Can. J. Math., Vol. XXVI, No. 1, 1974, pp. 251-255

IMPROVED VERSIONS OF FORMS OF PLESSNER’S
THEOREM

PETER COLWELL

1. Introduction. With the aid of a theorem about the Julia points of a
function meromorphic in the unit disk, this paper strengthens a theorem of
K. Meier. As a consequence a stronger form of Plessner’s Theorem is seen to
hold which contains a theorem of E. F. Collingwood. An additional consequence
is a stronger form of Meier’s analogue to Plessner’s Theorem.

First we set the terminology and notation. If D = {z:|5| < 1}, C =
{z:|z] = 1}, and W is the Riemann sphere, let f:D — W be meromorphic.
If vy € C and T is a chord in D ending at v, C(f, v, T') denotes the chordal
cluster set of f at v along T'; C(f, v, T') is the set of points w € W for which
there exists a sequence {z,}] C 7" such that z, — v and f(z,) — w. We let

o*(f,y) = N C(f,v, T),

where the intersection is taken over all chords 7" at «.

A Stolz angle A at v is a triangular domain in D bounded by two chords in D
ending at v, and the cluster set C( f, v, A) is the set of points w € W for which
there exists a sequence {z,} C A such that z, — v and f(z,) — w. A point
v € Cis called a Fatou point of fif there exists w € W such that C(f, v, A) =
{w} for every Stolz angle A aty; wecall y € Ca Plessner pointof fif C(f, vy, A) =
W for every Stolz angle A at y. F(f) and I(f) will denote the set of Fatou
points of f and the set of Plessner points of f, respectively.

A chord 1" at v € C is called a Julia segment for f if, for every Stolz angle A
at v containing 7', f assumes every value of W, with at most two exceptions,
infinitely often in A. If every chord at v is a Julia segment for f, then v is
called a Julia point of f. We let JS(f) be the set of points of C at which f has
a Julia segment, and J(f ) will denote the set of Julia points of f.

If A isasetof C, “almost every (nearly every) point of 4"’ will mean “‘every
point of A with the exception of a set of linear measure zero (first category)
on C.”

The results we present in §§ 2, 3 and 4 rest on the following result.

THEOREM 1. If f ©s meromorphic in D, then almost every and nearly every point
of JIS(f) — J(f) liesin {v € C:II*(f, v) = W}.

For expository reasons we defer the proof of Theorem 1 to § 5.
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2. Meier’s Theorem. If, for each y € C, A(f, v) denotes the set of values
on W which f assumes infinitely often in every Stolz angle at vy, Meier’s
Theorem [6, Satz 1] states: if f is meromorphic in D, then almost every point
of C lies in one of the three sets: (i) F(f); (i) J(f); (iii)

vy € C:A(f,v) Y I*(f, v) = W}.
Theorem 1 permits the following stronger version.

THEOREM 2. If f s meromorphic in D, then almost every point of C lies in one
of the three sets: (1) F(f); (i) J(f); (i) {v € C:II*(f,v) = W}.

Proof. Let E be the set of points on C which lie in none of the sets (i), (ii),
(iii), and suppose that £ has positive measure on C. Then E contains a set U
of positive measure such that U C I(f) — J(f), and II*(f,y) = W for
each vy € U.Thus,if ¥ € U, thereisa chord T aty such that C(f,v, T") = W.
Since vy € I(f), it will be the case that 7" is a Julia segment for f. (The justi-
fication for this fact appears in §5.) Hence U C JS(f) — J(f ). Theorem 1
produces a contradiction.

3. Stronger forms of Plessner’s Theorem. Plessner’s Theorem [7; 2,
Theorem 8.2] states: if f is meromorphic in D, then almost every point of C is
either a Fatou point or a Plessner point.

In [1, Theorem 1], Collingwood applied Meier’s Theorem to show that for
at least one class of meromorphic functions (Tsuji functions) one can replace
“Plessner points’” by ‘““Julia points.” We use Theorem 2 in place of Meier’s
Theorem in Collingwood’s argument.

