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Monoidal Functors, Acyclic Models and
Chain Operads

F. Guillén Santos, V. Navarro, P. Pascual, Agustı́ Roig

Abstract. We prove that for a topological operad P the operad of oriented cubical singular chains,

Cord
∗

(P), and the operad of simplicial singular chains, S∗(P), are weakly equivalent. As a consequence,

Cord
∗

(P ; Q) is formal if and only if S∗(P ; Q) is formal, thus linking together some formality results

which are spread out in the literature. The proof is based on an acyclic models theorem for monoidal

functors. We give different variants of the acyclic models theorem and apply the contravariant case to

study the cohomology theories for simplicial sets defined by R-simplicial differential graded algebras.

1 Introduction

Since its introduction by S. Eilenberg and S. Mac Lane [EM1], the acyclic models the-

orem has been a powerful technique in algebraic topology and homological algebra.

It says that if K∗, L∗ : A→ C∗(Z) are functors from a category with models A to the

category of non-negative chain complexes of abelian groups C∗(Z), such that K∗ is

representable and L∗ is acyclic on models, then any morphism f−1 : H0(K∗)→ H0(L∗)

extends to a morphism f∗ : K∗ → L∗, and this extension is unique up to homotopy.

In particular, if both K∗ and L∗, are representable and acyclic on models, then any iso-

morphism f−1 : H0(K∗) ∼= H0(L∗) extends to a homotopy equivalence f∗ : K∗ ≃ L∗,

unique up to homotopy, thus defining an isomorphism H f∗ : H(K∗) → H(L∗). In

some elementary presentations, the representability hypothesis for K∗ is replaced by

asking it to be free on models, see for instance [D].

Eilenberg-Mac Lane [EM1] compare simplicial singular chains S∗(X) and nor-

malized cubical singular chains C∗(X): for p > 0, the abelian group Sp(X) is freely

generated by continuous maps ∆
p → X, and for cubical singular chains one takes

first the free group Qp(X) of continuous maps I p → X, and defines C p(X) as the

quotient of Qp(X) by the degenerate cubical chains (observe that C∗(X) is denoted by

QN
∗

(X) [EM1]). While S∗(X) is free on models, C∗(X) is not. Nevertheless, C∗(X) is

representable, so acyclic models allow us to extend the identification S0(X) = C0(X)

to a natural homotopy equivalence S∗(X) → C∗(X). In this way, the two complexes

define a homology functor H∗(X ; Z) from the category Top of topological spaces to

the category of graded abelian groups, up to canonical isomorphism.

Moreover, acyclic models permit the definition of Eilenberg–Zilber equivalences

in both theories, which together with the Künneth theorem endow the homology

functor with morphisms H∗(X ; Z) ⊗ H∗(Y ; Z) → H∗(X × Y ; Z), which we will re-

fer to as Künneth morphisms, and which are independent of the theory we use, up
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to isomorphism. In categorical terms, the Künneth morphisms define a monoidal

structure on the functor H∗( · ; Z), so we can say that the monoidal functor of ho-

mology is well defined up to isomorphism.

Since the appearance of [EM1], there have been many variations and generaliza-

tions of the acyclic models theorem, according to the field of expected applications;

see [GMo, BB, DMO, K1, B96], to cite a few. When dealing with products, acyclic

models allow us to produce a whole family of higher homotopies from which we can

deduce the multiplicativity of morphisms in cohomology. For example, the natural

integration morphism
∫

: S∗(X) −→ Ω
∗(X) is not multiplicative, but the higher ho-

motopies defined by acyclic models define a dash morphism which induces a multi-

plicative morphism between the singular cohomology and the De Rham cohomology

of X [BG, Mu].

For us, the most relevant version of acyclic models is that of M. Barr [B96, B02].

The Eilenberg–Mac Lane theorem gives morphisms K∗ → L∗ well defined up to

homotopy, so that in homology we obtain well-defined morphisms. In [B96], Barr

looks for uniquely defined morphisms in a conveniently localized category of com-

plexes. In this way, Barr’s version of acyclic models eliminates the indeterminacy up

to homotopy found in the category of complexes remaining at the complex level.

Since the functors S∗,C∗ are monoidal functors, they transform non symmetric

operads into non symmetric operads, so we have the non symmetric dg operads S∗(P)

and C∗(P) associated with a given topological operad P. Although one expects these

two dg operads to be homotopy equivalent, the known acyclic models theorems do

not apply, because the transformation S∗ → C∗ deduced above is not necessarily a

monoidal natural transformation of monoidal functors and, consequently, we do not

necessarily obtain an operad morphism between S∗(P) and C∗(P). This situation is

reminiscent of what happens with products in the De Rham theorem cited above.

Our main result, Theorem 4.10, is an acyclic models theorem for monoidal func-

tors from a monoidal category C to the monoidal category C∗(Z). We likewise es-

tablish several variations of this result, which cover the symmetric monoidal and the

contravariant monoidal settings. As a consequence of our results we prove that S∗
and C∗ are weakly equivalent as monoidal functors, so it follows that, for a given

topological operad P, the non symmetric dg operads S∗(P) and C∗(P) are weakly

equivalent. We deduce also a multiplicative De Rham comparison result, without

reference to dash morphisms.

Theorem 4.10 is stated and proved by adapting to the monoidal setting the cat-

egorical framework proposed by Barr [B96]. Thus, if C is a monoidal category, K∗

and L∗ are monoidal functors from C to C∗(Z), and H0(K∗)→ H0(L∗) is a monoidal

morphism, then Theorem 4.10 establishes sufficient conditions on K∗, L∗ to extend

f to a morphism f : K∗ → L∗ defined up to weak equivalence, that is, a morphism

in the localized category obtained by inverting a given class of weak equivalences.

The main tools in the statement and proof of Theorem 4.10 are the models of C

and the weak equivalences. The models are given by a suitable monoidal cotriple G

defined in C. In the classical situation the cotriple G is a model-induced cotriple. For

instance, in Top one can take G(X) =
⊔

∆
n, where the disjoint union is taken over

all n > 0 and all continuous maps ∆
n → X. In this paper, we use a monoidal version

of this cotriple, while when dealing with symmetric monoidal functors from Top to
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C∗(Z) we use the cotriple introduced by Kleisli in [K2]. As for the class of morphisms

Σ, in general it is associated with an acyclic class of complexes (see [B96]), and in the

applications it is a class in between objectwise homotopy equivalences and quasi-

isomorphisms.

We apply Theorem 4.10 and its variations in two different contexts. First, taking

C = Top, we prove that the simplicial singular and the oriented normalized cubi-

cal singular chain functors are weakly homotopy equivalent (see §4.4 for the precise

definition) as symmetric monoidal functors, so their extension to topological oper-

ads give weak-equivalent dg operads, (see Theorem 7.2). As a consequence, for a

topological operad P, the dg operads S∗(P) and Cord
∗

(P) are weakly equivalent, so

the formality of P does not depend on the chosen chain functor. This enables us to

relate two different versions of Kontsevich formality theorem for the little cube op-

erad, the one proved by Kontsevich in [Ko] for oriented cubical chains and the one

by Tamarkin for singular chains (see [T]), and to give a more precise statement of

Deligne’s conjecture.

The second application refers to a uniqueness result for cohomology theories in

the sense of Cartan (see [C]). We obtain a uniqueness result in the category of dg

algebras localized with respect to the class of weak equivalences (see Theorem 9.2 for

the precise statement), from which follow the main theorems in Cartan’s paper. In

particular, for any simplicial set X we deduce that the Q-differential graded algebras

of simplicial singular cochains S∗(X ; Q) and of Sullivan polynomial forms Su∗(X)

are weakly equivalent, recovering a result of rational homotopy theory [S, FHT].

We now give an overview of the contents of the different sections. In Section 2,

we recall some basic facts about monoidal functors, and we set some notations used

throughout the paper and review some relevant examples. We begin Section 3 by re-

viewing the Eilenberg–Mac Lane shuffle product formulas and the Alexander–Whit-

ney formulas, which relate the tensor product in the category of complexes with the

tensor product in the category of simplicial objects in an additive category A. We

use these general formulas to state the existence of several monoidal and comonoidal

simple functors. Section 4 is devoted to the statement and proof of Theorem 4.10.

Following Barr [B96], we introduce acyclic classes of complexes, the associated weak

equivalences, and the traces of these classes in the category of monoidal functors.

Then, given a monoidal cotriple G in C we define the relative notions of G-present-

able monoidal functors from C to a category of complexes C∗(A) and of G-weak

equivalence for a monoidal natural transformations between these functors, and

prove the main theorem.

In Section 5, we introduce a suitable monoidal triple G in the category Top, we

prove that simplicial singular and normalized cubical cochains functors are monoidal

G-presentable and G-acyclic, and, as a first application of our general result, we es-

tablish a comparison theorem between these two monoidal functors. In Section 6,

following the same arguments used in the proof of Theorem 4.10 and Corollary 4.12,

we obtain Theorem 6.1, which is an acyclic models theorem for symmetric monoidal

functors, and from which we prove a comparison result for the simplicial singular

and oriented normalized singular cubical chains as symmetric monoidal functors,

using a triple of Kleisly. As an application we obtain a similar result for topological

operads and topological modular operads in Section 7. In particular, we obtain the
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formality of Cord
∗

(M, Q), the dg modular operad of cubical chains of the modular op-

erad of Deligne–Knudsen–Mumford moduli spaces of algebraic curves with marked

points. Section 8 is devoted to obtaining an acyclic models theorem for contravari-

ant monoidal functors, and its application to obtain a comparison result between the

simplicial and cubical singular cochains functors on Top. Finally, in Section 9 we ap-

ply the previous result to cohomology theories in the sense of Cartan, including the

comparison of Sullivan polynomial forms and singular cochains.

