )), the spectral density is |2Cn(σ )|2, figure 11.

We believe that the approach formulated above towards dissipative stabilization of
nonlinear dynamics systems will be useful for applications well beyond the framework
of laser–matter interaction physics, remembering a saying of William Thomson (Lord
Kelvin) ‘I never satisfy myself until I can make a mechanical model of a thing’ (see
Thomson 1884).

5. Regular and chaotic electron motion in three s- and p-polarized colliding laser
pulses

5.1. EM field configuration
Let us consider three s(p)-polarized waves, in which the z-component of the electric
(magnetic) field is given by(

Ez

Bz

)
=− 1√

3

(
E0

B0

){
sin
[
ω0

(
t+ y

c

)]
+ 2 sin

[
ω0

(
t− y

2c

)]
cos

(
ω0

√
3x

2c

)}
. (5.1)

The x and y components of the magnetic (electric) field of the s(p)-polarized wave
are(

Bx

Ex

)
= 1√

3

(
E0

−B0

){
−sin

[
ω0

(
t+ y

c

)]
+ sin

[
ω0

(
t− y

2c

)]
cos

(
ω0

√
3x

2c

)}
(5.2)
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FIGURE 11. The spectral density of the particle velocity for several harmonics of the
driving force frequency as a function of the friction parameter σ .

FIGURE 12. Wave vectors of three colliding waves.

and (
By

Ey

)
= 1√

3

(
E0

−B0

)
cos
[
ω0

(
t− y

2c

)]
sin

(
ω0

√
3x

2c

)
. (5.3)

The wave orientation is illustrated in figure 12. As an example in figure 13(a)
we show the magnetic (electric) field Bn = Bxex + Byey (En = Exex + Eyey) and in
figure 13(b) the isocontours of the electric (magnetic) field Ez (Bz) in the (x, y) plane
at time t=π/4 for the case of three colliding s-polarized (p-polarized) EM waves.

5.2. Electron interaction with three s-polarized EM waves
5.2.1. Particular solutions

Due to the symmetry of the EM field given by (5.2), (5.3), there are particular
solutions of the equations of motion, when the particle moves straight in the (x, y)
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(a) (b)

FIGURE 13. Three s-polarized (p-polarized) EM waves: (a) magnetic (electric) field;
(b) isocontours of the electric (magnetic) field in the (x, y) plane at time t=π/4.

plane along the direction of one of the waves propagation. If we let x = 0 in (5.2),
(5.3), the electromagnetic field formally corresponds to a superposition of two EM
waves one of which propagates with the velocity equal to −c and another has the
velocity 2c.

The integration of the equations of electron motion yields the particle trajectories
presented in figure 14 for initial conditions: x(0)= 0, y(0)= 0.05, z(0)= 0, px(0)= 0,
py(0)= 0, pz(0)= 0. The normalized electromagnetic field amplitude is a0= 436 (each
of the colliding waves has the amplitude equal to a0/3), the dissipation parameter
is εrad = 1.2 × 10−8 and the normalized critical QED field is aS = 4 × 105. The
electron trajectory in the (y, z) plane plotted in figure 14(a) and the trajectory in the
phase (y, pz) plane shown in figure 14(b) look similar to the trajectories presented
in figure 2(a,b). The particle is trapped for a finite time within the EM field period
performing relatively small-scale oscillations. Then, after some time it over-leaps
to the next EM field period. This is also clearly seen in figure 14(c), where its
y-coordinate is plotted versus time. From the Poincaré sections in figure 14(d), which
show the particle positions in the phase plane (pz, py) at discrete times with the
time step equal to the period of the driving force, we may see that this process is
stochastic. The particle over-leaping from one field period to another with small-scale
oscillations in between (see figures 2, 3 and 14) may be interpreted in terms of Lévy
flights (Lévy 1954; Metzler & Klafter 2000; Zaslavsky 2002; Metzler et al. 2007).

The case of high laser amplitude is presented in figure 15 for initial conditions:
x(0) = 0, y(0) = −0.0001, z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0. The normalized
electromagnetic field amplitude is a0 = 4700 (each of the colliding waves has the
amplitude equal to a0/3), the dissipation parameter is εrad = 1.2 × 10−9 and the
normalized critical QED field is aS = 4 × 106. The electron trajectory in the (y, z)
plane plotted in figure 15(a) and the trajectory in the phase (y, py) plane shown
in figure 15(b) clearly demonstrate the particle trapping in the limit circle after an
initial phase corresponding to the particle motion in the vicinity of the electric field
node, y = 0. Since the motion here is unstable, the particle leaves this region. This
is also distinctly seen in figure 15(d) showing the electron trajectory in the (py, pz)

plane. In the plane (y, z) (figure 15a) as we see, when the particle moves along the
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(a) (b)

(c) (d)

FIGURE 14. (a) Electron trajectory in the (y, z) plane for initial conditions: x(0) = 0,
y(0)= 0.05, z(0)= 0, px(0)= 0, py(0)= 0, pz(0)= 0. (b) Trajectory in the phase (y, pz)
plane; (c) electron y-coordinate versus time; (d) the Poincaré sections showing the particle
positions in the phase plane (pz, py) at discrete times with the time step equal to the
period of the driving force. The electromagnetic field amplitude is a0=436, the dissipation
parameter is εrad = 1.2× 10−8 and the normalized critical QED field is aS = 4× 105. The
coordinates, time and momentum are measured in 2πc/ω, 2π/ω and mec units.

limit circle, its trajectory has the ‘figure eight’ form. It performs regular oscillations
(see figure 15c, where the particle coordinate y is plotted versus time) with the double
frequency for oscillations along the y axis compared with the frequency of oscillation
along the z axis.

