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A POLYNOMIAL ALGORITHM FOR CONSTRUCTING 
A LARGE BIPARTITE SUBGRAPH, WITH AN 

APPLICATION TO A SATISFIABILITY PROBLEM 

SVATOPLUK POLJAK AND DANIEL TURZlK 

1. Introduction. Let G be a symmetric connected graph without loops. 
Denote by b(G) the maximum number of edges in a bipartite subgraph of 
G. Determination of b(G) is polynomial for planar graphs ([6], [8]); in 
general it is an NP-complete problem ([5]). Edwards in [1], [2] found 
some estimates of b(G) which give, in particular, 

b(G) ^f(m,n) 

for a connected graph G of n vertices and m edges, where 

f(m,n) = im+ * { * ( » - 1)}, 

and {x} denotes the smallest integer ^ x. 
We give an 0{VZ) algorithm which for a given graph constructs a bi­

partite subgraph B with at least/(w, n) edges, yielding a short proof of 
Edwards' result. 

Further, we consider similar methods for obtaining some estimates for 
a particular case of the satisfiability problem. Let $ be a Boolean formula 
of variables xi, . . . , xn. The formula $ is called satisftable if there exists 
a set of values of the variables for which 3> is true. The formula $ is said 
to be in conjunctive form if 

$ = (yi.i V . . . V y1M) A (y2.i V . . . V y2M) A . . . 

A (yg,i V . . . V yqM) 

where each yitj equals xt or "1 xt for some / = 1, . . . , n. It is known that: 

A. It is an NP-complete problem to decide whether an arbitrary $ is 
satisftable ([3]). 

B. If 3> is given in conjunctive form with at most two variables per 
clause (i.e., k{ S 2 for all i = 1, . . . q) there is a polynomial algorithm for 
determining satisfiability of $ ([4]). 

C. If 3> = <p\ A . . . A (fq is in conjunctive form with at most two 
variables in each clause, denote by s($) the maximum number of <p's 
which can be satisfied. It is NP-complete to determine s($) for all such <l>; 
moreover, it is NP-complete to decide whether s($) ^ (7/10)g ([5]). 

Received June 29, 1979 and in revised form December 15, 1981. 

519 

https://doi.org/10.4153/CJM-1982-036-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-036-8


520 S. POLJAK AND D. TURZIK 

We give (Theorem 2) a lower bound for s($) in terms of n, m and p 
where m is the number of clauses of $ with two distinct variables and p is 
the number of those with only one variable. In fact, we find in polynomial 
time a set of values for the variables such that at least \m + \p (and 
hence \a) of the clauses are satisfied; this contrasts dramatically with the 
result [5] just quoted. 

2. The main theorem. Let G = (F, £ ) be a graph whose edge set £ 
is partitioned into two disjoint sets £ i , £2 called colors. Then c = (£i, £2) 
is a 2-coloring of £ , and (G, c) is an edge-2-colored graph. Any subset Vo 
of the vertex set V determines a subgraph H = H(G, c, VQ) whose 
vertex-set V(H) is all of V and whose edge-set is 

E(H) = {(«, v) e Eilue v0,ve v- v0} u 
VJ {(w, z;) Ç £2 | u,v £ Vo or u,v £ V — V0\. 

H is called a g-bipartite or generalized bipartite subgraph of (G, c); a 
bipartite subgraph is the special case wherein c = (£, 0). We then define 
h(G,c, Vo) = |£(ff) | ,and 

(1) b(G, c) = max {k(G, c, F0)| F0 C F}. 

6(G, c) is the maximum number of edges in a g-bipartite subgraph of 
(G, c), and of course 

Z>(G, (£, 0)) = 6(G). 

THEOREM 1. 7/ (G, c) w a simple connected edge-2-colored graph of n 
vertices and m edges, then 

b(G,c) ^f(m9n). 

Proof. We prove the statement of the theorem by induction on n. 
For n = 1 the theorem trivially holds. Suppose n > 1, and let the 
theorem hold for all graphs with fewer than n vertices. We shall consider 
3 cases. 

Case 1. The graph G has an articulation vertex v. 
Denote by Ci, . . . , Ck the connected components of G — v, by G( the 

induced subgraph of G with vertex set F(G2) W {v}, and by ct the induced 
coloring of £(G<), i = 1, . . . , k. Clearly, 

b(G,c) = 2XG„c«). 