We should point out that in this paper we do not work out the contravariant sym-

metric case. It will be dealt with elsewhere as an example of a more systematic study

of acyclic models in the context of descent categories (see [GN]).

2 The Monoidal Background

In this section we recall the basic principles of monoidal categories and functors, (see

[EK, ML] for details), and introduce the notation that will be used throughout the

paper. These remarks allow us to define in Section 3.2 the simple functors which

are associated with simplicial and cosimplicial functors with values in a category of

complexes.

2.1 Monoidal Categories

A monoidal category consists of a category C, a functor ⊗ : C × C → C, which we

shall call the product functor, and an object 1 of C, as well as natural isomorphisms

of associativity for⊗ and unit for 1, which are subject to coherence constraints.

A monoidal category (C,⊗, 1) is symmetric if for any objects X,Y of C, there is a

natural commutative isomorphism τX,Y : X⊗Y → Y⊗X satisfying the commutativity

constraints.

By an additive monoidal category, also called an additive tensor category, we un-

derstand an additive category A which is monoidal in such a way that the product

functor⊗ : A×A→ A is biadditive.

Examples 2.1 In these examples we set out the monoidal structure of several cate-

gories that will appear later on in this paper.

• Let A be an additive category. We denote by C∗(A) the category of uniformly

bounded below chain complexes on A, that is, there is an n ∈ Z such that the ob-

jects of C∗(A) are differential graded objects (C∗, d), with differential d of degree

−1, with Ci = 0 for i < n.

If A is an additive monoidal category, then the category C∗(A) is an additive

monoidal category with the product given by (C∗ ⊗ D∗)n =
⊕

p+q=n C p ⊗ Dq,

the differential on C p ⊗Dq being d = dC ⊗ id + (−1)pid⊗ dD, and the unit given

by the complex consisting of the unit of A concentrated in degree zero.

If A is a symmetric monoidal category, then C∗(A) is also symmetric, with the

natural commutativity isomorphism τC∗,D∗
: C∗ ⊗ D∗ → D∗ ⊗ C∗ that includes

the signs, i.e., it is defined by τC∗,D∗
= (−1)pqτC p ,Dq

, on C p ⊗ Dq. If A is the

category of R-modules for some ring R, we will denote C∗(A) by C∗(R).

https://doi.org/10.4153/CJM-2008-017-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-017-7


352 F. Guillén Santos, V. Navarro, P. Pascual, Agustı́ Roig

• Let A be an additive monoidal category. By a double complex of A we understand

a bigraded object of A, C∗∗, with two differentials d ′, d ′′ which commute; with

the obvious morphisms, they form a category. Thus, the category of uniformly

bounded below double chain complexes C∗∗(A) is isomorphic to C∗(C∗(A)).
• Let X be a category and D be a monoidal category. In the functor category

Cat(X, D) (also denoted by Fun(X, D), see [B96]) we define the product ⊠ com-

ponentwise by (F ⊠ G)(X) = F(X)⊗G(X), and the unit 1 as the constant functor

defined by the unit of D. With this structure Cat(X, D) becomes a monoidal cat-

egory, which is symmetric if D is symmetric.

In particular, if ∆ denotes the simplicial category, the category of simplicial

objects of D, which we denote by ∆
oD, is a monoidal category. Its objects are

denoted by X•. Analogously, the category of cosimplicial objects, denoted by ∆D,

is a monoidal category, which is symmetric if D is symmetric. Its objects will be

denoted by X•.
• Observe that if C is a monoidal category, then the dual category Co is also

monoidal. In particular, if A is an additive monoidal category, the category of uni-

formly bounded below cochain complexes C∗(A), which is isomorphic to the dual

category of C∗(Ao), is a monoidal category, which is symmetric if A is symmet-

ric. Likewise the category of uniformly bounded below double chain complexes

C∗∗(A) is a monoidal category.

2.2 Monoidal Functors

If (C,⊗, 1), (D,⊗, 1 ′) are monoidal categories, a monoidal functor (sometimes called

a lax monoidal functor) is a triple (F, κ, η) : (C,⊗, 1)→ (D,⊗, 1 ′), where F : C→ D

is a covariant functor, together with a natural morphism of D

κX,Y : FX ⊗ FY → F(X ⊗ Y )

for all objects X,Y of C, and a morphism of D, η : 1 ′ → F1, compatible with the

constraints of associativity and unit. We will refer to κ as the Künneth morphism

of F.

A monoidal functor F is said to be a strong monoidal functor if the Kunneth

morphisms are isomorphisms. If C and D are symmetric monoidal categories, a

monoidal functor F : C→ D is said to be symmetric if κ is compatible with the com-

mutativity isomorphisms τ .

Examples 2.2 Let A be an additive (symmetric) monoidal category.

• Given a double complex C∗∗ of A with finite anti-diagonals, the associated to-

tal complex is the complex Tot(C∗∗) which in degree n is given by Totn(C∗∗) =⊕
p+q=n C pq with differential defined by d = d ′ + (−1)pd ′ ′ on C pq. For bounded

below double complexes, the total complex defines a functor Tot : C∗∗(A) →
C∗(A). It is a strong (symmetric) monoidal functor. Similarly, the total complex

https://doi.org/10.4153/CJM-2008-017-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-017-7


Monoidal Functors, Acyclic Models and Chain Operads 353

functor defines a strong (symmetric) monoidal functor for cochain complexes

Tot : C∗∗(A)→ C∗(A).
• The homology functor H∗ : C∗(A) → C∗(A) is a (symmetric) monoidal functor,

taking as κ the usual Künneth morphism κX,Y : H∗(X)⊗H∗(Y )→ H∗(X ⊗ Y ).

2.3 Categories of Monoidal Functors

Monoidal functors are stable under composition, so the category of monoidal cate-

gories and monoidal functors Mon is a subcategory of Cat.

Let F, G : C → D be two monoidal functors. A natural transformation φ : F ⇒ G

is said to be monoidal if it is compatible with κ and η. Monoidal functors between two

monoidal categories C, D, together with monoidal natural transformations, define a

subcategory of the functor category Cat(C, D) which will be denoted by Mon(C, D).

Moreover, monoidal functors and monoidal natural transformations are compatible,

so they equip the class of monoidal categories Mon with a 2-category structure.

Similarly, one can extend the notions above to the symmetric setting. Hence,

the symmetric monoidal functors between two symmetric monoidal categories C, D,

together with symmetric monoidal natural transformations define a subcategory of

the functor category Cat(C, D) which is denoted by SyMon(C, D).

2.4 Comonoidal Functors

After the definition of monoidal functor we obtain, by duality, the notion of comon-

oidal functor between monoidal categories (called op-monoidal functor in [KS]).

By definition, a comonoidal functor between C and D is a covariant monoidal

functor between the dual categories Co, Do. That is to say, a comonoidal functor

F : C→ D is a covariant functor together with natural morphisms

κo : F(X ⊗ Y )→ F(X)⊗ F(Y ),

for objects X,Y of C, and a morphism ηo : F1 → 1 ′ of D, satisfying constraints of

associativity and unit. If C, D, are symmetric monoidal categories, a comonoidal

functor F is said to be symmetric if κo is compatible with the commutativity con-

straint.

The definition of comonoidal natural transformations is clear. We denote by

CoMon(C, D) the category of comonoidal functors and comonoidal natural trans-

formations. The category CoMon(C, D) is the dual category of Mon(Co, Do), so we

will focus our attention on monoidal functors.

We have defined the notions of monoidal and comonoidal functors for covari-

ant functors between two monoidal categories C, D. It is straightforward to define

the corresponding notions for contravariant functors from C to D. Nevertheless, we

should point out that a contravariant monoidal functor C → D (resp. a contravari-

ant comonoidal functor) is equivalent to a comonoidal functor (resp. monoidal func-

tor) defined in the dual category, Co → D, so nothing new is gained.
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3 Shuffle and Alexander–Whitney Maps

3.1 Simplicial Chain Complexes

Let A be an additive monoidal category. We use ∼ : ∆
oA → C∗(A) to denote the

functor which takes a simplicial object C• of A to the chain complex C̃• given by

(C̃•)n = Cn with differential d = ∂0 − ∂1 + · · · + (−1)n∂n.

The shuffle map. The functor ∼ with the shuffle map is monoidal (see [EM2]):

recall that if C•, D• are objects of ∆
oA, the shuffle product sh : C∗ ⊗D∗ → ˜C• ⊠ D•

is defined in degree n = p + q, C p ⊗ Dq → C p+q ⊗ Dp+q, by the formula

shpq =

∑

(µ,ν)

ε(µ, ν)(sνq
· · · sν1

)⊗ (sµp
· · · sµ1

),

where the sum is taken over all (p, q)-shuffles (µ, ν) and ε(µ, ν) is the signature of

the associated permutation.

The Alexander–Whitney map.The functor ∼ with the Alexander–Whitney map

is also comonoidal, [EM2]. Recall that if C•, D• are simplicial objects of A, the

Alexander–Whitney morphism AW: ˜C• ⊠ D• → C∗ ⊗ D∗ is given by morphisms

AW : Cn ⊗ Dn →
⊕n

i=0 Ci ⊗ Dn−i which are defined by

AW =

n∑

i=0

∂̃n−i ⊗ ∂i
0,

where ∂̃ p−i is the last face operator ∂i+1 · · · ∂p.

Cosimplicial cochain complexes. Let A be an additive monoidal category. The cate-

gory of cosimplicial objects of A, ∆A, is a monoidal category. Let∼ : ∆A→ C∗(A)

represent the functor which takes a cosimplicial object K• to the cochain complex K∗

with differential d = ∂0 + · · · + (−1)n∂n. By dualizing the morphisms above, one

obtains comonoidal and monoidal structures, respectively, for this functor ∼. We

use the monoidal structure issuing from the Alexander–Whitney formulas to study

contravariant functors in Section 8.

