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We use ultra-high-speed video imaging to look at the initial contact of a drop
impacting on a liquid layer. We observe experimentally the vortex street and the
bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval
et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly
occur within 50 µs after the first contact, requiring imaging at 1 million f.p.s. For
a water drop impacting on a thin layer of water, the entrapment of isolated bubbles
starts through azimuthal instability, which forms at low impact velocities, in the neck
connecting the drop and pool. For Reynolds number Re above ∼12 000, up to 10
partial bubble rings have been observed at the base of the ejecta, starting when the
contact is ∼20 % of the drop size. More regular bubble rings are observed for a pool
of ethanol or methanol. The video imaging shows rotation around some of these air
cylinders, which can temporarily delay their breakup into micro-bubbles. The different
refractive index in the pool liquid reveals the destabilization of the vortices and the
formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry
is thereby destroyed. We show also that the shape of the drop has a strong influence
on these dynamics.
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1. Introduction
The impact of a drop on a pool surface has been studied for over a century,

but revolutionary improvements in high-speed video technology (Etoh et al. 2003)
have recently opened up this canonical geometry to renewed scrutiny. This applies
especially to the earliest contact between the drop and the pool, where intricate details
have emerged and play a crucial role during air entrapment and splashing (Yarin 2006;
Thoroddsen, Etoh & Takehara 2008).

The impact of a drop always entraps a bubble under the centre of the drop, as a
disk of air is produced by the lubrication pressure and rapidly contracts into a bubble
at the centre (Thoroddsen, Etoh & Takehara 2003; Liow & Cole 2007; Korobkin, Ellis
& Smith 2008; Hicks & Purvis 2010; Mani, Mandre & Brenner 2010; Driscoll &
Nagel 2011; Kolinski et al. 2012; van der Veen et al. 2012). Following this central
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air disk entrapment on a liquid pool, the outer contact forms a neck, which emits an
ejecta sheet for sufficiently large Reynolds numbers (Weiss & Yarin 1999; Davidson
2002; Thoroddsen 2002; Josserand & Zaleski 2003; Howison et al. 2005). These ejecta
are the source of the finest spray droplets (Thoroddsen et al. 2011; Zhang et al.
2012), which is of relevance to numerous processes, such as combustion and aerosol
formation.

However, at even larger impact energy, these smooth ejecta give way to random
splashing of small droplets, see Thoroddsen (2002). Numerical simulations by
Thoraval et al. (2012) have shown that the base of the ejecta can become unstable,
bending up and down as the free surface sheds alternate-sign vortex rings into the
liquid, and often entrapping bubble rings. These bubble rings alternate between the
top and bottom of the ejecta. This air entrapment has important applications for inkjet
printing and gas transfer at the liquid–air interface (Wanninkhof et al. 2009; Czerski
et al. 2011), as it can generate hundreds of micro-bubbles. This regime is the focus of
the current investigation.

Very recent experiments by Castrejón-Pita, Castrejón-Pita & Hutchings (2012) have
used side-view and laser-induced fluorescence to verify the presence of the von
Kármán street for conditions similar to those in Thoraval et al. (2012). Herein we
show the first experimental observations of the formation and breakup of the bubble
tori.

The main axisymmetric features of the vortex street and bubble-ring entrapments
are observed experimentally. However, three-dimensional effects rapidly break the
axisymmetry. Herein, we show that even at rather modest impact velocities, azimuthal
instabilities can appear in the neck between the drop and the pool. Imaging using two
different liquids also reveals the shedding of streamwise vortices and their intricate
dynamics, similar to three-dimensional instabilities of the cylinder wake (Williamson
1996), or the shear layer (Lasheras & Choi 1988). These intricate structures have
perhaps escaped earlier experimental notice as they develop in a sub-millimetre region
and evolve in less than 50 µs.

2. Experimental setup and numerics
2.1. High-speed video imaging

In this work we image drop impacts on shallow pools through a bottom glass plate
(figure 1). Limited imaging (only in figure 15a,b) was done from the side above the
pool surface. We use identical water drops in the entire study, while changing the
composition of the pool liquid. The pool liquids tested are water, ethanol and methanol
which are all highly miscible with the water drop. The liquid properties are given in
table 1. The difference in refractive index between the water drop and the ethanol
or methanol pools allows us to image the flow structures as they distort the interface
between the two liquids.

The use of shallow pools, or thin films, is dictated by the need to change the pool
liquid following every impact as well as by the optical setup, where the limited focal
distance of the long-distance microscope rules out bottom views through deep pools.
The liquid was contained by a 10 cm diameter ring glued onto the glass plate. The
pool depth δ was varied from ∼25 µm to 1 mm. It was estimated by controlling the
volume of liquid with a syringe and assuming a uniform spreading inside the container.
To minimize the effect of evaporation, the impact experiment was done within 10 s
after spreading the liquid.
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Liquid film

High-speed camera

Light(a) (b)
Drop

Glass plate

Mirror

Camera window

Bubble ringsCentral air disk

FIGURE 1. (a) Imaging setup. We use backlight imaging of the drop impact from below,
through a glass plate. The drop acts as a lens focusing the illumination to a limited area
on the observation window. Several lights were used in some cases to obtain a larger
illuminated area. (b) Camera viewing area shown in bottom view, corresponding to the area in
figure 10(c).

Liquid ρ (g cm−3) µ (cP) ν (cSt) σ (dyne cm−1) n

Distilled water 0.996 1.004 1.008 72.1 1.333
Ethanol 0.789 1.19 1.51 23.2 1.363
Methanol 0.793 0.593 0.748 22.5 1.339

TABLE 1. Properties of the different liquids used in the pool. Here ρ is the liquid
density; µ is the dynamic viscosity; ν is the kinematic viscosity, n the refractive index at
λ= 532 nm and σ the surface tension. The drop is always water.