By the induction hypothesis b(Gt, ct) jg /(*»*, w*), where mt = |£(G<)| 
and nt — \V(Gi)\, i — 1, . . . , k. Since 

X) Mi = w and H(WJ — 1) = | F — v| = n — 1, 
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we obtain (using {x} + {y} ^ {x + y}) 

k 

and hence b(G, c) ^ f(m, n). 
Case 2. The graph G has no articulation vertex and there is a vertex v 

whose degree d(v, G) in G is odd. 
Then 

b(G, c) ^ b(G - v, c) + i(d(v, G) + 1). 

By the induction hypothesis 

b(G - vy c) ^ f(m - d(v, G), n - 1). 

Hence b(G, c) ^ f(m, n). 
Case 3. The graph G has no articulation vertex and no vertex of odd 

degree. 
Choose an arbitrary vertex u. There exists some edge (u, v) of G such 

that G — {u, v} is connected. (To show this, we note that the blocks and 
articulation vertices of the graph G — u form a tree (see [7], Theorem 4.4). 
If the tree is trivial (i.e., G — u has no articulation vertex), then choose 
an arbitrary edge (u, v) incident with u\ if not, consider any pendant 
block B of this tree, and the unique articulation vertex w of G — u with 
w Ç V(B). Since w is not an articulation vertex of G, there must be a 
vertex v £ V(B), v ^ w, such that (u, v) is an edge of G.) 

Clearly, 

b(G, c) ^ b(G - u,c) + \d(u, G), 

and as d(v, G — u) is odd 

b(G - u,c) ^ b(G - {u, v},c) + i(d(v, G - u) + 1). 

Hence 

b(G, c) ^ b(G - {u, v}, c) + J(d(», G) + d(u, G)). 

By the induction hypothesis we obtain 

b(G, c) ^ f(m + 1 - d(v, G) - d(u, G), n - 2) 

+ i(d(v,G) +d(u,G)) *f(m,n). 

COROLLARY 1 ([2]). If G is a simple connected graph with m edges and n 
vertices then 

(2) b(G)^f(m,n). 

The proof follows from Theorem 1 by taking c = (E, 0). 
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COROLLARY 2. If (G, c) is a simple edge-2-colored graph with m edges, n 
vertices, and k components, then 

b(G,c) ^f{m,n,k) 

where 

f(m,n,k) = \m+ h{h{n - k)). 

Remark 1. The estimation (2) is the best possible e.g. for complete 
graphs and for amalgamation of complete graphs of odd order at one 
common vertex. 

Remark 2. Since there is an algorithm for finding articulation vertices 
and blocks in 0(V2) time (see [9], [10]), and since a suitable edge (u, v) 
in case 3 can be found in 0(V2) time, the proof yields an 0(F 3 ) algorithm 
for finding a set Vo C V whose existence is shown by Theorem 1. In 
particular, for any connected simple edge-2-colored graph (G, c) there is 
a polynomial algorithm for finding a g-bapirtite subgraph of (G, c) with 
at least/(w, n) edges. 

Remark 3. b(Tn, c) = n — 1 for any tree Tn with n vertices and any 
edge-2-coloring c. 

Remark 4. Let (G, c) be an edge-2-colored graph of m edges (not 
necessarily simple). Then there is a polynomial algorithm for constructing 
a set Vo C V(G) such that 

(3) h(G, Vo, c) ^ \m, 

and hence 

b(G,c) ^ \m. 

Proof. Let V(G) = {vi, . . . , vn) and let Gl be the subgraph of G induced 
by the set \v\, . . . , vt}, i = 1, . . . , n. Set Vo1 = {vi}, and 

Vo* = ^ F v ! u {Vi] xih{Gi' v r l u {Vilc) ~ h(Gij F ° i " 1 ' ' : ) ' 
I I V l otherwise. 

The set Vo = VQ
n satisfies (3). 

Remark 5. Tarjan has previously made use of edge-2-colored graphs 
and generalized bipartite graphs in an investigation [11] of planar graphs. 

3. Application to a satisfiability problem. Let 

$ = <pi A • . . A (pm A <pm+i A . . . A ipm+p 

be a Boolean formula in conjunctive form of variables Xi, . . . , xn, where 
<pi, . . . , <pm are clauses with two distinct variables and <pm+i, • • • » <Pm+p 
are clauses with only one variable. Assign to the formula $ a graph G$ 
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with vertex set {xi, . . . , xn\ ; let two distinct vertices x, y be joined by 
an edge (x, y)^> if there is a clause <p in $> with variables x and y. Further 
define the edge-2-coloring c$ = (Ei, E2) as follows: 

(%, y)v € Ei if and only if ^ = (x V y) or ^ = (~| x V "1 y)> 

(x, y)^ 6 £ 2 if and only if ç = ("1 x V y) or ^ = (x V "I y). 