3.2 The Simple Functors

When A is an additive monoidal category, we can use the shuffle and Alexander–

Whitney structures above to put monoidal and comonoidal structures in the classic

simple complex associated with a simplicial complex of A.

3.2.1 The Eilenberg–Mac Lane Simple Functor

As C∗(A) is an additive monoidal category, the functor∼ defines a functor

∆
oC∗(A)→ C∗∗(A),

which, with the shuffle product, is monoidal. The composition of this functor with

the total functor (which, as pointed out in Example 2.2, is monoidal) is a monoidal
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functor sEM : ∆
oC∗(A)→ C∗(A), which will be called the Eilenberg–Mac Lane simple

functor (or the simple functor, for short).

If C, D are monoidal categories, there is an equivalence of categories

∆
oMon(C, D) ∼= Mon(C, ∆o

D),

so if A is an additive monoidal category, the composition of this isomorphism with

the Eilenberg–Mac Lane simple functor is a functor, also denoted by sEM,

sEM : ∆
oMon(C, C∗(A))→Mon(C, C∗(A)),

which associates a monoidal functor with a simplicial monoidal functor between C

and C∗(A). We will also refer to this composition as the Eilenberg–Mac Lane simple

functor.

3.2.2 The Alexander–Whitney Simple Functor

If in Section 3.2.1 we use the comonoidal structure on∼ that comes from the Alexan-

der–Whitney map, we obtain a comonoidal functor sAW : ∆
oC∗(A)→ C∗(A), which

we call the Alexander-Whitney simple functor. Thus, in a way completely analogous

to the Eilenberg–Mac Lane simple functor defined above, we obtain a simple functor

for comonoidal functors sAW : ∆
oCoMon(C, C∗(A))→CoMon(C, C∗(A)).

By duality, there are similarly defined simple functors for the categories of monoi-

dal and comonoidal functors with values in the cochain category C∗(A). In Section

8 we will use, in the contravariant setting, the Alexander–Whitney simple functor

sAW : ∆Mon(Co, C∗(A))→Mon(Co, C∗(A)).

Although sAW denotes the two functors introduced above, it will be clear from the

context to which we are referring.

3.2.3 Symmetric Simple Functor

Let A be an additive symmetric monoidal category. As the shuffle product is sym-

metric [EM2], the Eilenberg–Mac Lane simple functor sEM : ∆
oC∗(A) → C∗(A) is

a symmetric monoidal functor. Thus, if C is a symmetric monoidal category, we

can follow the reasoning in Section 3.2.1 to deduce the existence of an Eilenberg–

Mac Lane symmetric simple functor sEM : ∆
oSyMon(C, C∗(A))→ SyMon(C, C∗(A)).

4 An Acyclic Models Theorem for Monoidal Functors

In this section we prove the main technical tool, the acyclic models theorem for

monoidal functors. Our presentation is a variation of the scheme devised by Barr

[B96] for these kinds of results. According to Barr, three main ingredients are re-

quired to state an acyclic models theorem: the total complex associated to a double

complex, the acyclic classes of complexes that define the associated classes of weak

equivalences, and the cotriples constructed from the models. The total complex func-

tor and its monoidal counterparts were the object of the previous section; we begin

now by introducing acyclic classes.
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4.1 Acyclic Classes and Weak Equivalences

4.1.1 Acyclic Classes of Chain Complexes

Let A be an abelian category. If C∗ is a chain complex on A, we denote by C∗[−1]

the chain complex given by (C∗[−1])n = Cn−1 with differential defined by −dn−1.

Recall the following definition from [B96], (see also [B02]),

Definition 4.1 A class Γ of complexes in C∗(A) is called an acyclic class if the fol-

lowing conditions are satisfied:

(AC1) The complex 0 is in Γ.

(AC2) Stability: C∗ is in Γ if and only if C∗[−1] is in Γ.

(AC3) Let C∗, D∗ be two chain homotopic complexes. Then C∗ is in Γ if and only if

D∗ is in Γ.

(AC4) Every complex in Γ is acyclic.

(AC5) If C∗∗ is a double complex in C∗∗(A) all of whose rows are in Γ, then the total

complex Tot C∗∗ is in Γ.

By (AC1) and (AC3) every contractible complex is in Γ and by (AC4) all complexes

in Γ are acyclic, thus Γ is a class between the class of all contractible complexes and

the class of all acyclic complexes. These two extreme cases are examples of acyclic

classes, (see [B96, §4]).

Given an acyclic class Γ in C∗(A), we denote by Σ the class of morphisms between

chain complexes of A whose mapping cone is in Γ. Morphisms in Σ are referred to

as weak equivalences (with respect to Γ).

By (AC1) and (AC3) every homotopy equivalence is in Σ and by (AC4) the map-

ping cone of a morphism f of Σ is acyclic, thus it follows from the exact sequence of

the mapping cone that any such f is a quasi-isomorphism.

Remark 4.2 Let K∗(A) be the category of (bounded below) chain complexes up to

homotopy, that is, its objects are complexes of A and its morphisms are homotopy

classes of morphisms of complexes. It is a triangulated category. An acyclic class Γ

determines a triangulated subcategory of K∗(A) and, as a consequence, the class of

morphisms Σ associated with Γ inherits some properties from the general setup of

triangulated categories, i.e., it admits a calculus of fractions. For the sake of simplicity

we will follow Barr’s treatment and refer to [B95] for the properties of Σ that will be

used.

The class of morphisms Σ is stable under composition and satisfies the 2 out of 3

property (see the proof of [B96, Proposition 3.3]), that is, for every pair of morphisms

f , g of C∗(A) so that g f exists, if two of f , g and g f are in Σ, then so is the third.

Moreover, Σ has a homotopy calculus of fractions [B96]. In many cases, such as when

Σ is the class of quasi-isomorphisms or the class of homotopy equivalences, Σ is a

saturated class of morphisms. In other words, it is precisely the class of morphisms

of C∗(A) which become isomorphisms in C∗(A)[Σ−1].

We use C∗(A)[Σ−1] to denote the localized category of C∗(A) with respect to

Σ, which exists in a suitable universe, (see [GZ]), and is uniquely determined up to
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isomorphism. Two objects C∗, D∗ of C∗(A) are said to be weakly equivalent (with

respect to Γ) if there exists a sequence of morphisms of C∗(A),

C∗ ← C1
∗
→ · · · ← Cm

∗
→ D∗,

which are weak equivalences. Hence, weakly equivalent objects are isomorphic in

C∗(A)[Σ−1].

4.1.2 Weak Equivalences in Functor Categories

Let C be a category and A an abelian category. The functor category Cat(C, A) is an

abelian category. We fix a class Σ of weak equivalences in Cat(C, C∗(A)) associated

with an acyclic class Γ in C∗(Cat(C, A)) = Cat(C, C∗(A)).

Let us now assume that C is a monoidal category and A is an abelian monoidal

category. As Mon(C, C∗(A)) is a subcategory of Cat(C, C∗(A)), Σ determines a class

of morphisms in Mon(C, C∗(A)), which will be represented by the same symbol.

Thus, a morphism of Mon(C, C∗(A)) is a weak equivalence if it is in Σ as a morphism

of Cat(C, C∗(A)).

However, note that for two monoidal functors from C to C∗(A), the weak equiva-

lence relation in Mon(C, C∗(A)) is not the same as it is in Cat(C, C∗(A)), since in the

first case the intermediate functors in the chain of weak equivalences between these

functors must be monoidal.

We use Mon(C, C∗(A))[Σ−1] to denote the category obtained by inverting the

weak equivalences in Σ, so the natural functor

Mon(C, C∗(A))→ Mon(C, C∗(A))[Σ−1]

transforms weak equivalences to isomorphisms.

4.1.3 Compatibility with Simple Functors

We note that the class of weak equivalences in Mon(C, C∗(A)) contains the homo-

topy equivalences and is compatible with the functor sEM , so it defines a functor

sEM : (∆oMon(C, C∗(A)))[Σ̃−1]→ Mon(C, C∗(A))[Σ−1],

where Σ̃ is the class of morphisms in ∆
oMon(C, C∗(A)) which in each simplicial

degree are in Σ, as follows from (AC5).

This compatibility is one of the basic properties of acyclic classes that are needed

to prove the acyclic models theorem below. Instead of Barr’s acyclic classes we could

work in other settings where there is such a compatibility (see also the last paragraph

of this section).

4.2 G-Presentable Objects and G-Weak Equivalences

Let C be a monoidal category, A an abelian monoidal category, Σ a class of weak

equivalences in Cat(C, C∗(A)) which contains the homotopy equivalences and is

compatible with sEM .
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4.2.1 The Standard Construction

Recall that if X is a category, a cotriple (also called a comonad, see [ML]) G = (G, ε, δ)

in X is given by a functor G : X → X and natural transformations ε : G ⇒ id and

δ : G⇒ G2, which satisfy

δG · δ = Gδ · δ : G⇒ G3, εG · δ = 1G = Gε · δ : G⇒ G,

where the dot denotes the composition of natural transformations, (see [ML]). Given

a cotriple G in X, every object X of X has a functorial augmented simplicial object

associated with it, B•(X), which will be called the standard construction of G applied

to X [ML, Chapter VII]. In degree n, n > 0, the simplicial object B•(X) is given by

Gn+1(X) with face and degeneracy transformations given by

∂i = GiεGn−i : Gn+1(X)→ Gn(X), 0 6 i 6 n,

si = GiδGn−i : Gn+1(X)→ Gn+2(X), 0 6 i 6 n.