THEOREM 3. Let f be meromorphic in D and suppose that T*(f, v) #= W at
almost every point of C. Then almost every point of C is either a Fatou point or a
Julia point.

Proof. Suppose not. Then U = [I(f) = J(f)IN{y € C:II*(f, v) = W}

has positive measure on C. But
UCS(f) =TIy € C:I*(f,v) = WY,
and this last set has measure zero by Theorem 1.

The hypothesis in Theorem 3 is relatively mild: for almost every pointy € C
there exists a chord 7" at v for which C(f, v, T') # W. This suggests an
interesting question for which the methods of this paper are not effective.

Question. Suppose f is meromorphic in D and for almost every point v € C
there exists a curve I' in D ending at y such that C(f, v, T') ## W. Must almost
every point of C then be either a Fatou point or a Julia point?

4. Meier’s analogue of Plessner’s Theorem. If v € C, C(f, v) = W,
and IT*(f, v) = C(f, v), we call v a Meier point of f, and we denote by M (f)
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the set of Meier points of f. In [6, Satz 5] Meier proved this result: if f is
meromorphic in D, then nearly every point of C is either a Meier point or a
Plessner point.

With Theorem 1 we obtain a result bearing the same relation to Meier’s
analogue as Theorem 3 bears to Plessner’s Theorem.

THEOREM 4. Let f be meromorphic in D and suppose that II*(f, v) #= W at
nearly every point of C. Then nearly every point of C is either a Meier point or a
Julia point.

Proof. At any Plessner point of f where IT*( f, y) 5 W, f has a Julia segment
(cf. details in §5.) Thus

I(f) = J(f) = {vi*(f,v) = WY CIS(f) = J(f) — {v:II*(f, v) = W}.

By Theorem 1 this last set is of first category; by hypothesis {v: II* ( f,v) = W}
is of first category. Hence I(f) — J(f) is of first category, and Meier’s
analogue to Plessner’s Theorem implies M (f ) \J J(f) is residual on C.

5. Proof of Theorem 1. For the proof some additional notation and pre-
liminary facts will be helpful.

Let vy € C and a € (—7/2, 7©/2). By T'(y, ) we denote the chord at v
making angle a with the radius to v. If 8 € (0, 7/2 — |a|), A(y, «, 8) will be
the Stolz angle at ¥ symmetric about the chord T (v, a) with vertex angle 8.
And forr € (0,1), welet A,(y,e,B8) = Aly, o, B) M {z:|z] > r}.

For z, w € D, p(z, w) is the hyperbolic distance between z and w.

LemMMma 1. Let a« € (—7/2, 7/2) and B € (0, 7/2 — |a|) be fixed, and set
M (B) = tanh™! {sin (8/2)/[4 + sin (8/2)]}. For any v € C, if z € T(y, ),
then

{w € Dip(w,2z) < MB)} C A(y,a,B).
Proof. From a lemma of P. Lappan [5, Lemma 2], if p(w, 2) < M (8), then
lw — 2|/(1 — |s]) = [2 tanh M(B)]/[1 — tanh M(B)]
= (1/2) sin (8/2) < sin (8/2).
Thus |[w — z| < (1 — |2|) sin (8/2) < |y — 2| sin (8/2), and w € A(y, «, B).

In [3], P. Gauthier defined the concept of a p-sequence of points in D. A
result of Gauthier [4, Theorem 1] contains the following fact.

LEMMA 2. Let f be meromorphic in D, v € C, and T be a chord at .
If C(f, v, T) = N C(f, v, A), the intersection being taken over all Stolz angles
A at v containing T, then T contains a p-sequence for f.

LemMA 3. If f is meromorphic in D, v € C, and T is a chord at v containing a
p-sequence for f, then T is a Julia segment for f.
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Proof. Let T = T'(y,a) and A = A(y, a, 8) be any Stolz angle containing 7.
Suppose {z,} is a p-sequence for fon 1.