5.2.2. Random walk and regular patterns of the particle trajectories in the field of
three 3 s-polarized EM waves

Results of the integration of the motion equations for the electron interacting
with three 3 s-polarized EM waves in the limit of relatively low radiation intensity
are presented in figure 16. Figure 16(a) shows 8 electron trajectories in the (x, y)
plane for initial conditions: x(0) and y(0) are in the vicinity of the coordinate
origin, and z(0)= 0, px(0)= 0, py(0)= 0, pz(0)= 0. In figure 16(b) we plot a close
up of the trajectories in the vicinity of the coordinate origin superimposed with
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(a) (b)

(c) (d)

FIGURE 15. (a) Electron trajectory in the (y, z) plane for initial conditions: x(0) = 0,
y(0) = −0.0001, z(0) = 0, px(0) = 0, py(0) = 0, pz(0) = 0. (b) Trajectory in the phase
plane (y, py); (c) electron y-coordinate versus time; (d) electron trajectory in the (py, pz)
plane. The electromagnetic field amplitude is a0= 4700, the dissipation parameter is εrad=
1.2× 10−9 and the normalized critical QED field is aS = 4× 106. The coordinates, time
and momentum are measured in 2πc/ω, 2π/ω and mec units.

the isocontours of the electromagnetic potential averaged over a half-period of the
field oscillations. It is proportional to the ponderomotive potential in the high field
amplitude limit, a0 � 1. As we see the typical trajectories are comprised of long
range Lévy-flight-like excursions and short range rambling motion, which changes
the direction of succeeding flight. The combination of the long range excursions and
short range rambling is also seen in the dependence of the electron y coordinate on
time in figure 16(d). The corresponding particle trajectory in the px, py, pz momentum
space for x(0) = −0.125 and y(0) = 0.125 is presented in figure 16(c). What is
remarkable is that during the Lévy-like flights the electron moves almost along one
of the three waves propagation direction (compare figures 12 and 16a). This stage of
the particle motion can be described by the particular solution analysed above and
illustrated in figure 14.
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(a) (b)

(c) (d)

FIGURE 16. (a) Eight electron trajectories in the (x, y) plane for initial conditions:
x(0) and y(0) are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0,
py(0) = 0, pz(0) = 0. (b) Close up of the trajectories in the vicinity of the coordinate
origin. (c) Electron trajectory in the px, py, pz space for x(0) = −0.125 and y(0) =
0.125. (d) Electron y coordinate versus time for x(0) = −0.125 and y(0) = 0.125. The
electromagnetic field amplitude is a0 = 756, the dissipation parameter is εrad = 1.2 ×
10−8 and the normalized critical QED field is aS = 4 × 105. The coordinates, time and
momentum are measured in 2πc/ω, 2π/ω and mec units.

Qualitatively different patterns formed by the trajectories of particles interacting
with the field of three 3 s-polarized EM waves are observed in the high intensity
and low frequency limit. These patterns are shown in figure 17(a) and in figure 17(b)
presenting a close up of the trajectories in the vicinity of the coordinate origin,
where the trajectories in the (x, y) plane of an electron ensemble make a tracery
strikingly remeniscent of parquetry or window frost. Either an individual trajectory or
the ensemble appears to be confined in the lower measure sub-domain periodic in the
x and y directions. In figure 17(c) the electron trajectory in the px, py, pz momentum
space for x(0) = −0.125 and y(0) = 0.125 demonstrates that the particle energy
remains finite. The electron y coordinate dependence on time for x(0)=−0.001 and
y(0) = −0.001 plotted in figure 17(c) shows that the particle motion is comprised
of relatively long over-leaps interlaced with small-scale oscillations. In figure 17(e)
we present the corresponding Poincaŕe sections, i.e. we plot the particle positions
in the phase plane (px, py) at discrete times with the time step equal to the period
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(a) (b)

(e)

(c) (d)

FIGURE 17. (a) Ensemble of electron trajectories in the (x, y) plane for initial conditions:
x(0) and y(0) are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0,
py(0) = 0, pz(0) = 0. (b) Close up of the trajectories in the vicinity of the coordinate
origin. (c) Electron trajectory in the px, py, pz space for x(0)=−0.125 and y(0)= 0.125.
(d) Electron y coordinate versus time for x(0) = −0.001 and y(0) = −0.001. (e) The
Poincaŕe sections: the particle positions in the phase plane (px, py) at discrete times with
the time step equal to the period of the driving force. The electromagnetic field amplitude
is a0= 4764, the dissipation parameter is εrad = 6× 10−9 and the normalized critical QED
field is aS= 8× 105. The coordinates, time and momentum are measured in 2πc/ω, 2π/ω
and mec units. The integration time equals 200× 2π/ω.