Here we use a long-distance microscope for magnifications up to ∼15 for maximum
pixel resolution of ∼4.1 µm px−1, when using a Shimadzu Hypervision CCD video
camera (Etoh et al. 2003), at frame rates up to 1 million f.p.s. Some of the imaging
was also done at a lower frame rate with a Photron SA5 CMOS camera, with a
magnification up to 10 and maximum pixel resolution ∼2 µm px−1. Using thin bottom
layers restricts the vertical motion of the interface between the drop and the pool
liquid during the impact, thereby making well-focused imaging easier with the limited
focal depth. For further optical/triggering details see Thoroddsen, Takehara & Etoh
(2012).

The drop is pinched from a 3 mm nozzle, to produce an effective drop diameter
of D = (DvD2

h)
1/3 = 4.67 mm, where Dv and Dh are the instantaneous vertical and

horizontal diameters. We characterize the impact conditions by the Reynolds number
Re, the Weber number We and the splashing parameter K, defined as:

Re= ρDV

µ
, We= ρDV2

σ
, K =We

√
Re, (2.1)

where ρ, µ and σ are respectively the density, dynamic viscosity and surface tension
of the drop liquid, and V the drop impact velocity.
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FIGURE 2. (a) Drop velocity V versus falling height H. The green line corresponds to
√

2gH,
while the red line is our fitting equation. (b) Typical drop shapes in air: prolate (α > 1,
H = 31.2 cm, Re = 11 300), oblate (α < 1, H = 41.8 cm, Re = 12 900) and close to spherical
(α ' 1, H = 44.5 cm, Re= 13 300). The scale bar is 2 mm long.

The drop velocity V was characterized in a separate set of experiments. It was then
modelled by the velocity of a sphere experiencing constant drag (Pumphrey, Crum &
Bjørnø1989; Saylor & Grizzard 2004):

V = VT

√
1− exp

(
−2g(h− D− h0)

V2
T

)
, (2.2)

where gravity is g = 9.81 m s−2, with the fitting parameters VT = 9.11 m s−1 and
h0 = 2.1 mm. VT corresponds to the terminal velocity of the drop, and h0 to the
effective pinch-off length of the drop when it separates from the nozzle. Here h is the
measured distance from the nozzle tip to the undisturbed pool surface, whereas the
adjusted height is defined as H = h − D − h0. Figure 2(a) shows that the measured
values of V deviate by less than 0.8 % from the formula, for our impact heights
2.5 cm < H < 55 cm. This estimate of VT is slightly higher than the experimental
observations of Gunn & Kinzer (1949), which could be due to the drop oscillations
before reaching a final oblate shape. We can calculate the falling time of the drop from
the falling height as: t = (VT/g)argcosh[exp(gH/V2

T)].
As D is larger than the capillary length for water, lc = √σ/(ρg) = 2.7 mm, the

water drop shows large oscillations that can affect the details of the impact dynamics
(see figure 2b). The axisymmetric vertical oscillations of the drop can be estimated by
the dominant mode (Rayleigh 1879; Lamb 1975, § 275), giving a radius:

R(t, θ)= R0[1+ a cos(ωt + φ)P2(cos θ)], (2.3)

where P2(x) = (3x2 − 1)/2 is the Legendre polynomial of degree two, and θ is the
polar angle in the spherical coordinate system. The aspect ratio between the vertical
and horizontal diameters of the drop can thus be written:

α = Dv

Dh
= 1+ a cos(ωt + φ)

1− a

2
cos(ωt + φ)

. (2.4)
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FIGURE 3. Drop aspect ratio α = Dv/Dh versus H. The black oscillating line corresponds to
the fitted equation (2.4). Different colours denote different realizations.

We determine a, ω and φ as fitting parameters: a = 0.162, f = ω/(2π) = 33.2 Hz and
φ = −132◦. The oscillation frequency is only 2 % lower than the inviscid theoretical
value fD = (4/π)

√
σ/(ρD3) = 33.9 Hz. The typical time of bubble-ring entrapment,

50 µs, is only 0.17 % of the oscillation period. Therefore the drop shape can be
considered frozen during the entrapment. This fitting is then used to obtain the aspect
ratio from the falling height in the experiments. We have neglected viscous damping
of the dominant mode in this estimate of drop oscillations. The characteristic time of
this damping can be estimated as τ = D2/(20ν) = 1.08 s (Lamb 1975, § 355). In the
overall falling time studied here ('0.35 s), viscous effects can be estimated to reduce
the amplitude of the dominant mode by 27 %. It is therefore too short to damp the
oscillations significantly, as is observed in figure 3.

2.2. Numerical method
We use the open-source software Gerris (http://gfs.sf.net; Popinet 2003, 2009;
Agbaglah et al. 2011), using the Volume-Of-Fluid method, to perform axisymmetric
simulations of the drop impacts. The liquid from the drop and the pool are
identical but identified with different markers (drop: red, pool: blue, air: light green).
The adaptive mesh is refined dynamically based on the distance to the interface,
vorticity magnitude and geometric conditions. The interface is refined uniformly at
the maximum level in the simulations. The bubbles and droplets with area less than
10 cells are removed during the computation, as their dynamics cannot be captured
accurately. It represents an effective cut-off diameter of Dcut = 3.57 cells.

The simulations are started with the drop 0.1R above the pool, where R = D/2 is
the drop radius. Non-dimensional time is defined as t∗ = t/τ , where τ = D/V . The
origin of time is taken when the undisturbed sphere would first contact the pool.
The drop is kept at a constant effective diameter D = 4.6 mm. Air has a viscosity
of µa = 1.81 × 10−2 cP and density ρa = 1.21 kg m−3. The liquid is water for both
the drop and the pool, with viscosity µ = 1 cP, density ρ = 1000 kg m−3 and surface
tension σ = 72 mN m−1. Gravity is included as g = 9.81 m s−2. We do not take into
account the different properties of the bottom liquid in the simulation, and therefore do
not include any Marangoni or variable-density effects between the two liquids. More
details about the adaptive grid refinement can be found in Popinet (2003) and Thoraval
et al. (2012).
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3. Results and discussion
In what follows, we start by imaging water drops impacting on water pools. For

Reynolds number up to ∼12 000, no bubble rings are entrapped, but unexpectedly
we see an azimuthal undulation in the neck region, which breaks the axisymmetry.
However, above this Reynolds number, a sequence of partial bubble rings are
entrapped in the neck, which subsequently break into numerous micro-bubbles.
These micro-bubbles display random sideways motions, suggesting underlying vortical
structures.

