
High Power Laser Science and Engineering, (2023), Vol. 11, e44, 7 pages.
doi:10.1017/hpl.2023.17

RESEARCH ARTICLE

Tango Controls and data pipeline for petawatt laser
experiments

Nils Weiße , Leonard Doyle , Johannes Gebhard, Felix Balling, Florian Schweiger, Florian Haberstroh,
Laura D. Geulig , Jinpu Lin , Faran Irshad, Jannik Esslinger , Sonja Gerlach , Max Gilljohann,
Vignesh Vaidyanathan, Dennis Siebert , Andreas Münzer, Gregor Schilling , Jörg Schreiber ,
Peter G. Thirolf , Stefan Karsch, and Andreas Döpp
Ludwig-Maximilians-Universität München, Garching, Germany

(Received 1 December 2022; accepted 16 February 2023)

Abstract
The Centre for Advanced Laser Applications in Garching, Germany, is home to the ATLAS-3000 multi-petawatt laser,
dedicated to research on laser particle acceleration and its applications. A control system based on Tango Controls
is implemented for both the laser and four experimental areas. The device server approach features high modularity,
which, in addition to the hardware control, enables a quick extension of the system and allows for automated data
acquisition of the laser parameters and experimental data for each laser shot. In this paper we present an overview of our
implementation of the control system, as well as our advances in terms of experimental operation, online supervision
and data processing. We also give an outlook on advanced experimental supervision and online data evaluation – where
the data can be processed in a pipeline – which is being developed on the basis of this infrastructure.
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1. Introduction

Petawatt laser facilities[1] enable the study of a plethora of
phenomena, ranging from fundamental physics[2,3] and over
laser-driven radiation sources[4–8] to applications with high
societal relevance, such as medical imaging[9,10] and fusion
energy[11]. However, the wide range of applications also
results in a high variability of experimental configurations,
and frequently shifting experimental requirements demand
continuous modifications to the used technical infrastructure.
The integration of new devices, such as motors, cameras
or special instruments, into an experimental setup can be a
time-consuming task for experimental physicists. Reliable
control and supervision of all implemented devices is the
first step in conducting any successful experiment. Thus,
having a highly dependable and customizable server infras-
tructure that enables data acquisition and control of the entire
experiment can be of great benefit for daily experimental
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work. However, this server infrastructure should still be easy
to maintain and to work with because it must be used by
many different employees and collaborating scientists from
other facilities with specific needs and varying levels of
programming experience. If these requirements are met, the
server infrastructure then allows for even more advanced
steps, such as online diagnostics, that enable the automation
of the experiment and the implementation of safety features.
In addition, a common server infrastructure standardizes the
acquired data and streamlines the evaluation process into a
data pipeline. The ongoing development of the data pipeline
is planned to further enable advanced evaluation and control
methods enabled by machine learning[12].

In this paper we are going to review the implementation
of a control system that satisfies the requirements out-
lined above at the Centre for Advanced Laser Applications
(CALA), its petawatt laser and experimental chambers[13,14].
The paper is structured as follows. Section 2 outlines the
experimental infrastructure at CALA and the need for a com-
mon server infrastructure. An overview of the implemented
control system, Tango Controls[15], and its basic features in
terms of supervision and experimental operation is given
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Figure 1. Sketch of the experimental infrastructure at CALA: the ATLAS-
3000 laser provides the experimental chambers LION, LUX, ETTF and HF
with multi-petawatt laser pulses via the LBD.

in Section 3. We present our own software development in
these fields and show how it improved daily operation and
supervision in Section 4. The developed data acquisition and
processing pipeline, which made data handling faster and
more streamlined, is shown in Section 5. An outlook on
future software development is given in Section 6.

2. ATLAS-3000 laser and experimental infrastructure

The CALA in Garching, Germany, hosts the ATLAS-3000
laser. With up to 60 J pulse energy after compression to
20 fs pulse length and 1 Hz repetition rate, the laser offers
an exclusive combination of multi-petawatt peak power and
repetition rate. A custom-built laser beam delivery (LBD)
supplies four different experimental areas with high-peak-
power laser pulses. Each of these experimental areas is
dedicated to different flavours of laser applications, namely
research on electron acceleration (Electron and Thomson test
facility, ETTF), laser-ion acceleration (LION), high fields
(HFs), and novel X-ray sources (LUX). The experimental
infrastructure is sketched in Figure 1. Each of the indi-
vidual research areas requires different specific instruments
to successfully conduct an experiment. However, there are
also devices commonly used in all experimental chambers,
such as cameras, energy meters, spectrometers and different
motors. Furthermore, the data from the ATLAS-3000 laser
are relevant for all groups. Thus, there is interest at CALA
in having a server infrastructure that enables access to the
data required by each individual group. A common laser
infrastructure allows for easy integration of new instruments
and provides researchers with data in a standardized format.