of the driving force. The Poincaŕe sections, in this case, indicate that the particle
motion is pretty regular. Here the parameters of the EM field and of the electrons
are as follows. The electromagnetic field amplitude is a0 = 4764 (the amplitude of
each colliding wave is equal to 1588), the dissipation parameter is εrad = 6 × 10−9

and the normalized critical QED field is aS= 8× 105, which corresponds to the wave
frequency a factor two smaller than in the case shown in figure 16. The integration
time equals 200× 2π/ω.
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FIGURE 18. Trajectory of the electron migrating over a long time in the (x, y) plane.

5.2.3. Ergodization or not?
The attractor trajectory pattern in figure 17(a,b) is made by an ensemble of

electrons. The single electron trajectory shown in figure 18 demonstrates that, having
been moving for a long enough time, it could cover the whole attractor. In view
of this, there are two questions. The first one being whether there is an analogy
of the ergodic hypothesis saying that over long periods of time, the time spent in
some region of the attractor is proportional to the attractor measure? The second one
being whether there is an analogy of the Poincaré recurrence theorem (for details see
Arnol’d 1989) saying that the particle, after a sufficiently long but finite time, returns
to a point very close to the initial point? A similar question occurs in the case of
the particle random walk regarding whether the results of the well-known random
walk theory (Kac 1961) can be used in our case. In both the regular and stochastic
regimes the methods developed in turbulence theory (see Mathur et al. 2007; Peacock
& Haller 2013) can be used for analysing and identifying the attractors and repelling
trajectories.

5.3. Electron interaction with three p-polarized EM waves
In the case of three p-polarized EM waves the EM configuration is described by
(5.1)–(5.3). As in the s-polarization case, in the limit of relatively low EM wave
intensity the electron performs the random walk motion comprised of short scale-
length oscillations interleaved by long scale-length Lévy-like flights. An example of
such the trajectory is shown in figure 19(a) for the EM field amplitude of a0= 4764,
the dissipation parameter of εrad = 6× 10−9 and the normalized critical QED field of
aS = 8 × 105. For the high intensity EM wave case the electrons migrate along the
paths confined in narrow valleys, as can be seen in figure 19(b), where the ensemble
of the electron trajectories is plotted for the EM field amplitude of 7.2 × 103, the
dissipation parameter of εrad = 1.2 × 10−8 and the normalized critical QED field of
aS = 4.1× 105.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 19. (a) Ensemble of electron trajectories in the (x, y) plane for initial conditions:
x(0) and y(0) are in the vicinity of the coordinate origin, and z(0)=0, px(0)=0, py(0)=0,
pz(0) = 0. (b) Electron trajectories in the (px, py) plane. (c) The Poincaŕe sections: the
particle positions in the phase plane (px, py) at discrete times with the time step equal
to the period of the driving force. The electromagnetic field amplitude is a0 = 1383, the
dissipation parameter is εrad = 1.2 × 10−6 and the normalized critical QED field is aS =
4.1 × 105. (d) Ensemble of electron trajectories in the (x, y) plane for initial conditions:
x(0) and y(0) are in the vicinity of the coordinate origin, and z(0)=0, px(0)=0, py(0)=0,
pz(0) = 0. (e) Electron trajectories in the (px, py) plane. ( f ) The Poincaŕe sections: the
particle positions in the phase plane (px, py) at discrete times with the time step equal
to the period of the driving force. The electromagnetic field amplitude is a0 = 7.2× 103,
the dissipation parameter is εrad = 1.2 × 10−8 and the normalized critical QED field is
aS = 4.1× 105.

6. Electron dynamics in four s- and p-polarized colliding EM pulses

The orientation of four colliding waves is illustrated in figure 20. Figure 21(a)
shows magnetic (electric) field and (b) isocontours of the electric (magnetic) field in
the (x, y) plane at time t=π/4 of four s-polarized (p-polarized) colliding EM waves.

6.1. S-polarized 4 colliding EM waves
6.1.1. EM field configuration

In the EM configuration of four colliding s(p)-polarized waves the z-components of
the electric (magnetic) field can be written

(
Ez
Bz

)
=
(

E0
B0

)
2 sin(ω0t)

[
cos
(
ω0

x
c

)
+ cos

(
ω0

y
c

)]
. (6.1)
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FIGURE 20. Wave vectors of four colliding EM waves.

(a) (b)

FIGURE 21. Four s-polarized (p-polarized) EM waves: (a) magnetic (electric) field;
(b) isocontours of the electric (magnetic) field in the (x, y) plane at time t=π/4.

The x and y components of the magnetic (electric) field of the four colliding s(p)-
polarized waves are given by(

Bx
Ex

)
=
(−E0

B0

)
2 cos(ω0t) sin

(
ω0

y
c

)
(6.2)

and (
By
Ey

)
=
(

E0
−B0

)
2 cos(ω0t) sin

(
ω0

x
c

)
, (6.3)

respectively.