Then we use water drops impacting on ethanol or methanol pools, which produces
more regular bubble rings, and the difference in the index of refraction reveals intricate
vortical tangles with both streamwise and azimuthal components.

We characterize the radial location where the first bubble rings are entrapped, as
well as their radial spacing. We also show that the pool depth and drop shape
at impact can alter the details, but not the qualitative dynamics of the bubble-ring
entrapment.

Finally, we observe experimentally the dynamics of the entrapment mechanism that
was described in the numerical simulations of Thoraval et al. (2012), as well as the
three-dimensional effects that could not be captured by their axisymmetric simulations.
Detailed images are presented, showing the rotation around the bubble rings, the
splashing following ring entrapment, as well as the instabilities and entanglement of
the vortices.

3.1. Isolated bubbles and multiple bubble rings for a water pool
We start by looking at the impact of the water drop on a water layer. Figure 4 shows
the early evolution of the outer neck contact of the drop with the pool. The contracting
inner air disk is visible on the left side of the images in figure 4(d,e). Note that we
are only looking at the early contact when the neck has not reached the size of the
drop, as shown in the sketch in figure 1(b). The radius of the neck in the last panel of
figure 4(d) has only reached 37 % of the drop radius.

Figure 4 shows that even for low impact velocities the neck region between the
drop and the pool does not remain smooth and axisymmetric, but develops azimuthal
undulations. For the lowest impact velocities these undulations have long wavelengths
and do not entrap bubbles, see figure 4(a–c). However, with increased impact velocity
V the wavelength reduces and their amplitude grows more rapidly. In figure 4(d) these
undulations appear first in the second panel and grow in amplitude during the radial
motion, but individual bumps saturate and are often being pulled back by surface
tension. The shapes are irregular, but we can glean a characteristic wavelength from
the third panel in figure 4(d), giving λ ∼ 53 µm, corresponding to 73 undulations
around the periphery. These undulations appear when the ejecta emerges, pulling local
sheets of air under the ejecta on both or alternating sides of it. These local sheets can
be pulled along with the ejecta base, with only occasional bubbles entrained, when
these small azimuthal air discs make contact across the thin air layer, as is shown in a
longer sequence of frames in figure 5. Individual bubble entrapments can also occur in
the troughs between the undulations.

In figure 6 we show the growth of the maximum undulation amplitude, measured
between the troughs and peaks, see inset in the figure. The growth rate slows down
with radial distance. For reference we fit a viscous-type length scale,

Lν = C
√
ν(t − to) (3.1)
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(a)

(d)

(e)

( f )

(b) (c)

FIGURE 4. Early contact of a water drop impacting on a δ = 250 µm deep layer of water,
observed from below, as described in figure 1. (a–c) Neck between the drop and the pool.
No bubble entrapment is observed at low impact velocities. An azimuthal instability develops
on the ejecta, with a wavelength decreasing with increasing Re. (a) Re = 3 610, We = 39,
K = 2360, α = 0.94, (b) Re = 4400, We = 58, K = 3860, α = 1.17, (c) Re = 5 470, We = 90,
K = 6640, α = 0.86. (d) For an intermediate impact velocity, individual micro-bubbles can be
entrapped. Frames are shown at 1, 13, 18, 25 and 46 µs after the first contact. Re = 11 400,
We = 394, K = 42 100, α = 1.05. (e) For slightly higher impact velocity, the drop entraps
one bubble ring and isolated bubbles, shown at t = 3, 11, 13, 21 and 40 µs. Re = 13 300,
We = 535, K = 61 800, α = 0.98. (f ) Multiple bubble rings. Frames are shown at ∼5, 9, 13,
17, 21 and 32 µs after first contact. Re = 12 900, We = 506, K = 57 600, α = 0.80. The scale
bars are all 200 µm long. See also supplementary movies, available at http://dx.doi.org/10.
1017/jfm.2013.147.
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FIGURE 5. Details of individual micro-bubble entrapments for the same conditions as in
figure 4(d). Frames are shown 2 µs apart. The top row shows the dynamics leading to
the entrapment of a '10 µm diameter bubble. On the second row, two smaller bubbles of
diameter '4 and 6 µm are separating from the right-hand part of the edge. While the first one
stays behind the edge, and can be seen in the last frame, the second one is re-absorbed into the
neck in the last row. The scale bar is 200 µm long.
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FIGURE 6. The maximum amplitude of the undulations of the front in the neck region,
for water drop onto water pool. Data from three realizations, for the same conditions as
figures 4(d) and 5. The solid line shows formula (3.1), with C = 14. The inset shows how the
amplitude is measured.

where C = 14 and to is the time of first observed undulations on the front. This
suggests that the azimuthal wavelength is significantly longer than the thickness of the
nascent ejecta, which should be of the order

√
νt, see Josserand & Zaleski (2003).

Based on this undulation length scale 1R, along with the neck velocity and water
properties, the local Re∆R ∼ 700 and We∆R ∼ 100, suggesting inertia, viscous forces
and surface tension all play a role in the dynamics.
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Figure 5 shows that the characteristic azimuthal wavelength of the undulations also
grows during the radial motion of the front, but this is more difficult to quantify.

It is curious that some air entrapment in breaking gravity waves has a superficially
similar appearance (Kiger & Duncan 2012, their figure 11), but is clearly driven by a
different mechanism and is three orders of magnitude larger in size.