3. Tango Controls at the Centre for Advanced Laser
Applications

We have adopted Tango Controls[15] as the main server
infrastructure for supervisory control and data acquisition
in recent years. As open-source software, it can be easily
implemented and adapted. Tango Controls establishes an
abstraction of the communication protocol that allows the
use of different operating systems (Windows, Unix, MacOS)
and the implementation of devices by applying different pro-
gramming languages (e.g., Python, Java, MATLAB, C++).

Figure 2. Sketch of the Tango server infrastructure. Device servers allow
communication with physical devices.

In this way, a wide variety of instruments can be included in
the control system. At CALA mainly the Python version of
Tango, PyTango, is used. The general structure of PyTango,
as well as its inherent capacities in server creation, data
acquisition and instrument supervision, will be presented in
this section.

An overview of a typical Tango server infrastructure is
sketched in Figure 2. Each physical device, such as a motor
control panel or microcontroller, is an instance of a device
server. Communication between the device server and the
physical device can be achieved in multiple ways, for exam-
ple, by means of a local area network (LAN) or Universal
Serial Bus (USB)–serial connection. The device server is
most commonly written in C++ or Python. In this exam-
ple, all device servers are in control of a physical device.
However, device servers could also be used to only eval-
uate data, as will be described in the following sections.
Instances of the device servers can be run on different
physical computers. This includes, but is not limited to,
any Windows or Linux computer as well as ARM systems,
such as the Raspberry Pi. Each instance is registered on
a common database server, which is the central point for
establishing new connections between two devices. Com-
munication between devices is carried out as a peer-to-peer
(p2p) connection using the Tango protocol.

A client such as a graphical user interface (GUI) running
on a computer can access all devices via such a p2p connec-
tion. In its current implementation, the server infrastructure
is highly decentralized. The main laser system, as well
as each of its four experimental areas, has independently
operating database servers. This is done to reduce the risk
of interfering with group-specific configurations and require-
ments.

Setting up and operating the different components of a
working PyTango server infrastructure is relatively easy to
learn through the use of software provided in the Tango
package. Programming a device server is supported by the
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Figure 3. Screenshot showing the GUI of the Tango code generator called
Pogo. Pogo allows the definition of properties, commands, attributes and
states for a device server.

Tango code generator called Pogo. Pogo can be used to
generate a Python class that contains dummy functions for
a device server. Figure 3 shows the GUI of Pogo. In this
example, a Python device server called ‘UEyeCamera’ is
created to control Ethernet cameras (IDS ‘UEye’). In order to
control physical devices, such as cameras, commands, device
properties, attributes and states are used:

• commands are used to execute functions, for example,
to turn a camera on or off;

• device properties are constant values for one device, for
example, a static Internet Protocol (IP) address corre-
sponding to a camera;

• scalar attributes are single values that can be read and
written, for example, the exposure time of a camera;

• spectrum attributes describe a 1D array data type that
can be read and written, for example, the 1D measure-
ment data of a spectrometer;

• image attributes describe a readable and writable 2D
array, for example, a camera image;

• states are used to provide users or other programs
with information about the device server, for example,
whether it is currently running correctly or a fault has
occurred.

Furthermore, Pogo allows a device server to inherit
attributes and commands from a parent class. In the
example shown in Figure 3, the device server with the name
UEyeCamera inherits a class called GenericCameraInterface
that contains many attributes, functions and commands

Figure 4. Screenshot of the Jive GUI showing a list of camera device
servers and their device properties.

Figure 5. Display of the image attribute of a Shack-Hartmann camera in
Jive.

applicable to all types of cameras, for example, setting the
exposure time or acquiring images in a loop. This increases
the readability of different camera classes between research
groups. The UEyeCamera class, like all devices in our
infrastructure, inherits from the ArchivingDevice class. Due
to this, all devices share common attributes defined in the
ArchivingDevice class that we use to distribute and store
data at the time of a laser shot, as explained in Section 5.