6.1.2. Particular solutions
As in the above considered case of three s-polarized EM waves the equations of

electron motion admit particular solutions, in the first of which the particle moves
either along one of the axis, i.e. x= ncπ/ω or y= ncπ/ω with n= 0,±1,±2, . . . ,
and in the second it moves along straight lines x=±y+ ncπ/ω.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 22. Electron trajectories in the case of the first type particular solution
corresponding to the motion along the y axis (at x = 0) in the field of four colliding
EM waves for εrad = 1.2 × 10−9, aS = 4 × 106, a = 94, ω = 0.1 for initial conditions:
y(0) = 0.01, z(0) = 0, py(0) = 0, pz(0) = 0 (red, −1); y(0) = 0.23, z(0) = 0, py(0) = 0,
pz(0)=0 (blue, −2); y(0)=0.45, z(0)=0, px(0)=0, pz(0)=0 (green, −3). (a) Trajectories
in the (y, z) plane. (b) Dependences of the y coordinates on time. (c) The Poincaŕe
sections: the particle positions in the phase plane (py, pz) at discrete times with the
time step equal to the period of the driving force. For lower frequency, ω = 0.02, when
εrad = 2.4× 10−10, aS = 2× 107, a0 = 8× 103, they are shown (d) trajectories in the (y, z)
plane, (e) dependences of the y coordinates on time and ( f ) trajectories in the (y, py, pz)
space for the same initial conditions as in the panels (a–c).

First type solution. For the first class of particular solutions with x= ncπ/ω (without
loss of generality we may take n= 0, i.e. consider x= 0), formally the particle moves
in a superposition of the fields of two counter-propagating s-polarized EM waves
and a homogeneous oscillating electric field directed along the z axis. As in the
above considered cases of two and three colliding EM waves, in the limit of weak
nonlinearity and dissipation (εrad = 1.2 × 10−9, aS = 4 × 106, a = 94, ω = 0.1, for
initial conditions: y(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red, −1); y(0) = 0.23,
z(0)= 0, px(0)= 0, pz(0)= 0 (blue, −2); y(0)= 0.45, z(0)= 0, px(0)= 0, pz(0)= 0
(green, −3)) the particle motion can be described as a random walk, for which the
trajectories consist of the relatively small amplitude fast oscillating parts and of the
long scale-length Lévy flights (see figure 22a,b). The Poincaŕe sections, the particle
positions in the phase plane (py, pz) at discrete times with the time step equal to the
period of the driving force, presented in figure 22(c), show that the electron motion
is stochastic.

In the case of lower frequency, ω = 0.02, and higher dimensionless EM field
amplitude a= 8× 103, when εrad = 2.4× 10−10, aS = 2× 107, a0 = 8× 103, ω= 0.02,
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(a) (b) (c)

(d) (e) ( f )

FIGURE 23. Electron trajectories in the case of the second type particular solution
corresponding to the motion along the x = y direction in the field of four colliding EM
waves for εrad = 1.2× 10−8, aS= 4× 105, a0= 44, ω= 1 for initial conditions: x(0)= 0.01,
z(0) = 0, px(0) = 0, pz(0) = 0 (red, −1); x(0) = 0.23, z(0) = 0, px(0) = 0, pz(0) = 0
(blue, −2); x(0)= 0.45, z(0)= 0, px(0)= 0, pz(0)= 0 (green, −3). (a) Trajectories in the
(s, z) plane. (b) Dependences of the s coordinates on time. (c) Trajectories in the (s, ps, pz)
space. (d) The particle Lorentz factor γ versus time. (e) Parameter χ versus time. ( f ) The
Poincaŕe sections: the particle positions in the phase plane (ps, pz) at discrete times with
the time step equal to the period of the driving force.

the electron trajectories in the the (y, z) plane (see figure 22d) show that the particles
are trapped within narrow regions moving along regular limit circles (figure 22e).
The attractor geometry is distinctly seen in figure 22( f ), where the trajectories in the
(y,py,pz) space are presented. As well seen, after a relatively short initial time interval
the particles are trapped into stable limit circles performing periodic motion. We note
that for the parameters chosen although the particle energy is ultrarelativistic the
value of χe remains below unity, i.e. the QED effect of the recoil is not significant.

Second type solution. The particle behaviour under the conditions corresponding to the
second class of particular solutions of the equations of motion (x= y) is illustrated in
figures 23 and 24. Here the coordinate s(t) is equal to s= x= y.