For slightly higher impact velocity, the entrapment of rather irregular bubble arcs
begins. Figure 4(f ) shows up to 10 such partial rings. The average radial spacing of
the adjacent bubble rings is '26 µm. The air cylinders then break up into a row of
bubbles through surface-tension-driven Rayleigh instability. Bubbles are often shifted
sideways in the azimuthal direction during the radial spreading (arrows in figure 4f
and see supplementary movies, available at http://dx.doi.org/10.1017/jfm.2013.147).
For a stationary hollow cylinder of diameter db in an inviscid liquid, the most unstable
wavelength is λm = πdb/0.484. The characteristic time scale of the exponential growth
∼ exp(t/τσ ) of the breakup is given by τσ = 1.22

√
ρr3

b/σ (Chandrasekhar 1961). The
radii of the bubble arcs rb for a water layer, in figure 4(f ), are ∼3 µm and they break
up in about ∼3 µs, which is 4τσ .

Thereby, the first bubble-ring entrapment for water occurs around Re ' 12 000 and
K ' 50 000. These values are consistent with the numerical results of Thoraval et al.
(2012), where no bubble-ring entrapment is observed for Re = 10 000 and K = 30 000,
and a row of bubble rings is observed for Re = 14 500 and K = 74 400. In the former
case, the ejecta sheet is thicker, because of the stronger surface tension effects on the
ejecta sheet owing to the lower value of the splashing parameter K. It is re-absorbed
in the drop or the pool during the oscillations, and no bubble-ring entrapment is
predicted. However, in the latter case, at higher K, the ejecta sheet is thinner, and its
oscillations entrap a row of bubble rings at the core of vortex rings when it impacts on
and connects with the drop or the pool.

However, the comparison of figures 4(e) and 4(f ) shows that more bubble rings can
be observed at a slightly lower Re and K. This suggests that the Re of the impact
is not enough to characterize the bubble-ring entrapment. We will show in § 3.4 the
critical effect of the drop shape. Moreover, the azimuthal instabilities also affect the air
entrapment, and individual bubble entrapments have been observed at slightly lower Re
in figures 4(d) and 5.

Note that in the work of Castrejón-Pita et al. (2012), the vortex street is observed
for conditions similar to figure 4(f ) of Thoraval et al. (2012), where no bubble-ring
entrapment was predicted. Considering the large diameter of the drop they are using, it
is not clear if the bubbles they observe are part of a bubble ring or isolated bubbles.
They are also looking at a larger view and longer time evolution, that could be out
of the field of view used in the current investigation (see perspective in figure 1).
However, their alternating vortices are a new observation, clearly different from the
isolated vortex rings produced by much lower impact velocities, see Peck & Sigurdson
(1994).

3.2. Bubble rings for miscible liquids
The bubble-ring entrapment becomes more regular for the impacts on ethanol and
methanol pools (figure 7), perhaps due to the lower surface tension of these liquids
(table 1). Contrary to the impacts on water films, no azimuthal instability develops
on the neck of the ejecta, which remains perfectly smooth in figure 7(a–c). At higher
impact velocities bubble rings are entrapped. Figure 7(d) shows at least 10 bubble
rings. Many of them are entrapped axisymmetrically over the entire image view, which
can span around 90◦ angular sector.
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(a)

(d)

(e)

( f )

(b) (c)

FIGURE 7. Early contact of a water drop impacting on a pool of a miscible liquid (ethanol
or methanol), observed from below, as described in figure 1. (a–c) Neck between the drop
and the pool. No bubble entrapment is observed at low impact velocities on a thin film of
ethanol (δ ' 250 µm). Unlike the water film, no azimuthal instability develops on the ejecta.
(a) Re= 3610, α = 0.94, (b) Re= 4400, α = 1.17, (c) Re= 5470, α = 0.86. (d) Bubble rings
for a water drop impacting on a methanol layer (Re = 12 900, α = 0.80, δ = 50 µm). Frames
are shown at 5, 9, 11, 15, 20 and 33 µs after first contact. (e) First oscillations of the ejecta
sheet, followed by entrapment of bubble rings, for a film of ethanol (Re = 13 300, α = 0.98,
δ = 250 µm). Azimuthal instabilities appear in the ejecta sheet, before its rim detaches in
a liquid toroid. The first eight frames are shown 4 µs apart, and then 20 µs. (f ) Detail of
the bubble entrapment dynamics for the same conditions as in (d). The first frame shows
the entrapment of a superposition of air sheets, later breaking into patches and then into
micro-bubbles (green arrows). Three bubbles are identified in the third and last frames by red,
black and blue arrows, showing their strong sideways motion. Bubble arcs with legs in the
radial direction are identified by the yellow arrows. Frames are shown 3, 6, 15 and 60 µs after
the first one. The scale bars are all 200 µm long.
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In some instances thin ribbons of air are entrapped and subsequently break up into
sub-rings and thereafter bubble rings, as highlighted by an arrow in figure 7(d). The
frames in figure 7(f ) detail a similar sequence of air entrapments. One air patch is
identified by the green arrow in the second frame, superposed with another air sheet
behind it. In the third frame, the air patch breaks into a bubble (identified by the green
arrow), and a small air cylinder at a larger radial location, while the air sheet behind
contracts into a cylinder. The vertical superposition of the air entrapments is clearly
shown by the fact that the air bubble is observed at the same radial location as the air
cylinder. This supports the mechanism that air can be entrapped both above and below
the ejecta sheet, as was shown in the numerical simulations of Thoraval et al. (2012).

In a similar way as for water pools, figure 7(f ) also demonstrates strong sideways
motions of bubbles. Three bubbles are identified in the third frame by red, black and
blue arrows. Their corresponding location is marked by the same coloured arrows in
the last frame. Comparison between the black and red arrows shows that this sideways
motion can be of different strength for adjacent rings. This bubble motion in the
azimuthal direction results in their clustering at isolated locations.

Figure 8 shows a wider view of an impact taken at a lower frame rate of 10 000
f.p.s. but larger pixel area of 896 × 848 px, using the Photron SA-5 CMOS camera.
Each frame is frozen with a 1 µs exposure. The 100 µs interframe time only shows
us snapshots of the phenomenon, putting the earlier figures in perspective, with most
of the earlier sequences occurring before the first image. In the second frame a
multitude of splashed droplets appears from underneath the shadow of the drop, with
some droplets planing on the pool surface, leaving behind narrow capillary wedges.
Figure 8(a) shows a smooth central region, followed by a convoluted interface,
suggesting stirring by the three-dimensional vortical structures (see § 3.7). Similar
stirring can be inferred from the side shadowgraph imaging in Castrejón-Pita et al.
(2012) (their figure 4). Figure 8(d) shows numerous isolated bubbles which have been
redistributed by the vortical motions. The bubbles are mostly concentrated within the
mushroom-like remnants of the vortical structures.