In this way we obtain a simplicial object with an augmentation defined by ε : B0(X) =

G(X) → X. By the functoriality of the standard construction we obtain an aug-

mented simplicial functor B• in Cat(X, X).

Proposition 4.3

(i) The augmented simplicial functor G(ε) : G ◦ B• ⇒ G is contractible.

(ii) The augmented simplicial functor εG : B• ◦ G⇒ G is contractible.

Proof (i) The face and degeneracy morphisms of G ◦ B• are given by

G(∂n
i ) = Gi+1εGn−i

= ∂n+1
i+1 , 0 6 i 6 n,

G(sn
i ) = Gi+1δGn−i

= sn+1
i+1 , 0 6 i 6 n,

where the latter are the faces and degeneracies of B•. Now, the extra degeneracy from

B•, s = sn+1
0 , gives a contraction for G ◦ B•.

For (ii) use the last extra degeneracy sn+1
n+1 in Bn ◦ G.

4.2.2 Monoidal Structure in the Standard Construction

Let G be a cotriple in Mon(C, C∗(A)). We say that G is compatible with Σ if

G(Σ) ⊆ Σ. We will associate to G a monoidal functor B∗ : Mon(C, C∗(A)) →
Mon(C, C∗(A)).

The standard construction defines a functor

B• : Mon(C, C∗(A))→ ∆
oMon(C, C∗(A)).

By composing B• with the Eilenberg–Mac Lane simple functor defined in Sec-

tion 3.2.1, sEM, we obtain a functor

B∗ = sEMB• : Mon(C, C∗(A))→ Mon(C, C∗(A)).

The natural transformation ε gives a natural transformation ε : B∗ ⇒ id.
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4.2.3 G-Presentable Objects

Barr [B96] introduced the ε-presentable objects. We will refer to them as G-presen-

table objects. We recall their definition.

Definition 4.4 We say that K∗ of Mon(C, C∗(A)) is G-presentable (with respect

to Γ) if the augmentation morphism ε : B∗(K∗)→ K∗ is a weak equivalence.

As remarked in Section 4.1.3, Σ contains the homotopy equivalences, so if K∗ is

an object of Mon(C, C∗(A)) such that εKn
splits for all n, then εKn

∈ Σ, and since Σ

is compatible with sEM, it follows that εK ∈ Σ. Hence we obtain the following result.

Proposition 4.5 Let K∗ be an object of Mon(C, C∗(A)) such that εKn
splits for all

n ∈ Z, that is to say, for each n there is a natural transformation θn : Kn → KnG such

that εKn
θn = id. Then K∗ is G-presentable.

Example 4.6 If K∗ is an object of Mon(C, C∗(A)), then G(K∗) is G-presentable,

since for each n we can split G(Kn) by δ.

4.2.4 G-Weak Equivalences

Barr introduced the G-acyclic objects in [B96]. More generally we can speak of ob-

jects that are G-equivalent in the following sense.

Definition 4.7 Let f : K∗ → L∗ be a morphism of Mon(C, C∗(A)). We say that f

is a BG-weak equivalence, (respectively, a G-weak equivalence), with respect to Γ, if

B∗( f ) ∈ Σ, (respectively, if G( f ) ∈ Σ).

Proposition 4.8 If G(Σ) ⊆ Σ, then a morphism f : K∗ → L∗ of Mon(C, C∗(A)) is

a G-weak equivalence if and only if it is a BG-weak equivalence.

Proof If f is a G-weak equivalence, then for all n > 0, Gn+1( f ) is a weak equivalence

by hypothesis. Therefore, by (AC5), f is a BG-weak equivalence.

Reciprocally, if we assume that f is a BG-weak equivalence, then

G(B( f )) : G(B∗(K∗))→ G(B∗(L∗))

is a weak equivalence by hypothesis. Consider the following commutative diagram.

G(B∗(K∗))
G(B( f ))

//

G(ε)

��

G(B∗(L∗))

G(ε)

��

G(K∗)
G( f )

// G(L∗)

By Proposition 4.3(ii), the two vertical morphisms are isomorphisms, so the result

follows from the 3 out of 2 property of Σ.
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Definition 4.9 An object K∗ of Mon(C, C∗(A)) in non-negative degrees (that is,

with Kp = 0 if p < 0) is said to be G-acyclic (with respect to Γ) if the augmentation

K∗ → H0(K∗) is a G-weak equivalence.

4.3 The Acyclic Models Theorem for Monoidal Functors

The following result and its corollaries are a variation of the classical acyclic models

theorem in the context of monoidal functors (see [EM1, BB, B96]).

Let C be a monoidal category, A an abelian monoidal category, and Σ a class of

weak equivalences in Mon(C, C∗(A)) which contains the homotopy equivalences and

is compatible with sEM . Let G be a cotriple in Mon(C, C∗(A)).

Theorem 4.10 Let K∗ be a G-presentable object of Mon(C, C∗(A)) and s : L∗ →
M∗ a G-weak equivalence. Suppose that G is compatible with Σ, (that is, G(Σ) ⊆
Σ). Then for any α : K∗ → M∗ there exists a unique morphism α̃ : K∗ → L∗ in

Mon(C, C∗(A))[Σ−1] such that α = sα̃ in this localized category.

Proof By the naturality of ε, we have a commutative diagram:

B∗(K∗)

εK

��

B(α)
// B∗(M∗)

εM

��

B∗(L∗)

εL

��

B(s)
oo

K∗
α

// M∗ L∗
s

oo

As K∗ is G-presentable, εK is a weak equivalence. Moreover, by Proposition 4.8,

B(s) is also a weak equivalence. So they are isomorphisms in the localized category

Mon(C, C∗(A))[Σ−1].

In this category we define the morphism α̃ = εLB(s)−1B(α)(εK )−1. We have

sα̃ = α, since α = εMB(α)(εK )−1 by the commutativity of the diagram above and

εM = sεLB(s)−1. So it follows that

α = εMB(α)(εK )−1
= sεLB(s)−1B(α)(εK )−1

= sα̃.

With respect to uniqueness, assume that γ : K∗ → L∗ is another lifting of α in

Mon(C, C∗(A))[Σ−1], so that α = sγ. Since the standard construction is functo-

rial and compatible with weak equivalences because G(Σ) ⊆ Σ, we have B(s)B(α̃) =

B(α) = B(s)B(γ), but B(s) ∈ Σ, so B(γ) = B(α̃). Moreover, as ε is a natural trans-

formation, we have εLB(γ) = γεK and εLB(α̃) = α̃εK , and since εK ∈ Σ, we deduce

that γ = α̃. This ends the proof of the theorem.

Corollary 4.11 Let K∗, L∗ be objects of Mon(C, C∗(A)) in non-negative degrees. Sup-

pose that K∗ is G-presentable and L∗ is G-acyclic. Then any monoidal natural trans-

formation H0(K∗) → H0(L∗) has a unique extension to a morphism K∗ → L∗ in

Mon(C, C∗(A))[Σ−1].
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Proof It follows from the previous theorem applied to the diagram

L∗

��

K∗

55
k

k

k

k

k

k

k

k

k

k

k

// H0(K∗) // H0(L∗)

Corollary 4.12 Let K∗, L∗ be objects of Mon(C, C∗(A)) in non-negative degrees.

Suppose that K∗, L∗ are G-acyclic and G-presentable. Then any monoidal natural

isomorphism H0(K∗) → H0(L∗) lifts to a unique isomorphism f∗ : K∗ → L∗ in

Mon(C, C∗(A))[Σ−1].

4.4 Weak Homotopy Type

In the following sections we will apply the general results above to some chain-valued

functors defined in the category of topological spaces or in the category of simplicial

sets. In all cases, the acyclic classes in C∗(Cat(C, A)) will come from acyclic classes in

C∗(A), and the cotriples in C∗(Cat(C, A)) will come from monoidal cotriples in C.

Let us describe the main features of this situation.

Let Γ be an acyclic class in C∗(A) and Σ the associated class of weak equivalences.

We extend Σ to a class of weak equivalences Σ̃ in C∗(Cat(X, A)) componentwise: a

morphism f : K∗ → L∗ is in Σ̃ if and only if, for all objects X of C, fX : K∗(X) →
L∗(X) is in Σ.

If we take the contractible complexes in C∗(A) as the acyclic class Γ, we will say

that Γ̃ is the acyclic class of weakly contractible functors in C∗(Cat(X, A)). The mor-

phisms in Σ̃ will be called weak homotopy equivalences. If Γ is the class of acyclic

complexes, we will say that Σ is the class of weak quasi-isomorphisms.

Given a monoidal category C, a monoidal cotriple in C is a cotriple G = (G, ε, δ),

such that G : C → C is a monoidal functor and ε : G ⇒ idC and δ : G ⇒ G2 are

monoidal natural transformations.

If G = (G, ε, δ) is a monoidal cotriple in C, define a functor

G̃ : Mon(C, C∗(A))→ Mon(C, C∗(A)),

by composition G̃(F∗) = F∗G, and let ε̃ : G̃ ⇒ id and δ̃ : G̃ ⇒ G̃2 be the natu-

ral transformations induced by ε, δ. It follows easily from the definitions that G̃ =

(G̃, ε̃, δ̃) is a cotriple in Mon(C, C∗(A)).

Proposition 4.13 Let Γ be an acyclic class in C∗(A) and G a monoidal cotriple in C.

Consider the class of morphisms Σ̃ and the cotriple G̃ induced in Mon(C, C∗(A)). Then

G̃ is compatible with Σ̃, that is, G̃(Σ̃) ⊆ Σ̃.
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Proof If f : K∗ → L∗ is in Σ̃, then fX : K∗(X) → L∗(X) is in Σ for all objects X of

C. In particular, fG(X) ∈ Σ, thus G̃( f ) ∈ Σ̃.

A detailed analysis of the proof of the acyclic models theorem shows that, in fact,

the main ingredients of our proof are a monoidal functor sEM : ∆
oC∗(A) → C∗(A)

and a saturated class of morphisms Σ of C∗(A), such that the following hold.