In figure 23 we present electron trajectories in the case corresponding to the motion
along the x= y direction in the field of four colliding EM waves for εrad= 1.2× 10−8,
aS = 4 × 105, a0 = 44, ω = 1 for initial conditions: x(0) = 0.01, z(0) = 0, px(0) = 0,
pz(0)= 0 (red, −1); x(0)= 0.23, z(0)= 0, px(0)= 0, pz(0)= 0 (blue, −2); x(0)= 0.45,
z(0)= 0, px(0)= 0, pz(0)= 0 (green, −3). Figure 23(a) shows electron trajectories in
the (s, z) plane, which demonstrate random walks with intermittent short scale-length
oscillations and long range Lévy flights. The same behaviour is distinctly seen
in figure 23(b) with three dependences of the s coordinates on time. Stochastic
character of the particle motion is demonstrated in figure 23(b, f ) by the behaviour
of trajectories in the (s, ps, pz) space and by the particle positions in the phase plane
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(a) (b) (c)

(d) (e) ( f )

FIGURE 24. Electron trajectories in the case of the second type particular solution
corresponding to the motion along the x = y direction in the field of four colliding EM
waves for εrad= 1.2× 10−8, aS= 4× 105, a0= 874, ω= 1 for initial conditions: x(0)= 0.01,
z(0) = 0, px(0) = 0, pz(0) = 0 (red, −1); x(0) = 0.23, z(0) = 0, px(0) = 0, pz(0) = 0
(blue, −2); x(0) = 0.45, z(0) = 0, px(0) = 0, pz(0) = 0 (green, −3). (a) Trajectories in
the (s, z) plane. (b) Dependences of the s coordinates on time. (c) Trajectories in the
(s, ps, pz) space. (d) Lorentz factor γ versus time for x(0)= 0.45. (e) Parameter χe versus
time for x(0)= 0.45. ( f ) The Poincaŕe sections: the particle positions in the phase plane
(ps, pz) at discrete times with the time step equal to the period of the driving force for
x(0)= 0.01.

(ps, pz) at discrete times with the time step equal to the period of the driving force,
respectively. According to figure 23(d), where the particle Lorentz factor γ is plotted
versus time, the normalized electron energy is of the order of the dimensionless
EM field amplitude, i.e. γ ≈ a0. From the dependence of the parameter χ on time in
figure 23(e) it follows that, in this case, the QED effect of the recoil is not significant.

The electron interaction with four colliding EM waves in the case of the second
type particular solution corresponding to the motion along the x = y direction is
illustrated in figure 24 for εrad = 1.2 × 10−8, aS = 4 × 105, a0 = 874, ω = 1 for
initial conditions: x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red, −1); x(0) = 0.23,
z(0)= 0, px(0)= 0, pz(0)= 0 (blue, −2); x(0)= 0.45, z(0)= 0, px(0)= 0, pz(0)= 0
(green, −3). The particle independently of the initial conditions becomes trapped by
a strange attractor performing stochastic motion. Panel figure 24(a) shows trajectories
in the (s, z) plane. As we see the electrons become trapped in the region of the
ponderomotive force minimum. From figure 25(b,c) with dependences of the s
coordinates on time and with the trajectories in the (s, ps, pz) space it follows that
the trapped particle motion with all the three initial conditions is irregular. As we
may see in figure 24(d), where the Lorentz factor γ versus time for x(0) = 0.23 is
presented, the normalized particle energy is of the order of the dimensionless EM
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(a) (b) (c)

(d) (e) ( f )

FIGURE 25. Electron trajectories in the case of the second type particular solution
corresponding to the motion along the x = y direction in the field of four colliding EM
waves for εrad = 3 × 10−9, aS = 1.6 × 106, a0 = 3466, ω = 0.25 for initial conditions:
x(0) = 0.01, z(0) = 0, px(0) = 0, pz(0) = 0 (red, −1); x(0) = 0.23, z(0) = 0, px(0) = 0,
pz(0)=0 (blue, −2); x(0)=0.45, z(0)=0, px(0)=0, pz(0)=0 (green, −3). (a) Trajectories
in the (s, z) plane. (b) Dependences of the s coordinates on time. (c) Trajectories in
the (s, ps, pz) space. The inset shows a close up of trajectories in the (s, ps, pz) for
x(0) = 0.23. (d) Lorentz factor γ versus time for x(0) = 0.23. (e) Parameter χe versus
time for x(0)= 0.23. ( f ) The Poincaŕe sections: the particle positions in the phase plane
(ps, pz) at discrete times with the time step equal to the period of the driving force for
x(0)= 0.23.

wave amplitude. The QED parameter χe, whose dependence on time for x(0)= 0.23
is shown in figure 24(e) is lower than unity, i.e. the QED effect of the recoil is weak.
The Poincaŕe sections are shown in figure 24(e): the particle positions in the phase
plane (ps, pz) at discrete times with the time step equal to the period of the driving
force for x(0)= 0.01. As we see, the particle motion is stochastic.