3.3. First onset, number and spacing of bubble rings
The first contact entraps a central air disk and forms a rapidly expanding outer liquid
edge. Bubble rings are then formed as observed above. Figure 9(a) looks at the radial
location where the first bubble ring is entrapped. We normalize the radius of the first
ring R1 with the horizontal drop radius when it first contacts the pool, Rh = Dh/2. The
data show a large spread, but an overall trend is for the onset to occur earlier for larger
impact Re. The smallest entrapment radius is 0.18, similar to the 0.2 limit observed by
Thoroddsen (2002) for the onset of the ejecta sheet. This onset radius of the ejecta is
also in agreement with the inviscid numerics of Weiss & Yarin (1999).

Figure 9(b) shows the distance between adjacent bubble rings measured for
numerous identical impact conditions. The spacing of the rings tends to increase
with distance and the entrapped bubbles become larger.

3.4. Effect of pool depth and drop shape
To ascertain the influence of the pool depth we systematically vary the layer thickness
δ, from ∼25 µm to 1 mm. Figure 10(a–c) compares the bubble rings for the three
smallest pool depths δ. The ring structures are qualitatively similar in all cases, but
the shallowest pool shows the earliest and finest bubble rings, some of which are
sub-pixel in diameter. The second ring in figure 10(a) allows us to measure the
separation of micro-bubbles, giving λ = 8.8 µm, suggesting a diameter of the original

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

14
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.147


Drop impact entrapment of bubble rings 245

(a)

(c)

(b)

(d )

FIGURE 8. Larger view of a water drop impacting on ethanol, at times t ∼ (a) 50, (b) 150,
(c) 250 and (d) 1150 µs after first contact (Re= 14 500, α = 0.94, δ ' 125 µm). Frames taken
from videos using Photron SA-5 at 10 000 f.p.s. with a 1 µs exposure time. The arrow at the
bottom of the second frame points at two splashed droplets planing on the surface, as shown
by the capillary wedges left behind them. The central bubble has drifted out of the image in
the last frame. The scale bar is 1 mm.

air torus dtor ' 1.4 µm. The earliest ring appears even smaller, arrow in figure 10(a).
Figure 10(d) shows fewer but qualitatively similar ring entrapment, for much thicker
layer.

Previous results of Thoraval et al. (2012) suggested that the oscillations of the base
of the ejecta sheet are responsible for the bubble-ring entrapment, for a drop impacting
on a deep pool at high Re and K. Figure 11 shows numerical results for three different
shallower pool depths. The two-liquid interface is highlighted by colouring the drop
and pool differently. It shows that the same mechanism is also present for shallow
pools, with only minor changes. However, the drop penetrates further into the pool for
larger δ. The vortex street is therefore constrained in a shallower region for shallower
pools, and develops more horizontally. This constraining effect increases the maximum
liquid velocity by as much as 20 %, as shown in figure 12(a). The boundary layer
developing on the glass plate could be important for the shallowest pools.

The first bubble ring is entrapped at R1/R of respectively 0.37, 0.31 and 0.28
for pool depths δ = 800, 200 and 100 µm respectively. This confirms the previous
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FIGURE 9. (a) Radial location of first onset of bubble rings for a water drop impacting on
a water, ethanol or methanol layer of different depths (see also figure 12b). (b) Spacing of
adjacent rings 1R, versus radial distance R from the impact centre. Data from eight different
realizations for a methanol pool (Re= 13 300, α = 0.98, δ = 250 µm).

(a)

(d )

(b) (c)

FIGURE 10. Effect of pool depth on the bubble rings for a water drop impacting on methanol,
with δ ' 25 (a), 50 (b) and 75 µm (c) (Re = 12 900, α = 0.80). The frames are all shown
24 µs after the first contact in (a–c). (d) Deeper methanol pool with δ ' 500 µm. Frames
shown at 10, 14 and 28 µs after first contact. The scale bars are 200 µm long. See also
supplementary movies.

experimental observation of figure 10 that earlier rings are observed for shallower
pools. Figure 12(b) also shows this experimentally in a more systematic way, but
the difference is not very pronounced. The radial location of this first entrapment
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(a)

(b)

(c)

FIGURE 11. Numerical results for the effect of pool depth on the vortex street at t∗ = 0.0526,
for Re= 13 700. Pool depth δ = 800 µm (a), 200 µm (b), 100 µm (c). The top of the 3 images
are at the same location, relative to the original pool surface. The pool depth is larger than
shown in the image in (a), but is completely included for (b,c), where the bottom is indicated
in grey. The maximum and minimum level of refinement in the domain are respectively
12 500 and 778 cells per drop diameter and Dcut = 1.3 µm. The bar is 200 µm long. We
can observe that one part of the ejecta sheet is climbing on the drop in (b), while the main
ejecta sheet continues to emerge below. This is similar to what was observed numerically by
Thoraval et al. (2012) and experimentally by Zhang et al. (2012). The formation of this higher
part of the ejecta sheet can be observed in the supplementary movie. It then merges with the
drop in this case.

is also consistent between experimental and numerical observations, even though the
numerical simulations only consider one liquid.

We observe experimentally that the most robust bubble rings are produced by a
flat-bottom drop, as shown by the comparison of figures 4(e) and 4(f ) and figures 7(d)
and 7(e), with fewest bubble rings in figure 7(e), which is more spherical. The largest
number of rings is also produced by such oblate drops (figures 4f and 20b). This is
consistent with the numerical results of figure 13, showing a larger number of rings for
the oblate drop. They even suggest that a prolate drop could completely suppress the
bubble-ring entrapments for the same effective diameter, as is shown in figure 13(a).