Each device server has to be registered in the database
server to be able to create device server instances. This and
all device server instances can be managed using the tool
Jive. Figure 4 shows parts of the GUI of Jive. The GUI gives
the operator some basic information about the registered
device servers, such as their state or when the device server
was last online. Jive also allows the values of the device
properties to be defined or changed (as shown in Figure 4)
and the execution of all the commands defined for the
device server. Furthermore, all attributes of any server (e.g.,
a camera image) can be viewed, as shown in Figure 5.
The advantages of implementing physical devices, such as
cameras, into a server infrastructure become immediately
clear when looking at Jive. One key advantage of making
a hardware device available in Tango is that it can afterwards
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Figure 6. Display of the Astor user interface.

be accessed by many clients simultaneously. Where in the
past operators often had to, for example, close a camera in
one program to re-open it in another, the image can now be
accessed at the same time by Jive, a custom GUI and the
evaluation pipelines presented in Section 5.

For the general management of Tango device servers, daily
operation is further eased by a program called Astor that
shows the running state for each device server. When con-
figured correctly, Astor can control or restart device servers
running on a remote PC. Figure 6 shows the user interface
of Astor. In this case, three device servers for Ethernet
cameras (‘UEyeCamera’) are running on a computer, as well
as device servers used for the image and data processing
described in Section 5.

Even though Jive and Astor provide some basic function-
ality for the operation and supervision of a device server,
custom-made code and GUIs are still required in the case of
CALA, as we will discuss in the next section.

4. Operation and supervision at the Centre for
Advanced Laser Applications

Conducting daily experiments on, for example, particle
acceleration with a petawatt laser, requires considerable
experience and care. The success of an experiment can only
be ensured when all important parameters can be safely
and reliably controlled and supervised by the operator. By
implementing all important devices into a common server
infrastructure, this was made easier to achieve. At the time of
writing, there are more than 50 motors, 20 cameras, multiple
spectrometers and energy meters and many more special
instruments integrated as device servers in the PyTango
server infrastructure at CALA.

In addition, custom GUIs ease the operation and supervi-
sion of such a complex technical infrastructure by allowing
the operator to focus on the most important components
of the system. A notable example of a GUI that does this

Figure 7. CALA overview dashboard for the supervision of laser parame-
ters and the LION experimental chamber.

is the CALA overview dashboard that is operated in the
laser control room, depicted in Figure 7. A dedicated user
interface retrieves live data from multiple Tango devices and
displays them accurately, improving the operator’s decision-
making. The current approach to implementing the overview
dashboard consists of a combination of Taranta[16] and Plotly
Dash[17]. Taranta (formerly known as WebJive) is a Tango
native open-source web interface providing the so-called
widgets to create dashboards interactively per drag and drop.
Those widgets connect to Tango devices to monitor the
system by displaying and plotting attributes or controlling
the system by executing commands and setting attributes.
Furthermore, since Taranta is open source, we can adjust
it to our needs and create individual widgets optimized
for our purposes. Plotly Dash is a Python package that
includes nearly all HyperText Markup Language (HTML)
components and allows for more complex processes, such
as displaying custom graphics. Furthermore, it is still able
to connect to Tango with some workarounds. This dash-
board pictographically summarizes the current state of the
ATLAS-3000 laser and the experimental chamber, here
LION, in the control room. It includes beamline information,
such as the attenuation state and filter settings of the laser
beam. Also, important parameters such as incoming energy
of the laser pulses and vacuum pressures are displayed.

Furthermore, operating experiments can be made safer for
the technical infrastructure if all instruments are included
in a common server infrastructure. While human safety
is ensured by a programmable logic controller (PLC) that
monitors external laser and radiation safety, experimental
equipment can still be damaged. For example, accidental
exposure of cameras to full-power laser beams or even atten-
uated but focused beams can easily result in pixel damage.
Even more expensive equipment, such as optical gratings or
mirrors, can be destroyed if the wrong settings for the laser’s
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spectral content are selected by the operator. Such events
can potentially shut down the experimental operation for
months. Implementing automated safety features becomes
easier when all important devices report their status in a
common control system. In this way, the risk of a camera
being destroyed by an unattenuated laser pulse was made
highly unlikely when Tango Controls is in use. Every time
the operator requests an unattenuated laser shot, the program
checks if all cameras have been moved out of the laser’s
path. Since both the attenuation of the laser and the position
of the motorized stage on which the camera is placed are
attributes accessible via Tango, this became very easy to
program. Currently, more advanced safety systems are being
developed on the basis of the Tango server infrastructure. An
important example of this is a safety device consisting of a
spectrometer and a shutter that checks if the laser spectrum
is still broad enough for amplification and compression after
modification with an ultrafast pulse-shaping system. Only
then is the laser allowed to pass through the amplification
chain, preventing the destruction of optical components by a
too narrow spectrum.