Electron interaction with four colliding EM waves in the case of the second type
particular solution corresponding to the motion along the x= y direction is illustrated
in figure 25 for εrad = 3 × 10−9, aS = 1.6 × 106, a0 = 3466, ω = 0.25 for initial
conditions: x(0)= 0.01, z(0)= 0, px(0)= 0, pz(0)= 0 (red, −1); x(0)= 0.23, z(0)= 0,
px(0)= 0, pz(0)= 0 (blue, −2); x(0)= 0.45, z(0)= 0, px(0)= 0, pz(0)= 0 (green, −3).
In this case the EM wave frequency is lower than in the above discussed case and
the EM wave amplitude is higher. As a result the particle is trapped performing
either regular or stochastic motion. Panel figure 25(a) shows trajectories in the (s, z)
plane. As we see, depending on the initial conditions, the electron becomes trapped
either in the region of the ponderomotive force maximum or in the region of its
minimum. From figure 25(b,c) with dependences of the s coordinates on time and
with the trajectories in the (s, ps, pz) space it follows that the trapped particle motion
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with the initial conditions x(0) = 0.01 and x(0) = 0.45 along the limit circles is
regular. As one can see in figure 25(d), where the Lorentz factor γ versus time for
x(0) = 0.23 is presented, the normalized particle energy is substantially lower than
the dimensionless EM wave amplitude. The QED parameter χe, whose dependence
on time for x(0) = 0.23 is shown figure 25(e) is significantly lower than unity, i.e.
the QED effect of the recoil is negligibly weak. The Poincaŕe sections are shown
in figure 25(e), the particle positions in the phase plane (ps, pz) at discrete times
with the time step equal to the period of the driving force for x(0) = 0.23. As we
see, the particle motion along the trajectories of the attractor plotted in the inset
in figure 25(c) with the close up of trajectories in the (s, ps, pz) for x(0) = 0.23 is
stochastic.

6.1.3. General case
The results of integration of the motion equations for the electron interacting

with four s-polarized EM waves in the limit of relatively low radiation intensity are
presented in figure 26. Figure 26(a) shows 11 electron trajectories in the (x, y) plane
for initial conditions as follows. The initial coordinates x(0) and y(0) are chosen
to be in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0, py(0) = 0,
pz(0) = 0. In figure 26(b) we show a close up of the trajectories in the vicinity
of the coordinate origin superimposed with the isocontours of the electromagnetic
potential averaged over a half-period of the field oscillations. It is proportional to
the ponderomotive potential in the high field amplitude limit, a0 � 1. As we see,
the typical trajectories are comprised of long range Lévy-flight-like excursions and
of short range rambling motion, which changes the direction of the succeeding
flight. The corresponding particle trajectory in the (px, py, pz) momentum space
for x(0) = −0.125 and y(0) = 0.125 is presented figure 26(c). According to the
dependence of the parameter χe on time plotted in figure 26(d) the QED recoil
effects are weak under the conditions of consideration. The Poincaŕe sections, the
particle positions in the phase plane (px, py) at discrete times with the time step
equal to the period of the driving force, in figure 26(e), show that the particle motion
is stochastic.

Figure 27 illustrates the particle dynamics in the EM field formed by four
s-polarized EM waves for the radiation intensity higher than that intensity which
corresponds to the interaction regime shown in figure 26. Here the electromagnetic
field amplitude is a0 = 2823, the dissipation parameter is εrad = 1.2 × 10−9, the
normalized critical QED field is aS = 4 × 106 and the EM field frequency equals
ω0 = 0.1. From figure 27(a,b) it follows that the typical trajectories form a pretty
regular pattern in the (x, y) plane. They are comprised of long range Lévy-flight-like
excursions and of short range rambling motion, which changes the direction of the
succeeding flight. The combination of the long range excursions and short range
rambling is also seen in the behaviour of the electron trajectory in the (x, y, z) space
presented in figure 27(d). The corresponding particle trajectory in the (px, py, pz)

momentum space for x(0) = −0.125 and y(0) = 0.125 is presented in figure 27(c).
What is remarkable is that during the Lévy like flights the electron moves almost
along the electric node region, i.e. performing the motion described by the second type
particular solution discussed above (see figure 24). The particle normalized energy
changes from 200 to approximately 1200. The value of the QED dimensionless
parameter χe (not shown here) is less than unity. The Poincaŕe sections (also not
shown here) are similar to those sections which are presented in figure 26(e) indicating
stochasticity in the electron dynamics.
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(a) (b)

(c)

(d)

(e)

FIGURE 26. (a) Eleven electron trajectories in the (x, y) plane for initial conditions: x(0)
and y(0) are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0, py(0) = 0,
pz(0)= 0. (b) Close up of the trajectories in the region (−7.5< x< 7.5; −7.5< y< 7.5).
(c) Trajectory in the (px, py, pz) space. (d) Parameter χe versus time. (e) The Poincaŕe
sections: the particle positions in the phase plane (px, py) at discrete times with the
time step equal to the period of the driving force. The electromagnetic field amplitude is
a0= 218, the dissipation parameter is εrad = 1.2× 10−8, the normalized critical QED field
is aS = 4× 105 and the EM field frequency equals ω0 = 1.