3.5. Edge breakup and splashing

Numerical simulations have shown that the ejecta sheet can impact alternately on
the drop and the pool during the vortex shedding. The tip of the ejecta can thus
detach into a liquid torus exiting the neck region at high speed (Thoraval et al.
2012). Such tori are highly unstable to Rayleigh instability and break rapidly into
splashed micro-droplets of similar sizes. However, this earliest splashing of micro-
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FIGURE 12. (a) Maximum velocity Umax in the liquid from the numerical simulations in
figure 11, for three different pool depths. (b) Experimental observation of the first bubble ring
entrapment radius (Re= 12 900, α = 0.80) for different pool depths.

(a)

(b)

(c)

FIGURE 13. Effect of drop shape on the early dynamics at t∗ = 0.0406, for Re = 12 900 and
δ = 800 µm. The drop is modelled as an ellipsoid of revolution, where α is (a) 1.29, (b) 1,
(c) 0.79. (a,c) Correspond to the maximum horizontal deformations of the fitting equation
(2.4), with a = 0.162, keeping the same effective diameter. The maximum and minimum
level of refinement in the domain are respectively 5240 and 655 cells per drop diameter, and
Dcut = 3.1 µm. The scale bar is 200 µm long. See also supplementary movies.

droplets by axisymmetric breakup of the ejecta sheet had not been observed previously
in experiments.

By looking carefully at figures 7(d–f ) and 8, we can identify this early splashing
by the breakup of the tip of the ejecta sheet after the entrapment of a few bubble
rings, as was suggested by the numerical simulations. The liquid toroid in figure 7(e)
separates at t∗ ' 25 µs after the first contact, with a velocity of 20.5 m s−1, which
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FIGURE 14. Details of the ejecta sheet breakup, for a water drop impacting on a thin film of
ethanol (Re= 11 700, α = 0.79, δ = 75 µm). The ejecta sheet starts to puncture in the second
frame of the second row. The growth of the holes leaves tendrils connecting the neck to the
liquid rim. The scale bar is 200 µm long. Frames are shown 2 µs apart.

corresponds to 7.1 times the impact velocity. The tip velocity of the ejecta sheet in
the numerical simulations at the same non-dimensional time is 6.2 for Re = 12 900
(figure 13b), and 7.4 for Re = 13 700 (figure 11b), which is in excellent agreement
with the experimental observations.

Figure 14 shows more detail of the breakup of the edge at a slightly lower Re.
The ejecta sheet breaks via holes puncturing behind the rim. The thicker ejecta rim is
therefore left connected to the neck by liquid tendrils, but subsequently becomes fully
detached.

To remove the ambiguity of the bottom view, we have also looked at this early
splashing from the side above the free surface. Figure 15(a) confirms the bottom
view images, showing the ejecta sheet emerging from the neck, puncturing behind the
rim and separating a liquid toroid from the neck. Liquid tendrils are also observed
in the fourth frame, and are slingshot ahead of the rim, creating the protrusions
observed in the last frame, similar to the last frame of the first row of figure 7(e). The
slingshot of the broken ejecta sheet can also be observed in numerical simulation, as
in the supplementary movie of figure 13(a), and is similar to the slingshot mechanism
described in Thoroddsen et al. (2011).

Two consecutive liquid rings are observed in figure 15(b). It also shows the
emergence of a greatly disturbed ejecta sheet after this early splashing. A larger
bottom view confirms this side view observations in figure 15(c). This mechanism,
of a detachment of a thin torus of liquid, explains the synchronized emergence of
uniform-sized micro-droplets observed ahead of the main irregular ejecta sheet, see
figure 15(d) as well as figure 2(c) in Thoroddsen (2002). The irregular sheet is clearly
shown in figure 8.

The splashing of several liquid tori is consistent with numerical simulations showing
that the ejecta sheet can break up during the successive impacts on the drop and the
pool. The supplementary movie of figure 13(a) shows such a case where the ejecta
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(a)

(b)

(c)
(d)

FIGURE 15. Detachment of liquid toroids by breakup of the ejecta sheet. Scale bars are
500 µm for (a,b) and 1 mm for (c,d). All images have an exposure time of 1 µs. (a) Side
view of the liquid toroid detachment for a thin film of ethanol (Re = 12 600, α = 1.11,
δ = 125 µm). The ejecta sheet punctures in the third frame, breaking into tendrils. Those
tendrils are slingshot in front of the liquid rim which has not yet broken, as observed in the
last frame. The frames are shown 10 µs apart. (b) Side view of two liquid toroid detachments
for a thin film of methanol (Re = 12 600, α = 1.11, δ = 125 µm). The frames are shown
10 µs apart for the first three frames, and then 80 µs. The splashing of liquid toroids is
followed by the emergence of an irregular ejecta sheet, as can be seen also on the larger
bottom view of figure 8. (c) Larger bottom view of two consecutive rings of liquid droplets
and toroidal sections detaching for an ethanol pool (Re = 11 600, α = 0.86, δ = 125 µm).
(d) First droplets emerging from underneath the drop in the same conditions as figure 8.
Image difference between two adjacent frames, to highlight the splashing droplets. Shown in
inverted grey-scale with an exposure time of 1 µs.

sheet breaks first by climbing on the drop and then impacting on the pool, thus
creating two consecutive liquid tori.

After the first bubble-ring entrapment, regular spanwise instabilities can appear in
the ejecta sheet, as is clearly seen in the second panel of figure 7(d), as well as
figure 7(e,f ). The fine azimuthal breakup when the ejecta bends and impacts on a pool
has been reported by Thoroddsen et al. (2011) (their figure 5) and may be of similar
origin. Furthermore, the early appearance of similar azimuthal instabilities has also
been observed by Thoroddsen et al. (2012) in a free-surface cusp, which is formed
during a drop impacting on a solid surface. Numerical simulations show that the ejecta
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FIGURE 16. Entrapment of a large air cylinder for a water drop impacting on a thin film of
methanol (Re = 11 400, α = 1.05, δ = 50 µm). The small bubble at the bottom right of the
long cylinder makes a complete rotation around the cylinder between frames 4 and 12. The
frames are shown 4 µs apart. The scale bar is 200 µm long.

sheet breaks when it impacts on the drop or the pool, by stretching between the new
connection and the faster rim. This instability is therefore consistent with the impact of
the ejecta sheet on the drop or the pool. Similar breakup of a liquid sheet by stretching
was also observed experimentally by Roisman et al. (2007) for spray impacts.