By Lemma 1, for any r, 0 < r < M(B), and each positive integer =,
{w € Dip(w,z,) < r} C Ay, B).Since {z,} is a p-sequence for f, [3, Theorem
2] implies that for each such 7 and all # suthciently large there exist sets E (7, )
and G(r, ) on W, with chordal diameters at most 7, such that

W —[E(r,n)JG(r,n)] Cfllw e Dipw,z,) <r}].
Hence 7" is a Julia segment for f.

(We note that if v is a Plessner point for f, and II*( f, yv) # W, Lemmas 2
and 3 imply f has a Julia segment at v.)

Let E = JS(f) — J(f). Clearly ENF(f) =@ and EN M(f) = @, so
almost every and nearly every pointof E is a Plessner point. Let /' = £ M [ (f),
and G = FN\ {y €:II*(f, v) = W}

For any vy € G, since v ¢ J(f ), there exist rational numbers « € (—7/2,
7/2) and B € (0, /2 — |a|) such that f omits at least three values of W in
A(y, a, B). Also for some chord T'(y, p), u € (—7/2,7/2), C(f, v, T (v, n)) #
W. Since v € I(f), Lemma 2 implies T (y, u) contains a p-sequence for f.

Now leta € (—7/2,7/2),8 € (0,7/2 — |a|),and r € (0, 1) all be rational,
and let & be a positive integer. Define the subset G(a, 8, 7, k) of G as follows:
v € Gla, B,r, k)if vy € G, if theset W — f[A,(y, @, 8)] contains at least three
points, and if for any twosets 4, Bon Wsuchthatd U B = W — f[A,(y,«,8)],
either 4 or B has chordal diameter at least 1/&. [t is not difficult to show that

G= U G(B,7, k).
a,B8,7,k
We wish to show that G is of measure zero and of first category on C.

(i) If G has positive measure on C, then for some choice of «, 8, r, k— hence-
forth fixed— H = G(a, B, 7, k) has positive measure on C. Let L be a perfect
subset of H of positive measure on C.

Form a simply connected domain R in D by taking all the domains
A, (v, @, B/2) for v € L, together with {z:|z] < r} and appropriate open arcs
on {z:|z] = r}. The boundary of R is a rectifiable Jordan curve T with
I' "\ C = L. At almost every point of L there is a tangent to L which coincides
with the tangent to C at that point. Let A € L be any such point.

Except for the point A itself, some ‘‘last segment’’ of every chord in D at \
must lie in R. Since N € L C H, there exists chord 7T'(\, u) containing a p-
sequence {z,}. For n sufficiently large, each 2, € R, and hence there is a cor-
responding point v, € L such that z, € A,(y,, a, B/2) C A,(vn @, 8). Both
2z, = X\ and v, — \. From Lemma 1, for all » sufficiently large,

lw € Dip(w,2,) < M(B/2)} C Ar(va @, B).

Now choose s, 0 < s < min {M(B/2), 1/k}. If we let ZD(z, s) =
{w € D:p(z,, w) < s}, since {z,} is a p-sequence, we know that for all # suffi-
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ciently large f[Z (z,, s)] must cover all of W except for two sets A (s, #),
B(s, n) whose chordal diameters are less than 1/k. The same is then true for
f A, (., @, B)]. But each v, € H and we have a contradiction.

(i1) If G is of second category on C, then for some choice of «, 8, 7, k - hence-
forth fixed - H = G(a, B, 7, k) is of second category on C and thus dense in
some arc T of C. Let @ be a closed nondegenerate subarc of T and R be the
domain U,eeA, (v, @, 8/2). If L = QM H, let \ be any point of L lying in the
interior of Q. The argument proceeds as in (i) to a contradiction.

Thus G is of measure zero and of first category on C, and Theorem 1 is proved.
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