Finally, automation of repetitive steps during an experi-
ment becomes more easily possible with this infrastructure.
Repetitive tasks, such as taking 100 images in a row for a
focus analysis while simultaneously scanning one parameter,
are difficult to perform by hand without making simple
mistakes. The implementation of analysis features in the GUI
massively increases the reliability of the results and enables
the experimentalist to focus on the experiment rather than
infrastructure.

5. Data acquisition and processing pipeline at the Centre
for Advanced Laser Applications

Given the 1 Hz repetition rate of the ATLAS-3000 laser,
automated data acquisition is necessary to handle data from
various diagnostic devices, such as energy meters, spec-
trometers and cameras. The multitude of devices requires
a structured data acquisition to keep track of the data and
synchronize it so that each measurement corresponds to a
specific laser shot. As mentioned in Section 3, all device
servers inherit attributes and commands from an archiv-
ing device server and subscribe to an experimental control
server. By inheriting common attributes and commands, all
data can be standardized in terms of file and date format.
By subscribing to the experimental control server, a device
server can receive information such as the current laser shot
number, time and location of the storing folder from the
experimental control server that sets these parameters.

Data acquisition and synchronization within the pulsed
laser system are based on a command structure. The flow
of commands for the CALA trigger system is sketched in
Figure 8. The operator can set the laser and target parameters
using a GUI. Once the parameters are set, a shot can be

Figure 8. Flow of commands for the CALA trigger system.

requested, which triggers the experimental control server to
store and update meta-data such as the current shot number.
The request for a shot is then forwarded to the laser device
server that stores further meta-data and asks the laser control
PLC for a shot. All device servers that are subscribed to
the experimental control server will activate their trigger
system, so that the next time a hardware trigger is received,
the measurements are stored. If the shot is not blocked by
external safety interlocks, an electrical trigger is sent 200 ms
before the laser pulse arrives at the target.

The integration of physical devices into the Tango server
infrastructure allows for a faster online evaluation of impor-
tant physical parameters by channelling the acquired data
into a data processing pipeline. Every time a device server
acquires new data, it automatically emits a ‘data ready’
event. Other device servers that are capable of analysing data
can subscribe to this event, creating a pipeline. One such
example is an image processing pipeline, where a camera
image is received by an ImageCleaner device. This device
will subtract a stored dark image and apply some cropping
and filtering if desired. The output image is again accessible
as a Tango attribute and an ImageCalculator device can
receive each new cleaned output image to calculate the
image centre of the mass, peak and integral. When applied,
for instance, to a far-field monitor camera, this allows for
an online evaluation of the beam pointing. When storing
only the calculated quantities, this also allows a significant
reduction in storage requirements for certain cameras.

In addition, improved diagnostics and data acquisition
can also provide insight into the system’s operation. As an
example, the temperature at essential parts of the laser, for
example, the temperature of optical tables, crystals, cooling
water and the ambient air temperature of the ATLAS-3000
laser, is measured using multiple temperature sensors, which
are integrated into the Tango system. Because of this, data
from these diagnostics can easily be combined with various
laser output parameters to measure correlations between
temperature and laser performance. As an example, Figure 9
shows a plot of the air temperature against the corresponding
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Figure 9. Correlation of laser pulse energy with air temperature measured
at the amplification crystal.

laser pulse energy, measured at the last amplification crystal.
The plot shows a clear (anti-)correlation between air temper-
ature and laser energy.

These developments lay the foundation for more advanced
machine learning-based data processing and control tech-
niques[12] by providing stored data, as well as live measure-
ments in a standardized format. For instance, researchers
at CALA have been actively working on developing con-
trol systems based on Bayesian optimization[18] and have
used object detection networks to actively monitor various
features or patterns in diagnostics (e.g., optical damage or
few-cycle images of laser-driven plasma waves)[19]. As an
example, Figure 10 shows objects detected by an object
detection network[20], which was fine-tuned to detect and
distinguish features that regularly occur in few-cycle shad-
owgraphy, such as plasma waves or diffraction patterns from
dust on optics or hydrodynamic shocks. Importantly, this
fine-tuning only requires a small number (∼ 50) of manually
labelled training images. The detected objects can be used to
estimate physical quantities, such as the plasma wavelength
and plasma density. Although the object detector so far has
only been applied to offline data, the fast inference speed of
the algorithm will make an integration into Tango possible. It
would allow live analysis during an experiment of thousands
of laser shots where the objects can have different positions
on the diagnostics.