3.6. Vortex shedding and rotation around bubble rings
The difference in refractive index between the drop and the pool (see table 1) allows
us to visualize vorticity structures inside the liquid. As the coherent vortices bend and
wrap up the interface between the two liquids, a dark line can be observed at their
edges with our back-light imaging setup.

Numerical simulations have shown that the first oscillations of the base of the ejecta
sheet have a smaller amplitude and do not entrap any bubble rings, see Thoraval et al.
(2012) (their figure 4c,f,g) and our figures 11 and 13. This is consistent with our
experimental observations of figures 7(e), 14, 18(a), 20, where dark arcs form before
the first bubble rings. They show the shedding of vortices from the neck before the
start of the bubble-ring entrapment.

As the neck moves outwards radially, the angle between the pool and the drop
becomes larger, and bubble rings are entrapped, as observed above. Numerical
simulations have shown that these rings are often entrapped in an alternating way
at the top and the bottom of the ejecta sheet. At the same time, they shed vortices of
alternating sign in the liquid. Bubble rings are therefore entrapped at the core of vortex
rings. Dark lines are indeed observed experimentally around the bubbles, supporting
this vortex-shedding scenario. The rotation is also made apparent by the dynamics of
a micro-bubble rotating around a larger bubble cylinder in figure 16. We can obtain an
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FIGURE 17. (Colour online) Tracking of a 2 µm particle rotating around a vortex core for a
drop impacting on a pool of ethanol (Re= 11 400, α = 1.05, δ = 125 µm). 1L is the distance
from the initial position, minus the mean radial translation component identified by a linear
regression. The period of rotation is here ∼18 µs.

estimate of the rotation speed in the vortex rings by tracking a 2 µm particle seeded
into the pool liquid (figure 17), giving a rotation period of 18 µs in this example.

The dynamics of the air entrapped in this vortex street is also affected by the
rotation around it. One can expect the rotation to delay the capillary breakup of the air
cylinders (Rosenthal 1962; Ashmore & Stone 2004; Eggers & Villermaux 2008). This
is indeed evident in figure 16, where the cylinder of diameter ∼29 µm can be observed
for more than 94 µs before breaking, corresponding to t/τσ ' 7 based on the methanol
properties. The air cylinder also elongates by ∼25 % between the first and the last
frame, consistent with the theory that it resides inside a vortex. The relative motion of
the bottom tip of the air cylinder and the closest micro-bubble below shows that the
stretching due to the radial motion cannot account for this elongation. Even smaller
cylinders can be stabilized, as observed in figure 10(c). Two air tori are formed next
to each other, with similar diameters dtor ' 8 µm (see arrows in the figure), but break
up at very different times from formation, of t/τσ ' 4 and 12, based on the liquid
properties of the methanol. These delayed breakups show the strong stabilization effect
of the circulation around these air tubes. The breakup wavelength is also larger, as the
theory suggests (Ashmore & Stone 2004).

The row of vortices shed in the liquid can also interact with adjacent ones. In
some realizations two closely entrapped air tori rotate around each other, with the
line of small bubbles rotating around the bigger one. Figure 18(b) shows such a
sequence, where we track one rotation, which takes 104 µs. Numerical simulations
show that vortices of different strength are created at the top and bottom of the ejecta
sheet (Thoraval et al. 2012). The longer time evolution shows that this difference
can make the bubble rings rotate around each other while translating (figure 18c
and supplementary movies). These dynamics are consistent with the experimental
observation of the rotation around bubble rings.

Some of the bubble tracks simply translate past each other during their radial
motions, for example visible in the movies accompanying figures 18 and 20. The
bubbles are initially sitting at slightly different depths, and this difference in vertical
location is amplified by the vorticity, as shown above. Moreover, as the bubble tori
break into bubbles, their vertical width will slightly increase, sampling larger mean
shear. These relative translations of bubbles could therefore result from a vertical mean
gradient of horizontal velocity within the pool depth.
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(a)

(b) (c)

FIGURE 18. (a) Bubble rings formed during the impact of a water drop on a shallow pool
of ethanol (Re = 13 300, α = 0.98, δ = 250 µm). The frames are shown at 8, 20, 38, 66 and
112 µs after the first one, showing a total of seven bubble rings. (b) Close-up view of a line
of fine bubbles which circulate around another line of slightly larger bubbles, from the movie
in (a). Total duration of these frames is 104 µs. See also supplementary movies. (c) Numerical
simulation of a water drop impacting on a thin film of the same liquid (Re = 13 800, α = 1,
δ = 800 µm). This focused view of the interface at t∗ = 0.481 shows the rotation of a pair of
bubble tori at the core of adjacent vortex rings. The scale bars are all 100 µm long.

3.7. Three-dimensional instabilities

The axisymmetry of the impact is rapidly broken by different instabilities (see
figures 4 and 7). For a water pool, we have observed that undulations develop in
the neck as soon as an ejecta forms (figure 4). This leads to entrapment of isolated
bubbles (figures 4 and 5) and creates less regular bubble rings compared to ethanol
or methanol pools. Even in those lower-surface-tension liquids, the most regular rings
appear at smaller entrapment radii, where the ejecta sheet has not broken yet and
remains axisymmetric. After the breakup of the ejecta sheet, the loss of axisymmetry
is imprinted on the bubble entrapments, as shown by the bubble arcs observed in
figure 7(f ), with legs extending in the radial direction towards the neck.

We have already suggested in § 3.5 that some of the azimuthal instabilities come
from the breakup of the ejecta sheet, when it bends and touches the drop or pool
surfaces. Overturning gravity waves also rebound and destabilize underlying vortices,
but at a much larger scales than herein, see Watanabe, Saeki & Hosking (2005).
Figure 14 clearly demonstrates the effect of isolated neck disturbances on the bubble
entrapment. A small perturbation is visible in the first frame and develops in time.
The two first bubble rings which form in the following frames are broken at the same
azimuthal location and the ejecta ruptures there first.