• Σ contains the homotopy equivalences.
• If f∗∗ : C∗∗ → D∗∗ is a morphism of double complexes such that fn∗ is in Σ, then

sEM( f∗∗) is also in Σ.

We will analyze this more general situation elsewhere.

5 Application: Comparison of Simplicial and Cubical Singular Chains

In this section we compare the simplicial and cubical singular chains of a topologi-

cal space in the monoidal setting by applying the results above, extending the well-

known classic comparison theorem [EM1].

5.1 Simplicial and Cubical Chains

Let Top denote the category of topological spaces, which is a monoidal category un-

der cartesian product, and let C∗(Z) be the category of chain complexes of abelian

groups. We fix the class Σ of weak homotopy equivalences in the functor category

Cat(Top, C∗(Z)), (§4.4).

It is well known [EM1] that the functor of simplicial singular chains

S∗ : Top→ C∗(Z),

together with the shuffle product as the Künneth morphism is a monoidal functor.

We can also consider the functor of cubical singular chains, C∗ : Top→ C∗(Z). For

this we take Massey’s notations [Mas]: for a topological space X, let Qp(X) be the free

abelian group generated by the continuous maps I p → X, where I is the unit interval

of the real line. Its elements are the cubical chains of X. Now Cn(X) is defined as the

quotient of Qn(X) modulo the degenerate chains. Together with the cross product

× : C∗(X)⊗C∗(Y )→ C∗(X × Y ),

which for singular cubes c : I p → X and d : Iq → Y is defined as the cartesian product

c × d : I p+q
= I p × Iq → X × Y,

C∗ is a monoidal functor.

5.2 A Monoidal Cotriple in Top

In order to compare S∗ and C∗ as monoidal functors following Corollary 4.12, we

introduce a monoidal cotriple in Top. It is a model induced cotriple (see [B02, §4.2]).
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In the classical version of the acyclic models theorem the models are the standard

simplexes ∆
m, m > 0. To obtain a monoidal version we take products of these spaces.

Therefore, for any sequence n = (n1, . . . , nr), ni > 0, take ∆
n

= ∆
n1 × · · · × ∆

nr .

We define G = (G, ε, δ) as the model induced cotriple with models ∆
n. That is, the

functor G : Top→ Top takes a topological space X to

G(X) =

⊔

α : ∆n→X

(∆n, α),

where (∆n, α) is a copy of ∆
n indexed by the continuous map α : ∆

n → X and

where the disjoint union is over all sequences n and maps α. Where morphisms are

concerned, G takes a continuous map f : X → Y to the map

G( f ) :
⊔

α : ∆n→X

(∆n, α)→
⊔

β : ∆n→Y

(∆n, β),

which is the identity from (∆n, α) to (∆n, f ◦ α).

For a topological space X, define the map

εX : G(X) =

⊔

α : ∆n→X

(∆n, α)→ X,

which over (∆n, α) is α : ∆
n → X, so we have a natural transformation ε : G ⇒ id.

Finally we define a natural transformation δ : G ⇒ G2: the iteration of G gives the

functor

G2(X) =

⊔

∆m
β
→∆n α

→X

((∆m, α), β),

so we can define δ : G(X)→ G2(X) as the identity from (∆n, α) to ((∆n, α), id).

Moreover, this cotriple has a monoidal structure. To define the Künneth mor-

phisms of G consider topological spaces X,Y and take the map

κX,Y : G(X)× G(Y ) =

( ⊔

α : ∆n→X

(∆n, α)
)
×

( ⊔

β : ∆m→Y

(∆m, β)
)
→ G(X × Y )

=

⊔

γ : ∆r→X×Y

(∆r, γ),

given by (∆n, α)× (∆m, β)
id
→ (∆n×∆

m, α×β). It is straightforward to prove that

G is a monoidal cotriple in Top.

5.3 A Comparison Theorem

As in previous sections, we denote also by G = (G, ε, δ) the cotriple induced in

Mon(Top, C∗(Z)) by the monoidal cotriple in Top defined above.
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Theorem 5.1 The simplicial and cubical singular chain monoidal functors

S∗,C∗ : Top→ C∗(Z)

are weakly homotopy equivalent monoidal functors, that is, they are weakly equivalent

in Mon(Top, C∗(Z)).

Proof Both H0S∗ and H0C∗ are functors which associate with a topological space X

the free group generated by the path components of X, so the result will follow from

Corollary 4.12 after we prove that S∗,C∗ are G-presentable and G-acyclic as objects

of Mon(Top, C∗(Z)).

With respect to G-acyclicity for S∗ we must prove that G(S∗) → G(H0) is a weak

equivalence. That is to say, that the morphisms

⊕

α : ∆n→X

S∗(∆n)→
⊕

α : ∆n→X

Z,

where in each summand the morphism S∗(∆n) → Z is the natural augmentation,

are homotopy equivalences for all X. As ∆
n are contractible spaces, the result is clear.

Similarly, we can prove the G-acyclicity of C∗.

To prove G-presentability it is sufficient by Proposition 4.5 to prove that εCn
and

εSn
split for all n > 0. We can define a natural transformation θS : Sn → G(Sn), by

sending a singular simplex σ : ∆
n → X on the topological space X to the simplex of

G(X) given by id : ∆
n → (∆n, σ). It follows from the definition that ε ◦ θS = id, so

this morphism splits the standard resolution B∗(S∗).

For the cubical chains, observe that In is homeomorphic to ∆
1×

(n)
· · · ×∆

1, so that

an n-cube on a space X is given by a map ∆
1×

(n)
· · · ×∆

1 → X. We can now follow

the definition of θS to define a natural transformation for cubical chains

θQ : Qn → G(Qn),

by sending a cubical simplex c : ∆
1×

(n)
· · · ×∆

1 → X to the cubical simplex of G(X)

given by id : ∆
1×

(n)
· · · ×∆

1 → (∆1×
(n)
· · · ×∆

1 → X, c). This natural transformation

θQ splits the augmentation εQn
. But the natural projection πn : Qn → Cn admits a

section νn, πnνn = id (see [Mas, Lemma 5.5], so we can define θC = θQνn, which

splits εCn
, as is easily verified.

6 Symmetric Monoidal Functors

In this section we indicate how to extend the results of the previous sections to sym-

metric monoidal functors. We will focus our attention on the symmetric version of

Corollary 4.12 which we will apply to obtain a comparison result in the symmetric

setting for the singular and ordered cubical functors acting on topological spaces.
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6.1 Acyclic Models for Symmetric Monoidal Functors

Let C be a symmetric monoidal category, A a symmetric abelian monoidal category,

Γ an acyclic class in C∗(Cat(C, A)) and Σ the class of weak equivalences. The class Σ

determines a class of morphisms in SyMon(C, C∗(A)) which will be represented by

the same symbol. Let G be a cotriple in SyMon(C, C∗(A)) compatible with Σ, i.e.,

G(Σ) ⊆ Σ.

Following the general procedure in Section 4.2.1, given G in SyMon(C, C∗(A)),

we can associate a functor B• : SyMon(C, C∗(A)) → ∆
oSyMon(C, C∗(A)), in such

a way that the simplicial object B•(K∗) is augmented to K∗ by ε. By composing this

functor with the symmetric simple functor (§3.2.3) we obtain a functor

B∗ : SyMon(C, C∗(A))→ SyMon(C, C∗(A)).

The natural transformation ε gives a natural transformation B∗ ⇒ id.

We can now reproduce the definitions and results from Section 4 in the symmet-

ric setting. In particular, we have the following result which is analogous to Corol-

lary 4.12.

Theorem 6.1 Let K∗, L∗ be objects of SyMon(C, C∗(A)) in non-negative degrees.

Suppose that K∗, L∗ are G-acyclic and G-presentable. Then any symmetric monoidal

natural isomorphism H0(K∗)→ H0(L∗) lifts to a unique isomorphism f∗ : K∗ → L∗ in

SyMon(C, C∗(A))[Σ−1].

A symmetric monoidal cotriple G = (G, ε, δ) on a symmetric monoidal category

C is a monoidal cotriple such that G is a symmetric monoidal functor and ε, δ are

monoidal transformations. As in Section 4.4, if D is another symmetric monoidal

category, a symmetric monoidal cotriple on C induces a cotriple on SyMon(C, D)

that will also be denoted by G, which satisfies G(Σ) ⊆ Σ (see Proposition 4.13).

6.2 The Kleisli Cotriple

The cotriple in Top defined in Section 5.2 is not symmetric. Therefore in order to ap-

ply Theorem 6.1 with C = Top, we must first define a suitable symmetric monoidal

cotriple on Top. The following cotriple, introduced by Kleisli [K2], will turn out to be

symmetric and monoidal: for a topological space X and an element x ∈ X, let P(X, x)

denote the space of pointed continuous paths α : (I, 0) → (X, x), which is topolo-

gized by the compact-open topology. Then define G on X by G(X) =
⊔

x∈X P(X, x),

so G(X) is the set of paths in X, but with a topology that is not the path space topol-

ogy. Nevertheless, note that if Z is a connected space, a map from Z to G(X) is

equivalent to a map β : Z × I → X such that β(z, 0) = x for some x ∈ X and all

z ∈ Z. The action of G on a continuous map f : X → Y is given by composition, that

is, if α ∈ P(X, x), then G( f )(α) = f ◦ α.