THEOREM 2. If $ is a Boolean formula as above, and if G$ is a simple 
graph of k components, then 

(4) s(*) è îm+^p + UUn-k)} 

where s($) is the maximum number of satisfiable clauses. 

Proof. Let Vo be a subset of the set V = {xi, . . . , xn\ which realizes 
the maximum in the right hand side of (1). We can assign the value 0 to 
each variable of Vo and the value 1 to each variable of V — V0 or, con­
versely, the value 1 to each variable of Vo and value 0 to each variable 
of V — Vo, In one of these cases at least 

6(G*f c*) + \{m + p - 6(G*, c*)) 

of the clauses must be satisfied. Thus 

*(*) è *(*» +/> + &(<?#,*#)). 

By Corollary 2 of Theorem 1, &(G$, c$) ^ / ' (w, w, &) and Theorem 2 
follows. 

COROLLARY 1. Since a = m + p, we see that 

*(* )£ is+ *{*(»-*)}. 
Remark 5. If #i, . . . , #n, ^i, . . . , yn are variables and 

$ = A (*f V x,) A A (yt V ?,) A A ("1 Xi V "I yj) 
i^j &j i,j 

then the estimation stated by Theorem 2 is the best possible. 

Remark 6. The proof of Theorem 2 gives a polynomial algorithm for 
finding values of the variables which realize the stated bound. 

Remark 7. If G$ is not simple, we obtain 

using Remark 4 instead of Corollary 2 in the proof of Theorem 2. 

Remark 8. Theorem 1 can be generalized to a "weighted" form: 
Let G = (V, E) be a simple connected graph, c = (Ei, £2) be an edge-

2-coloring, and w: E —» R+ be a non-negative function defined on edges 
of G. Then there exists a subset Vo C F such that 

E {w(e)|e€ Ei, | e rWo| = 1} + £ {w(e)|c G £2> |« H 7 0 | = 0or2) 
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where 

t(G, w) = min ) 22 w(e) \T is a spanning tree of G 

4. Final remarks. If values of the variables Xi, . . . , xn were assigned 
at random, we would find that the expectation is 

£[*(*)] = > + \P\ 
thus the last term of (4) represents the benefit of judicious choice of the 
variables. 

It would be interesting to know whether our Theorem 2 can be genera­
lized to give some results when G$ is not simple. If the answer is uyes"> 
it would be interesting to know the largest value of the constant c such 
that it is polynomial to determine whether s($) è c.q. 

The answers to these questions, like the results of the present paper, 
help to define the boundary between problems with polynomial solutions 
and NP-complete problems. 

Acknowledgement. We are deeply grateful to the referee for many 
improvements of the paper. 

REFERENCES 

1. C. S. Edwards, Some extremal properties of bipartite subgraphs, Can. J. Math. 25 
(1973), 475-485. 

2. An improved lower bound for the number of edges in a largest bipartite subgraph, 
in: Recent advances in graph theory (Academia, Prague, 1975), 167-181. 

3. S. A. Cook, The complexity of theorem-proving procedures, Proc. 3rd Ann. ACM 
Symp. on Theory of Computing, Association for Computing Machinery, New 
York (1970), 151-158. 

4. M. Davis and H. Putnam, A computing procedure for quantification theory, JACM 7 
(1960), 201-215. 

5. M. R. Garey, D. S. Johnson and L. Stockmayer, Some simplified NP-complete graph 
problems, Theoretical Computer S ience 1 (1976), 237-267. 

6. R. O. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM 
J. Comp. 4 (1975), 221-225. 

7. F. Harary, Graph theory (Addison Wesley, Reading, Massachusetts, 1969). 
8. G. I. Orlova and Y. G. Dorfman, Finding the maximum cut in a graph, Engrg. Cyber­

netics 10 (1972), 502-506. 
9. K. Paton, An algorithm for the blocks and cutnodes of a graph, Comm. ACM 14 

(1971), 468-476. 
10. R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972), 

146-160. 
U . An efficient planarity algorithm, Thesis, Stanford University (1971). 

Technical University, 
Prague, Czechoslovakia; 
Institute of Chemical Technology, 
Prague, Czechoslovakia 

• 

https://doi.org/10.4153/CJM-1982-036-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-036-8