Three-dimensional instabilities also develop inside the liquid, and are made apparent
by the difference in refractive index. Radial lines are visible in figures 7(e), 8, 18(a),
19 and 20. They show the formation of streamwise vortices between the primary
spanwise vortex rings, which often reach to the free surface in the neck. For the
lower-Re cases (figure 19), isolated streamwise vortices are observed. In figure 19(a),
they appear in pairs, at the same location as a front perturbation. The lower one in the
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(a)

(b)

FIGURE 19. (a) Roll-up of isolated streamwise vortex pairs for a water drop impacting on
a film of ethanol seeded with 2 µm particles (Re = 11 400, α = 1.05, δ = 125 µm). The
first images show that the vortex pairs are starting at the same azimuthal location as local
disturbances in the front. The bottom vortex pair first entraps a bubble, later splitting in two.
Frames are shown 3, 6, 9, 12, 17, 23, 27 and 35 µs after the first one. (b) Roll-up and sideways
motion of streamwise vortices for a water drop impacting on a film of ethanol seeded with
2 µm particles (Re = 11 400, α = 1.05, δ = 125 µm). Frames are shown 3, 10, 18, 32 and
47 µs after the first one. The scale bars are 200 µm long.

image starts at an isolated location on the side of a vortex ring, where it entraps one
micro-bubble. Two lines are then visible on each side of this initial entrapment and
extend up to the front. This suggests that the vortex pair arises from the same vortex
loop, rolling-up around the vortex ring. The connection between the two streamwise
vortex lines should then form a vortex loop with one section in the azimuthal direction,
near its origin around the bubble. The presence of a strong vorticity around this
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(a)

(b)

8
12 14

(c)

FIGURE 20. Bubble rings and vortex entanglement (Re = 12 900, α = 0.80). (a) Frames
shown are 8, 22, 41 and 58 µs from first contact on ethanol (δ = 250 µm). (b) Careful
examination of the fine bubbles, shows 14 separate bubble rings, which are pointed out by
the arrows. (c) Close-up of the vortex tangles at t = 58 µs. The scale bars are 100 µm long.
See also supplementary movie.

bubble is demonstrated by its breakup into two smaller bubbles (in the 4th panel
of figure 19a). Moreover, the later dynamics shows that the secondary streamwise
vortex tubes roll up around the primary spanwise vortex ring. Figure 19(b) shows a
similar case where streamwise vortices roll-up around a vortex ring. This roll-up can
be identified by following two micro-bubbles at the core of the vortices (black arrows).

Interesting parallels can be made with similar three-dimensional instabilities
occurring in the wake of a cylinder (Williamson 1996). The local Reynolds number
at the base of the ejecta sheet Reb will be affected by both the radial velocity of the
neck and the velocity within the liquid. Reb can be increased both by increasing the
impact velocity or by using a more oblate drop. Indeed, as the impact Re increases, the
ejecta sheet emerges from a faster moving neck (Josserand & Zaleski 2003; Thoraval
et al. 2012), and at a higher velocity (Thoroddsen 2002; Josserand & Zaleski 2003),
thus leading to higher Reb. A flat-bottom drop also geometrically generates a faster
moving neck, and produces larger velocities in the liquid, see figure 12(a). Both
effects lead to a larger concentration of streamwise vortices (figures 7e, 8, 18a, 19 and
20). This is similar to the onset of three-dimensional instabilities of the vortex street
behind a circular cylinder (Williamson 1988, 1996), where finer streamwise vortices
and a smaller spanwise wavelength are observed at higher Re. Similar vortex loops
are also observed in both cases, as described above. Moreover, rapid motion of the
bubbles in the spanwise direction along the vortices is observed in our experiments,
see figures 4(f ) and 7(f ). Similar lateral motion was also observed behind ‘vortex
dislocations’ in the wake of a cylinder (Williamson 1992, 1996).
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4. Conclusions
Observations from below an impacting drop have herein demonstrated that the

mechanism suggested in Thoraval et al. (2012) does indeed entrap micron-sized air
tori. The oscillations of the ejecta sheet can thereby entrap a row of bubble rings. The
vorticity entering the liquid during those oscillations and bubble entrapments is then
destabilized into complex three-dimensional structures. The combination of azimuthal
instabilities and vertical oscillations produces a large range of new bubble-entrapment
scenarios.

Besides imaging the formation and breakup of partial bubble rings, of equal
significance is our observation that for water-on-water impacts the outer neck is
unstable to azimuthal undulations at even very moderate Reynolds numbers (figures 4d
and 5). This poses a challenge to theoretical and numerical studies, which invariably
assume axisymmetry.

We note that the bubble rings observed herein differ in fundamental ways from
the Oguz–Prosperetti rings (Oguz & Prosperetti 1989), as the base of the ejecta is
not driven by surface tension, but rather by the impact pressure. This high localized
pressure is indeed the mechanism responsible for driving out the ejecta sheet.

However, the details of the air entrapment and its dependence on the impact
conditions is still not clear. Large scope exists for further work, as the present
study perhaps raises as many questions as it answers. What role do Marangoni or
Rayleigh–Taylor instabilities play in the two-liquid dynamics? The large parameter
space of other liquids needs to be studied. Even for the same liquids in the drop
and pool, the interplay between Re, We and α which allows bubble-ring entrapment,
or preserves an extended axisymmetric ejecta, remains to be determined. The three-
dimensional instabilities of the vortex street also need to be studied in more detail
and compared to the well-known instabilities of the cylinder wake and the shear
layer. Furthermore, in the vortex street observed here, the vortices are shed from a
deformable free surface, adding to the complexity of the analysis. The influence of
the shed vorticity on the dynamics of the neck, both vertically and in the azimuthal
direction, should also be added to the factors influencing the stability analysis of
splashing.

Supplementary movies
Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2013.147.
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