Define a natural transformation ε : G⇒ id by evaluating paths at 1. Finally, note

that the iteration G2 over a space X is given by

G2(X) =

⊔

x∈X

⊔

α∈P(X,x)

P(P(X, x), α).
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An element of P(P(X, x), α) is determined by a map α̃ : I2 → X with α̃(t, 0) = α(t)

for all t ∈ I, and α̃(0, s) = x for all s ∈ I. We define the natural transformation

δ : G⇒ G2 by maps P(X, x)→ P(P(X, x), x) that send α to the map α̃(t, s) = α(ts).

The cotriple G = (G, ε, δ) will be called the Kleisli cotriple. It is symmetric

monoidal: for topological spaces X,Y define the Künneth morphism

κX,Y : G(X)× G(Y ) =

⊔

x∈X

P(X, x)×
⊔

y∈Y

P(Y, y)→ G(X × Y )

=

⊔

(x,y)∈X×Y

P(X × Y, (x, y)),

by sending the paths α ∈ P(X, x) and β ∈ P(Y, y) to the path α×β ∈ P(X×Y, (x, y)).

It is evident that these morphisms are compatible with the symmetric structure of

Top.

6.3 Ordered Cubical Chains

The cubical chain functor is not symmetric. However, the ordered cubical chains

define a symmetric monoidal functor that may be compared directly with S∗.

The ordered cubical chains of a topological space X are defined as follows[Ko]. If

c : In → X is a singular n-cube and π ∈ Σn, define the chain πc as

(πc)(t1, . . . , tn) = ε(π) c(tπ(0), . . . , tπ(n)),

and extend this action to Cn(X) linearly. Let Dn(X) be the subgroup of Cn(X) gener-

ated by chains of the form c − πc. Then D∗(X) is a subcomplex of C∗(X), so we can

define the ordered cubical chains of X as the quotient complex

Cord
∗

(X) = C∗(X)/D∗(X).

There is a natural transformation C∗ ⇒ Cord
∗

.

The monoidal structure of the cubical chain functor C∗ with the usual cross prod-

uct is carried over the quotient by D∗. In fact, if X,Y are topological spaces, the cross

product maps C∗(X)⊗D∗(Y ) to D∗(X×Y ) since if c ∈ C p(X), d ∈ Cq(Y ) are singular

cubes and π ∈ Σp, then

(c − πc)× d = (c × d)− π̃(c × d),

where π̃ is the element of Σp+q that acts as π on the first p elements and fixes the rest.

Analogously,×maps D∗(X)⊗C∗(Y ) to D∗(X × Y ).

Proposition 6.2 The functor Cord
∗

: Top → C∗(Z) is a symmetric monoidal functor

and the natural transformation C∗ ⇒ Cord
∗

is a monoidal natural transformation.
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Proof The proof follows immediately from the definitions. Note that the cross

product in Cord
∗

is symmetric, since if X,Y are spaces and c⊗ d ∈ Cord
p (X)⊗Cord

q (X),

then

τ (c ⊗ d)(t1, . . . , tp+q) = (−1)pq(d⊗ c)(t1, . . . , tp+q)

= (d ⊗ c)(tq, . . . , tp+q, t1, . . . , tp)

= τX,Y (c × d)(t1, . . . , tp+q),

where in the second equality we used the invariance of the oriented cubical chains by

the action of the symmetric group.

We fix in SyMon(Top, C∗(Z)) the class Σ of weak homotopy equivalences, that

is, the symmetric monoidal functors f such that fX is a homotopy equivalence for

each space X. Let G be the cotriple induced by the Kleisli cotriple, which satisfies

G(Σ) ⊆ Σ; see Proposition 4.13.

Theorem 6.3 The simplicial and ordered cubical singular chain functors

S∗,Cord
∗

: Top→ C∗(Z)

are weakly homotopy equivalent symmetric monoidal functors.

Proof For a topological space X, both groups H0(S∗(X)) and H0(Cord
∗

(X)) are iso-

morphic to the free group generated by the path components of X, so the result

will follow from Theorem 6.1 after we prove that S∗ and Cord
∗

are G-presentable and

G-acyclic with respect to the Kleisli cotriple. This has been proved by Barr [B02] for

the simplicial singular chains functor. Let us prove it for ordered cubical singular

chains.

First we prove the G-acyclicity of Cord
∗

. We will prove that there is a chain con-

traction s for the complex C∗G → H0G such that for any singular n-cube c and any

σ ∈ Σn, s(σc) = σs(c).

Let X be any topological space and c : In → G(X) a singular n-cube. By the con-

nectedness of the standard cube, there is a point x ∈ X such that the map c factors

through a map c : In → P(X, x). By adjunction, c is equivalent to a map c̃ : In+1 → X,

which satisfies c̃(t1, . . . , tn, 0) = x, for (t1, . . . , tn) ∈ In. Taking into account the

product decomposition In+1
= In × I, we will write the value of c̃ at the point

(t1, . . . , tn) ∈ In and u ∈ I by c̃(t1, . . . , tn; u).

Note that H0(G(X)) is the free group generated by the elements of X, since the

spaces P(X, x) are contractible, and define s : H0(G(X)) → C0(G(X)) by s(x) = px,

where px denotes the constant path at x.

For n > 0 define µ : In+1 × I → In × I by µ(t1, . . . , tn+1; u) = (t1, . . . , tn; tn+1u)

and define s : Qn(G(X)) → Qn+1(G(X)) by s(c̃) = (−1)n+1c̃ ◦ µ. Next we recall the

definition of the differential d : Qn(X)→ Qn−1(X) of the cubical chain complex: for
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1 ≤ i ≤ n, ǫ ∈ {0, 1}, let δǫ
i : In−1 → In denote the face defined by δǫ

i (t1, . . . , tn−1) =

(t1, . . . , ǫ, . . . , tn−1), where ǫ is in the i-th place; if c ∈ Qn(X), d(c) is defined by

d(c) =

∑

i,ǫ

(−1)i+ǫc ◦ δǫ
i .

It is clear that on Qn+1 we have δε
i ◦ µ = µ ◦ δε

i , for 1 6 i 6 n, and that

(µ ◦ δ0
n+1)(t1, . . . , tn ; u) = (t1, . . . , tn ; 0), (µ ◦ δ1

n+1)(t1, . . . , tn; u) = (t1, . . . , tn ; u),

thus, an easy calculation proves that (ds + sd)(c̃) = c̃ − x. As s sends degenerate

chains to degenerate chains, it defines a map s : Cn(G(X)) → Cn+1(G(X)), and as x

represents the constant path px, which is degenerate as a cubical chain, the equality

above reduces to ds + sd = id in C∗(G(X)).

The contraction s is trivially compatible with the action of the symmetric group,

so it defines a contraction for Cord
∗

, and as a consequence Cord
∗

is G-acyclic.

To prove G-presentability, notice that the natural transformation θn : Qn → QnG

given by θn(σ)(t1, . . . , tn)(s) = c(st1, . . . , stn), is a section of εQ which is compati-

ble with taking quotients modulo degenerate chains and the action of the symmetric

group Σn, so it defines a section θord
n : Cord

n → Cord
n G, and we can apply Proposi-

tion 4.5.

Remark 6.4 Note that if SN
∗

: Top → C∗(Z) denotes the functor of normalized

simplicial singular chains, which is also a symmetric monoidal functor since the de-

generate singular chains are invariant by shuffle product [EM2], then the projection

S∗ ⇒ SN
∗

is a monoidal natural transformation of symmetric monoidal functors

which is a weak equivalence. This is a classical result and follows directly from the

fact that the degenerate singular chains are a direct factor of singular chains.

7 Application to Operads

7.1 Operads

Let us recall some definitions and notations about operads (see [MSS]). Let Σ be the

symmetric groupoid, that is, the category whose objects are the sets {1, . . . , n}, n > 1,

and the only morphisms are those of the symmetric groups Σn. Let C be a monoidal

category. The category of contravariant functors from Σ to C is called the category

of Σ-modules and is represented by ΣModC.We identify its objects with sequences

of objects in C, E = (E(l))l>1, with a right Σl-action on each E(l). If E and F are

Σ-modules, a morphism of Σ-modules f : E → F is a sequence of Σl-equivariant

morphisms f (l) : E(l)→ F(l), l > 1.

A unital Σ-operad (an operad for short) in C is a Σ-module P together with a

family of composition morphisms

γl;m1,...,ml
: P(l)⊗ P(m1)⊗ · · · ⊗ P(ml)→ P(m1 + · · · + ml),
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and a unit morphism η : 1 → P(1), which satisfies the axioms of equivariance, asso-

ciativity and unit. A morphism of operads is a morphism of Σ-modules that is com-

patible with structure morphisms. We use Op
C

to denote the category of operads in

C and its morphisms.

An operad in Top is called a topological operad. If R is a ring, an operad in C∗(R)

is called a dg operad. We are especially interested in the cases R = Z, Q .

7.2 A Comparion Result for Singular Chains Operads

We can now extend the comparison result between S∗ and Cord
∗

to topological oper-

ads. If F : C → D is a symmetric monoidal functor between monoidal categories, it

is easy to prove that, applied componentwise, F induces a functor between the cor-

responding categories of operads OpF : Op
C
→ Op

D
, also denoted by F. Therefore,

simplicial and cubical ordered singular chains induce functors

S∗,Cord
∗

: OpTop → OpC∗(Z).

Moreover, if D has a notion of weak equivalence, it extends to Op
D

component-

wise. For instance, we can consider the weak equivalence relation in the category of

chain complexes C∗(R) induced by quasi-isomorphisms. Then the following propo-

sition follows easily from the definitions.

Proposition 7.1 Let C be a monoidal category, R a ring and F, G ∈ Mon(C, C∗(R)).