Further increasing the EM field intensity and/or decreasing the field frequency lead
to an intriguing change in the trajectory pattern (see figure 28, where an ensemble
of the electron trajectories in the (x, y) plane is presented). The results presented
in figures 28 and 29 have been obtained for the electromagnetic field amplitude of
a0 = 11 856, for the dissipation parameter of εrad = 6 × 10−10, for the normalized
critical QED field of aS = 8× 106 and for the EM field frequency equal to ω0= 0.05.
The trajectory topology can be subdivided into two classes depending on the particle
initial conditions. If the particle is initially close to the bottom of the ponderomotive
potential, i.e. close to the lines x = ±y = πn, n = . . . , −2, −1, 0, 1, 2, . . . in the
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(a) (b)

(c) (d)

FIGURE 27. (a) Eleven electron trajectories in the (x, y) plane for initial conditions: x(0)
and y(0) are in the vicinity of the coordinate origin, and z(0) = 0, px(0) = 0, py(0) = 0,
pz(0) = 0. (b) Close up of the trajectories in the region (−10 < x < 10; −20 < y < 0)
superimposed with the isocontours if the electromagnetic potential averaged over a half-
period of the field oscillations. (c) Trajectory in the (px, py, pz) space. (d) Trajectory in the
(x, y, z) space. The electromagnetic field amplitude is a0= 2823, the dissipation parameter
is εrad = 1.2× 10−9, the normalized critical QED field is aS = 4× 106 and the EM field
frequency equals ω0 = 0.1.

(x, y) plane, it remains there. The particle trajectory, in this case, is similar to those
shown in figure 27(a,b). The second class trajectories are realized for the initial
particle positions in the vicinity of the ponderomotive potential maximum, where
the magnetic field of the colliding EM waves vanishes. The second class trajectories
are trapped within one of the sectors, 0 < θ < π/4, π/4 < θ < π/2, etc. Oscillating
along the radial direction they drift relatively slowly towards the lines either x = 0
or y = 0. In both the cases of the first and second topology classes the particles
move also along the z axis as seen from the results presented in figure 29. The first
class particle dynamics is stochastic: the trajectory in the (px, py, pz) space plotted
in figure 29(d) corresponds to a strange attractor while figure 29(b) shows that the
second class dynamics is regular.
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FIGURE 28. Ensemble of the electron trajectories in the (x, y) plane. The particles with
the initial coordinates in the region close to the B= 0 point are trapped inside the sectors,
where their trajectories asymptotically approach the lines x = 0 or y = 0. For the initial
coordinates close to the bottoms of the ponderomotive potential valleys, x = ±y = πn,
n = . . . , −2, −1, 0, 1, 2, . . . the particles move along the trajectories which are similar
to those shown in figure 27(a,b). The EM field amplitude is a0 = 11 856, the dissipation
parameter is εrad = 6× 10−10, the normalized critical QED field is aS = 8× 106 and the
EM field frequency equals ω0 = 0.05.

6.2. Electron interaction with four p-polarized EM waves
In the case of four p-polarized colliding laser pulses the EM configuration is described
by (6.1)–(6.3). As in the s-polarization case, in the limit of relatively low EM
wave intensity the electron performs the random walk motion comprised of short
scale-length oscillations interleaved by long scale excursions. An example of such
trajectories is shown in figure 30(a) for the EM field amplitude a0 = 1.6 × 103, the
dissipation parameter equal to εrad = 1.2× 10−8 and the normalized critical QED field
of aS = 4.12× 105. The curve marked by red colour and the number ‘1’ corresponds
to the initial coordinates x(0)= 0.001 and y(0)= 0.01. Figure 30(b) presents a close
up of trajectory (1) the (x, y) plane overlaid with the isocontours of the EM field
ponderomotive potential. Electron oscillations in the (px, py) plane (figure 30c) and
dependence of the y coordinate on time plotted in figure 30(d) demonstrate that the
particle motion is irregular. The stochastic character of the particle dynamics is also
distinctly seen in the Poincaŕe sections in the plane (px, py), which is presented in
figure 30(d).

For ten times higher EM field amplitude, when a0 = 1.6× 104, the particle motion
becomes regular as seen in figure 31. In the (x, y) plane the electron performs long
range Lévy-like flights along the lines x=±y+±πn, which end up in the localized
attractors, where the particle oscillates pretty regularly (see figure 31a,b). This
electron behaviour is well seen in figure 31(c–e) presenting the electron trajectory
in the (px, py) plane, the time dependence of the y coordinate and the Poincaŕe
mapping in the momentum plane (px, py), respectively. Broadening of the trajectories
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(a) (b)

(c) (d)

FIGURE 29. (a) Electron trajectory in the (x, y, z) space and (b) trajectory in the
(px, py, pz) space for the second class topology. (c) Electron trajectory in the (x, y, z) space
and (d) trajectory in the (px, py, pz) space for the first class topology. The electromagnetic
field parameters are the same as in figure 28.

in the Poincaŕe mapping figure 31(e) also indicates stochastic properties present in
the particle motion.

A further ten times increase of the EM field amplitude, a0= 1.6× 105, results in the
particle trapping within narrow stripes localized at the bottoms of the ponderomotive
potential (figure 32a,b). A combination of regular and stochastic aspects of the particle
dynamics in this case too is seen from the behaviour of the electron trajectory in the
(px, py) plane (figure 32c), from the time dependence of the y coordinate (figure 32d)
and from the broadening of the trajectories in the Poincaŕe mapping (figure 32d).