As another example, Bayesian optimization has recently
been applied at the ETTF facility to optimize and automate
the generation of electron beams. The Tango system facili-
tates such an optimization by providing online information
of the laser and experiment systems, which is then used by

Figure 10. Machine learning application in few-cycle probing in a
hybrid[21] laser–plasma accelerator. The objects to be detected in the
shadowgram are the plasma wave, the shock and the diffraction patterns
from dust particles.

Bayesian optimization to generate complex models of the
experiment. Based on these models, the optimizer is able
to send commands to the Tango system to move different
motors to new positions and gas regulators to new gas
pressure set points, resulting in better electron beams.

6. Conclusions and outlook

In this paper, we have described our server infrastructure
based on Tango Controls and its Python implementation,
PyTango. We give an overview of Tango Controls and its
capabilities in terms of experimental supervision and con-
trol. Our own development in improving the experimental
supervision and control, as well as our data acquisition
and data processing pipeline based on Tango Controls,
was further presented. We view the integration of most
instruments in a common server infrastructure as well as
the described development as an important step towards
improved operation and evaluation procedures at CALA.

At the time of writing, multiple goals have been defined
to optimize the experimental procedures at CALA. Firstly,
Tango Controls as a server framework can enable automation
and supervision of alignment steps at the ATLAS-3000 laser
at CALA. This includes optimization of motor positions,
for example, changing the position of alignment mirrors,
by feedback loops with additional diagnostics. Furthermore,
safety aspects with respect to the implemented instruments
can be improved, for example, by devices such as the ultrafast
pulse-shaping system safety device mentioned in Section 4.
Based on the processing pipeline described in Section 5
and the dashboard described in Section 4, online analysis
tools that allow for quick visualizations of measurements
and recorded data are being developed. This could ease
daily experimental operations, for example, plotting the stage
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position versus the mean count rate on a camera to find
the optimal position for a particular experiment. Finally, the
developments described in this paper are prerequisites for
the ongoing implementation of advanced methods based on
machine learning to understand, control and analyse petawatt
laser experiments.

Acknowledgements

We thank the Federal Republic of Germany and the Free
State of Bavaria for funding the CALA infrastructure (15171
E 0002) and its operation. This work was supported by the
Independent Junior Research Group “Characterization and
control of high-intensity laser pulses for particle accelera-
tion”, DFG Project No. 453619281. N.W. was supported via
the IMPULSE project by the European Union Framework
Program for Research and Innovation Horizon 2020 under
grant agreement No. 871161. This work was supported by
the Bundesministerium für Bildung und Forschung (BMBF)
within project 01IS17048. J.G. acknowledges support from
the German Academic scholarship foundation.

References

1. C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F.
Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi,
J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov,
R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H.
Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J.
Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári,
R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, High
Power Laser Sci. Eng. 7, e54 (2019).

2. A. Pukhov, Rep. Prog. Phys. 66, 47 (2003).
3. M. Marklund and P. K. Shukla, Rev. Mod. Phys. 78, 591

(2006).
4. E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod.

Phys. 81, 1229 (2009).
5. V. Malka, Phys. Plasmas 19, 055501 (2012).
6. A. Macchi, M. Borghesi, and M. Passoni, Rev. Mod. Phys. 85,

751 (2013).
7. J. Schreiber, P. R. Bolton, and K. Parodi, Rev. Sci. Instrum. 87,

071101 (2016).
8. F. Albert and A. G. R. Thomas, Plasma Phys. Control. Fusion

58, 103001 (2016).
9. J. M. Cole, D. R. Symes, N. C. Lopes, J. C. Wood, K.

Poder, S Alatabi, S. W. Botchway, P. S. Foster, S. Gratton, S.
Johnson, C. Kamperidis, O. Kononenko, M. De Lazzari, C. A.
J. Palmer, D. Rusby, J. Sanderson, M. Sandholzer, G. Sarri,
Z. Szoke-Kovacs, L. Teboul, J. M. Thompson, J. R. Warwick,
H. Westerberg, M. A. Hill, D. P. Norris, S. P. D. Mangles,
and Z. Najmudin, Proc. Natl. Acad. Sci. U.S.A. 115, 6335
(2018).

10. A. Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann, H.
Ding, S. Schindler, F. Pfeiffer, and S. Karsch, Optica 5, 199
(2018).