If F, G are weakly equivalent (with respect to quasi-isomorphism in C∗(R)), then the

functors OpF, OpG : Op
C
→ OpC∗(R) are weakly equivalent.

This proposition together with Theorem 6.3 applied to S∗,Cord
∗

give the following.

Theorem 7.2 The functors S∗,Cord
∗

: OpTop → OpC∗(Z) are weakly equivalent (with

respect to quasi-isomorphism). In particular, for a topological operad P the dg operads

S∗(P),Cord
∗

(P) are weakly equivalent.

If Ho OpC∗(Z) denotes the localization of OpC∗(Z) with respect to quasi-isomor-

phisms, we obtain the following comparison result.

Corollary 7.3 There is an isomorphism of functors S∗ ∼= Cord
∗

: OpTop → Ho OpC∗(Z).

Theorem 7.2 may be applied to compare the categories of S∗(P) and Cord
∗

(P) alge-

bras up to homotopy. Recall that given a dg operad P, a P-algebra is a chain complex

V of finite type together with a morphism P → E[V ], where E[V ] denotes the op-

erad of endomorphisms of V . Following [GNPR, Definition 7.3.1], define a P-algebra

up to homotopy as a finite type complex V together with a morphism P → E[V ] in

Ho OpC∗(Z). From Theorem 7.2, we have the following.

Corollary 7.4 Let P be a topological operad. The categories of S∗(P) and Cord
∗

(P)

algebras up to homotopy are equivalent.
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This remark applies to Deligne’s conjecture, which is commonly expressed as fol-

lows: let A be an associative algebra over a ring R, and let C∗(A ; A) be the associated

Hochschild complex.

Deligne’s conjecture For any associative R-algebra A, the complex C∗(A; A) is nat-

urally an algebra over the singular chains of the little discs operad D2 or a suitable

version of it.

There is some ambiguity in this statement with reference to the chain model of

D2 to be used and whether obtaining a solution for one model means that a solu-

tion is obtained for any other model. From our results it follows that there is only

one chain model of a topological operad up to homotopy, therefore, this ambiguity

disappears when we work with structures up to homotopy, linking in this way the so-

lutions of Deligne’s conjecture given by Kontsevich, who used Cord
∗

(D2), (see [Ko]),

and McClure-Smith, Tamarkin and Voronov, who used singular chains (see [T]).

7.3 Formality

Recall that a dg operad P is formal if it is quasi-isomorphic to its homology operad

H(P), (see [MSS]). From Theorem 7.2 we can deduce the following equivalence.

Corollary 7.5 Let P be a topological operad. Then S∗(P ; Q) is a formal operad if and

only if Cord
∗

(P ; Q) is a formal operad.

M. Kontsevich proved the formality of the ordered cubical chains of the little

k-discs operad after tensoring by the real numbers R [Ko, Theorem 2]. The indepen-

dent nature of formality on the base field proved in [GNPR] implies that Cord
∗

(Dk ; Q)

is also formal over the rational field, so by Corollary 7.5, S∗(Dk ; Q) is formal.

7.4 Modular Operads

The results above may be extended to chain models of modular operads. We refer

to [GK, MSS] for the definitions concerning modular operads. Given a symmetric

monoidal category we denote by MOp
C

the category of modular operads of C.

As for operads, it follows from the definitions that every symmetric monoidal

functor F : C→ D applied componentwise induces a functor

MOpF : MOp
C
→ MOp

D
.

In particular, the singular and cubical chain functors of topological spaces extend to

functors defined in the category of topological modular operads. Now, as in Theorem

7.2, one has the following.

Theorem 7.6 The functors S∗,Cord
∗

: MOpTop → MOpC∗(Z) are weakly equivalent.

In particular, for a topological modular operad P, the dg modular operads S∗(P),Cord
∗

(P)

are weakly equivalent.
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As an immediate consequence of this result we deduce the equivalence of the for-

mality of the singular and ordered cubical operads of a topological operad over the

rationals.

Proposition 7.7 Let P be a topological modular operad. Then S∗(P ; Q) is a formal

modular operad if and only if Cord
∗

(P ; Q) is a formal modular operad.

We can apply this result to the modular operad M: the family M((g, l)) = Mg,l of

Deligne–Knudsen–Mumford moduli spaces of stable genus g algebraic curves with l

marked points, with the maps that identify marked points, is a modular operad in the

category of projective smooth Deligne–Mumford stacks [GK]. In [GNPR] we proved

that S∗(M ; Q) is a formal modular operad, so any other chain model is also formal.

For instance, for cubical chains we can state the following.

Corollary 7.8 The dg modular operad Cord
∗

(M ; Q) is a formal modular operad.

8 Contravariant Functors

If we work in the category of contravariant monoidal functors between monoidal

categories Mon(Co, D), a cotriple on C induces a triple on Mon(Co, D), so that the

standard construction produces cosimplicial objects instead of simplicial objects. As

remarked in Section 2.4, this can be avoided by identifying such functors with co-

variant comonoidal functors between C and Do. However, for functors with values in

C∗(Z), which are the functors that appear in the study of the cohomology of topolog-

ical spaces, the dual category C∗(Z)o is not the same as C∗(Z), so the acyclic models

Theorem 4.12 has to be appropriately dualized to cover this case.

In this section we present the minor modifications of the constructions and results

of Section 4 that are necessary to cover this situation, and we apply them to compare

the simplicial and cubical singular cochain functors.

8.1 The Standard Construction

Let T = (T, η, µ) be a triple (or monad, see [ML]) in a category X. There is a functor

associated with T which we call the standard construction, B• : X → ∆X, defined

by Bn(X) = Tn+1(X) and with faces and degeneracies defined analogously as in Sec-

tion 4.2.1.

Let C be a monoidal category, A an additive monoidal category, and Σ a class

of weak equivalences of Mon(Co, C∗(A)) which contains the homotopy equivalences

and is compatible with the Alexander–Whitney functor sAW. A monoidal cotriple

G = (G, ε, δ) in C induces a triple T on X = Mon(Co, C∗(A)), whose endofunctor

is given by T(K∗) = K∗G, and with η, µ induced by ε, δ. By the dual of Proposi-

tion 4.13, T is compatible with Σ, that is, T(Σ) ⊆ Σ.

We can compose the standard cosimplicial construction with the Alexander–

Whitney simple functor defined in Section 3.2.2 to obtain a functor

B∗ : Mon(Co, C∗(A))→ Mon(Co, C∗(A)).
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Moreover, the natural transformation ε of G defines a natural transformation

ε : id⇒ B∗.

8.2 Acyclic Models for Contravariant Monoidal Functors

By analogy to Section 4, it is clear how to define the notions of T-presentability and

T-equivalence in Mon(Co, C∗(A)), so that we have all the ingredients to transpose the

proof of Theorem 4.10 and its corollaries to the category of contravariant monoidal

functors between C and C∗(A). In particular, we can state the contravariant version

of Corollary 4.12 under the assumptions made in the previous subsection.

Theorem 8.1 Let K∗, L∗ be objects of Mon(Co, C∗(A)) concentrated in non-negative

degrees, and T a triple in Mon(Co, C∗(A)) induced by a monoidal cotriple G on C. Sup-

pose that K∗, L∗ are T-acyclic and T-presentable. Then any monoidal transformation

H0(K∗)→ H0(L∗) lifts to a unique morphism K∗ → L∗ in Mon(Co, C∗(A))[Σ−1]. In

particular, if H0(K∗) and H0(L∗) are isomorphic, then K∗ and L∗ are weakly homotopy

equivalent.

8.3 Application to Simplicial and Cubical Singular Cochains

For a topological space X, let S∗(X),C∗(X) denote, respectively, the complexes of

simplicial and of cubical singular cochains defined on X:

S∗(X) = Hom(S∗(X), Z), C∗(X) = Hom(C∗(X), Z).

They define contravariant functors S∗,C∗ : Topo → C∗(Z). By dualizing, the

Alexander–Whitney morphism for S∗, S∗ becomes a contravariant monoidal functor.

There is also an explicit Alexander–Whitney associative morphism for cubical chains

C∗(X × Y ) → C∗(X) ⊗ C∗(Y ) (see [Mas, XI.5; Exercise XIII.5.1]), and as a conse-

quence C∗ is also a contravariant monoidal functor.

The monoidal cotriple G on Top defined in Section 5.2 induces a triple in

Mon(Topo, C∗(Z)), denoted by T, and it is easily seen (compare Theorem 5.1) that

S∗ and C∗ are T-presentable and T-acyclic. Thus we are able to apply Theorem 8.1

and deduce the following equivalence.

Theorem 8.2 The simplicial and cubical singular cochain functors S∗,C∗ : Topo →
C∗(Z) are weakly homotopy equivalent contravariant monoidal functors, that is, they

are weakly homotopy equivalent in Mon(Topo, C∗(Z)).

9 Application to Cohomology Theories

In this section we apply the acyclic models Theorem 8.1 to compare cohomology

theories on simplicial sets arising from simplicial differential graded algebras over a

ring R.
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9.1 Cohomology Theories

Denote by ∆
oSets the category of simplicial sets. If A∗

•
is a simplicial differential

graded Z-algebra, then with any simplicial set X we can associate a differential graded

algebra A∗(X) by taking morphisms, in ∆
oSets, from X to A∗

•
. In order to obtain a

good cohomology theory we impose some conditions on A∗

•
, following Cartan [C].

Let R be a ring and A∗

•
a simplicial differential graded R-algebra. We will assume

that A∗

•
satisfies the following axioms:

(i) Homology axiom. For each p > 0, the natural morphism R→ A∗

p is a homotopy

equivalence of cochain complexes. In particular, it is a quasi-isomorphism.

(ii) Homotopy axiom. For each q > 0, the simplicial set A
q
• is (simplicially) con-

tractible, i.e., the homotopy groups of A
q
• are zero.