7. Conclusions
As is well known, the multiple colliding laser pulse concept (Bulanov et al. 2010b)

is beneficial for achieving an extremely high amplitude of coherent electromagnetic
field (see also Bulanov et al. 2010a; Gonoskov et al. 2012, 2013; Gelfer et al.
2015). The complexity of the topology of the time-dependent EM field of colliding
laser pulses results in the high complexity of the trajectories of charged particles
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(a) (b)

(c)

(d)

(e)

FIGURE 30. Electron interaction with 4 colliding p-polarized EM waves in the low
intensity limit for the electromagnetic field amplitude equal to a0 = 1.6 × 103, the
dissipation parameter equal to εrad = 1.2× 10−8 and the normalized critical QED field of
aS = 4.12× 105. (a) Ensemble of electron trajectories in the (x, y) plane. Red colour (1)
curve corresponds to x(0)= 0.001 and y(0)= 0.01. (b) Close up of trajectory (1) the (x, y)
plane overlaid with the isocontours of the EM field ponderomotive potential. (c) Electron
trajectory in the (px, py) plane. (d) Coordinate y versus time t. (e) The Poincaŕe sections:
the particle positions in the phase plane (px, py) at discrete times with the time step equal
to the period of the driving force.

interacting with these fields. In the high field limit, when the radiation friction effects
become significant, the charged particle behaviour demonstrates remarkable features
corresponding to random walk trajectories, Lévy flights, limit circles, attractors and
regular patterns.

In the limit of the relatively weak laser intensity, the electron motion can be
described as a random walk figure 5 with the particle over-leaping from one field
period to another. The over-leaping correspond to the Lévy flights. In contrast to
the standard theory of Lévy flights, which can be found in Lévy (1954), Metzler &
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(a) (b)

(c)
(d)

(e)

FIGURE 31. The same as in figure 30 for a0 = 1.6× 104.

Klafter (2000), Zaslavsky (2002), Metzler et al. (2007), in the 3 and 4 colliding wave
cases considered in the present paper, the Lévy-like flights occur along the directions
determined by the landscape of the ponderomotive potential determined in its turn by
the geometry of the EM field of the colliding waves. Typically the particle performs
short space scale (high frequency) oscillations intermittent with the long range leaps.
This oscillation frequency appears to be significantly higher than the frequency of
the driver EM wave due to the nonlinearity of the radiation friction force (see also
discussion in Esirkepov et al. 2015; Jirka et al. 2016). The length of the long range
flight can be found from consideration of the charged particle momentum losses due
to radiation friction as in Bulanov et al. (2011a).

Under certain conditions (in the high intensity and/or low frequency limit) the
nonlinear dissipation mechanism stabilizes the particle motion causing the particle
trapping within a narrow region located near the electric field maximum. In
high intensity limit the particle can be trapped in the vicinity of the EM field
ponderomotive potential performing regular motion there. The particle trajectory
makes regular patterns shown in figures 17 and 28.

We have analysed the underlying physical mechanism of the radiating charge
particle trapping in the regions of the electric field maximum. As elucidated within
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(a) (b)

(c)

(d)

(e)

FIGURE 32. The same as in figure 30 for a0 = 1.6× 105.

the framework of the simple model formulated in the present paper the particle
trapping is explained by the friction drag originating from the nonlinear dependence
of the radiation friction on the EM field.

The attractor trajectory patterns in figures 17, 19 and 27 are made by an ensemble
of electrons. The single electron trajectory shown in figure 18 demonstrates that
having been moving for a long enough time it could cover the whole attractor. In
view of this, there are two questions. The first one being is there an analogy of the
ergodic hypothesis saying that over long periods of time, the time spent in some
region of the attractor is proportional to the attractor measure? The second one being
is there an analogy of the Poincaré recurrence theorem (Arnol’d 1989) saying that
the particle, after a sufficiently long but finite time, returns to a point very close to
the initial point? A similar question occurs in the case of the particle random walk
on whether the results of the well-known random walk theory (see Kac 1961) can
be used in our case. Since finding the answers to these questions requires additional
thorough consideration, we leave this to the forthcoming publications.
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The structures seen in the electron density distribution obtained in the computer
simulations of four electromagnetic pulse interaction with plasma targets (Vranic et al.
2017; Gong et al. 2017) are similar to the structures presented figure 27, which have
been found within the framework of a single particle approach. This shows of the
robustness of the features discussed above.

One of the most important findings of the present work is a revealing of a new
class of regular distributions made by ensembles of the particle trajectories. They
are structurally determinate patterns, as if made by tiles, formed in the high field
amplitude limit when the radiation friction force drastically modifies the charged
particle dynamics in the electromagnetic field as can be distinctly seen in figures 18,
20, 27 and 28. As for the possible practical implications of these findings, these
‘crystal-like’ patterns are expected to be seen in the spatial distribution of the γ -rays
emitted by the electrons irradiated by the multiple high power laser pulses, which
has been noticed in Gong et al. (2017) and Vranic et al. (2017).
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