11. A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher,
J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, K. L.
Baker, D. T. Casey, T. Döppner, L. Divol, M. Hohenberger,
S. Le Pape, A. Pak, P. K. Patel, R. Tommasini, S. J. Ali, P.
A. Amendt, L. J. Atherton, B. Bachmann, D. Bailey, L. R.
Benedetti, L. B. Hopkins, R. Betti, S. D. Bhandarkar, J. Biener,
R. M. Bionta, N. W. Birge, E. J. Bond, D. K. Bradley, T.
Braun, T. M. Briggs, M. W. Bruhn, P. M. Celliers, B. Chang,
T. Chapman, H. Chen, C. Choate, A. R. Christopherson, D.
S. Clark, J. W. Crippen, E. L. Dewald, T. R. Dittrich, M. J.
Edwards, W. A. Farmer, J. E. Field, D. Fittinghoff, J. Frenje,
J. Gaffney, M. Gatu Johnson, S. H. Glenzer, G. P. Grim, S.
Haan, K. D. Hahn, G. N. Hall, B. A. Hammel, J. Harte, E.
Hartouni, J. E. Heebner, V. J. Hernandez, H. Herrmann, M.
C. Herrmann, D. E. Hinkel, D. D. Ho, J. P. Holder, W. W.
Hsing, H. Huang, K. D. Humbird, N. Izumi, L. C. Jarrott,
J. Jeet, O. Jones, G. D. Kerbel, S. M. Kerr, S. F. Khan, J.
Kilkenny, Y. Kim, H. G. Kleinrath, V. G. Kleinrath, C. Kong,
J. M. Koning, J. J. Kroll, M. K. G. Kruse, B. Kustowski, O.
L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D. Lindl, T.
Ma, M. J. MacDonald, B. J. MacGowan, A. J. Mackinnon, S.
A. MacLaren, A. G. MacPhee, M. M. Marinak, D. A. Mariscal,
E. V. Marley, L. Masse, K. Meaney, N. B. Meezan, P. A.
Michel, M. Millot, J. L. Milovich, J. D. Moody, A. S. Moore,
J. W. Morton, T. Murphy, K. Newman, J.-M. G. Di Nicola, A.
Nikroo, R. Nora, M. V. Patel, L. J. Pelz, J. L. Peterson, Y. Ping,
B. B. Pollock, M. Ratledge, N. G. Rice, H. Rinderknecht, M.
Rosen, M. S. Rubery, J. D. Salmonson, J. Sater, S. Schiaffino,
D. J. Schlossberg, M. B. Schneider, C. R. Schroeder, H. A.
Scott, S. M. Sepke, K. Sequoia, M. W. Sherlock, S. Shin, V.
A. Smalyuk, B. K. Spears, P. T. Springer, M. Stadermann, S.
Stoupin, D. J. Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town,
E. R. Tubman, C. Trosseille, P. L. Volegov, C. R. Weber, K.
Widmann, C. Wild, C. H. Wilde, B. M. Van Wonterghem, D.
T. Woods, B. N. Woodworth, M. Yamaguchi, S. T. Yang, and
G. B. Zimmerman, Nature 601, 542 (2022).

12. A. Doepp, C. Eberle, S. Howard, F. Irshad, J. Lin, and M.
Streeter, arXiv:2212.00026 (2022).

13. F. S. Englbrecht, A. Döpp, J. Hartmann, F. H. Lindner, M. L.
Groß, H.-F. Wirth, P. G. Thirolf, S. Karsch, J. Schreiber, K.
Parodi, and G. Dedes, J. Radiol. Protection 40, 1048 (2020).

14. J. Hartmann, T. F. Rösch, F. Balling, M. Berndl, L. Doyle, L.
Flaig, S. Gerlach, L. Tischendorf, and J. Schreiber, Proc. SPIE
11779, 117790N (2021).

15. https://www.tango-controls.org/.
16. https://gitlab.com/tango-controls/web/taranta.
17. https://dash.plotly.com/.
18. F. Irshad, S. Karsch, and A. Döpp, Phys. Rev. Res. 5, 013063

(2023).
19. J. Lin, F. Haberstroh, S. Karsch, and A. Döpp, High Power

Laser Sci. Eng. 11, e7 (2023).
20. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, in Pro-

ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (IEEE, 2016), p. 779.

21. F. M. Foerster, A. Döpp, F. Haberstroh, K. v. Grafenstein, D.
Campbell, Y.-Y. Chang, S. Corde, J. P. Couperus Cabadağ,
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