(iii) Freeness axiom. R is a principal ideal domain (PID) and, for all p, q, the R-

module A
q
p is free.

Associated with A∗

•
there is a cohomology theory defined by

A∗(X) = Hom∆(X•, A∗

•
),

where Hom∆ stands for the homomorphism set in the simplicial category. A∗(X) is

a cochain complex, which in degree q is equal to ∆
oSets(X•, A

q
•).

Example 9.1 Given a ring R, the singular cochain complex S∗( · ; R) is an example

of cohomology theory in the sense above. To see this, it suffices to take the simplicial

R-algebra S∗
•

(R) which in simplicial degree p is the cochain R-algebra of the simplicial

set represented by p, ∆[p], with evident face and degeneracies.

Cartan proved ([C], see also [Maj]) that the cohomology theories associated with

simplicial differential graded algebras A∗

•
which satisfy the homology and homotopy

axioms are isomorphic, and that this isomorphism comes from a true morphism of

complexes if A∗

•
satisfies the normalization A

q
p = 0 if q > p, [C, Theorem 2]. More-

over, it is compatible with products if the cohomology theories satisfy some flatness

conditions [C, Theorem 3]. We will apply Theorem 8.1 to obtain a comparison result

at the chain level, which is stronger than Cartan’s theorems. Note that M. Mandell

[Man] obtained uniqueness results for cochain theories that satisfy a different set of

axioms related to the classical Eilenberg–Steenrod axioms.

The category of simplicial sets ∆
oSets is a monoidal category under the cartesian

product. Using the algebra structure of A∗

•
, it follows that the cohomology theory A∗

defines a contravariant monoidal functor A∗ : (∆oSets)o → C∗(R).

Theorem 9.2 Let A∗

•
, B∗

•
be simplicial differential graded R-algebras satisfying axioms

(i)–(iii). Then the contravariant monoidal functors A∗, B∗ : (∆oSets)o → C∗(R), are

weakly quasi-isomorphic in the category Mon((∆oSets)o, C∗(R)). In particular, any

such cohomology theory is weakly quasi-isomorphic to the simplicial singular cochain

complex functor S∗( · ; R).
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Proof Let G be the cotriple in ∆
oSets which is defined, as in the topological case, by

G(X) =
⊔

α(∆[n], α), where ∆[n] = ∆[n1]× · · · ×∆[nr]. The cotriple G induces

T = (T, η, µ) in Mon(∆oSetso, C∗(R)).

By hypothesis, H0(A∗(X)) and H0(B∗(X)) are isomorphic to H0(X), so in order to

apply the acyclic models Theorem 8.1, we must prove that any cohomology theory A∗

that satisfies axioms (i)–(iii) is T-acyclic and T-presentable, the case of S∗( · ; R) being

well known. The T-acyclicity will follow from the acyclicity of A∗

•
with respect to the

differential degree, while the T-presentability will follow from the contractibility with

respect to the simplicial degree.

Let us first prove that A∗ is T-acyclic. We have to prove that for any sequence

n = (n1, . . . , nr) the complex

· · · → Aq(∆n)→ Aq−1(∆n)→ · · · → A0(∆n)→ H0(A∗(∆n))→ 0

is acyclic. We prove this statement for any contractible simplicial set X, the standard

simplex X = ∆
n being a special case.

Note that the q-cocycles of A∗(X) are equal to Hom(X, ZqA), where ZqA denotes

the simplicial group of q-cocycles of A∗

•
. By the homology axiom d : A

q−1
• → ZqA is

surjective, hence it is a Kan fibration with fiber Zq−1A, and it follows also that ZqA is

connected.

Take a q-cocycle f : X → ZqA. As X is contractible, f is homotopic to zero and

ZqA is connected, f admits an extension to a morphism X → A
q−1
• , and consequently

it is a boundary.

Let us now turn to T-presentability. By the contravariant version of Proposi-

tion 4.5, if each Aq, q > 0 is T-split, then A∗ will be T-presentable. Therefore we

want to define, for each q, a natural transformation θ : T(Aq) = AqG⇒ Aq such that

θη = id, where for a simplicial set X,

ηX : Aq(X)→ AqG(X) =
∏
n

∏
α : ∆n→X

Aq(∆n, α)

is the morphism given by composition: ηX(w) = (w ◦ α, α).

We denote by X(p) the p-skeleton of the simplicial set X, so X = lim
−→

X(p). First

of all, note that the functors Aq and AqG are compatible with the skeleton decompo-

sition, that is, we have

Aq(X) = lim
←−

Aq(X(p)), AqG(X) = lim
←−

AqG(X(p)).

The first isomorphism results from the compatibility of Hom functors with limits,

while for the second we observe that G commutes with filtered colimits.

Thus, to define θ, it is sufficient to define morphisms θp : AqG(X(p))→ Aq(X(p)),

p > 0, which are sections of ηX(p), and such that the diagrams

AqG(X(p))
θp

//

��

Aq(X(p))

��

AqG(X(p − 1))
θp−1

// Aq(X(p − 1)),
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where the vertical morphisms are induced by the inclusion X(p − 1) ⊆ X(p), are

commutative. We will define θp inductively on p. The inductive step will be based on

the following auxiliary result.

Extension Lemma For any p, the inclusion ∂∆[p] → ∆[p] induces a surjection

fp : Aq(∆[p])→ Aq(∂∆[p]) with an R-linear section s : Aq(∂∆[p])→ Aq(∆[p]).

In fact, note that as a consequence of the homotopy axiom, for any simplicial

subset Y ⊆ X the induced morphism Aq(X) → Aq(Y ) is surjective, since A
q
∗ is a

contractible Kan complex, and, as the inclusion Y ⊆ X is a cofibration, any map

Y → A
q
∗ extends to a map X → A

q
∗ (see [BG, FHT] for more elementary proofs).

In particular, the morphism fp : Aq(∆[p]) → Aq(∂∆[p]) is surjective. But

Aq(∂∆[p]) is R-projective because R is a PID and Aq(∂∆[p]) is a submodule of

the free R-module (A
q
p−1)p+1. Thus, fp has an R-linear section s : Aq(∂∆[p]) →

Aq(∆[p]).

Let us now return to the inductive definition of θp. For p = −1 there is nothing

to prove, so let us assume that θp−1 has been constructed. The p-skeleton X(p) is

obtained from the (p − 1)-skeleton X(p − 1) by the pushout diagram

⊔
∂∆[p] //

��

X(p − 1)

��⊔
∆[p] // X(p),

where the disjoint union is over all non degenerate maps ∆[p] → X(p). Since Aq

transforms pushouts to pullbacks, we get the pullback diagram

Aq(X(p)) //

��

∏
Aq(∆[p])

��

Aq(X(p − 1)) //
∏

Aq(∂∆[p]).

Analogously, by applying AqG we obtain the pullback diagram

AqG(X(p)) //

��

∏
AqG(∆[p])

��

AqG(X(p − 1)) //
∏

AqG(∂∆[p]).

By induction we have morphisms θp−1 = θX(p−1) and θ ′

p−1 = θ∂∆[p], so it suffices to
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define θ ′

p = θ∆[p] to be a section of η∆[p] that makes the diagram

AqG(∆[p])
gp

//

θ ′

p

��

AqG(∂∆[p])

θ ′

p−1

��

AqG(X(p − 1))oo

θp−1

��

Aq(∆[p])
fp

// Aq(∂∆[p]) Aq(X(p − 1))oo

commutative (the square on the right commutes by induction).

Let π : AqG(∆[p]) → Aq(∆[p]) be the natural projection morphism, so that

πη = id, and let s be a section of fp, fps = id, whose existence is guaranteed by

the extension lemma above. We define the morphism θ ′

p = π + s(θ ′

p−1gp − fpπ).

Commutativity easily follows since

fpθ
′

p = fpπ + fps(θ ′

p−1gp − fpπ) = fpπ + θ ′

p−1gp − fpπ = θ ′

p−1gp.

Moreover, θ ′

p is a section of η∆[p] since

θ ′

pη∆[p] = πη∆[p] + sθ ′

p−1gpη∆[p] − s fpπη∆[p] = id + s fp − s fp = id,

where we have used the commutativity proved above.

9.2 Multiplicative Cohomology Theories

Any contravariant monoidal functor F∗ : (∆oSets)o → C∗(R) gives rise to a functor

on ∆
oSets with values in the category of R-differential graded algebras by composing

the Künneth morphism of F∗ with the morphism induced by the diagonal of the

space

F∗(X)⊗ F∗(X)
κ
→ F∗(X × X)

∆
∗

→ F∗(X).

Now, from Theorem 9.2 we deduce the following.

Corollary 9.3 Let A∗

•
be a simplicial R-dg algebra that satisfies axioms (i)–(iii). For

any simplicial set X, the algebras S∗(X; R) and A∗(X) are weakly equivalent in the cate-

gory of R-differential graded algebras.

Example 9.4 As an application, for any simplicial set X we obtain an equivalence

between the cochain algebra S∗(X ; Q) and the polynomial De Rham algebra (com-

pare with [S, BG]). For this, take L∗

•
the simplicial cochain complex defined by the

regular differential forms on the Q-cosimplicial scheme H•, whose p component is

the hyperplane H p of Ap+1 defined by the equation t0 + · · · + tp = 1. It is a simplicial

Q-dga that satisfies the homology and homotopy axioms (see [BG]), so if we define

the algebra of polynomial De Rham forms of X as Su∗(X) = Hom∆(X•, L∗

•
(Q)), the

last corollary ensures that S∗(X ; Q) and Su∗(X) are weakly equivalent Q-differential

graded algebras. The rational field Q may be replaced by any field k of characteristic

zero.
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