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SPLIT GRAPHS HAVING DILWORTH NUMBER TWO 

STEPHANE FOLDES AND P E T E R L. HAMMER 

1. Introduction. All graphs considered in this paper are finite, undirected, 
loopless and without multiple edges. 

The vertex set and the edge set of a graph G will be denoted by V(G) and 
E(G)y respectively. Thus we have 

E(G) = {{x, y}\x, y £ V(G), x and y are adjacent in G}. 

A set S Q V(G) will be called independent if no edge of G has both end vertices 
in S. The set S Q V(G) will be called complete if any two distinct vertices of 5 
are adjacent. If the complement of G is denoted by G, then S is independent in 
G if and only if it is complete in G. 

For x G V(G) we denote by N(x) the set of vertices adjacent to x. The 
vicinal preorder < of G is denned on 7(G) by 

x < y if and only if N(x) Ç= N(y) VJ {3/}. 

It is easy to see that < is in fact a preorder, i.e. a reflexive and transitive 
relation. 

For any preorder < , a subset 5 of the underlying set is called a chain, if for 
any two elements x and y of S, x < y or y < x holds» 5 is an antichain if for 
any x, y G S, x < y implies x — y. The dual preorder <* is defined by 

x S* y if a n d only if 3> < x. 

The Dilworth number V (G) of a graph is the minimum number of chains of 
the vicinal preorder covering V(G). According to the well-known theorem of 
Dilworth [3], V(G) also equals the cardinality of the maximum size antichains 
in the vicinal preorder. For 5 C F(G), V G ( 5 ) will denote the minimum 
number of chains of the vicinal preorder of G covering S, which is also equal 
to the maximum number of elements of 5 that are pairwise uncomparable in 
the vicinal preorder of G. Thus V G ( F ( G ) ) = V(G), but generally the Dil­
worth number V (H) of an induced subgraph H of G is strictly less than 
VG(V(H)). 

It is easy to see that the vicinal preorder of G is the dual of that of G. There­
fore V(G) = V(G) and also for every 5 ÇZ V(G), VG(S) = V G ( S ) . 

Some connections between properties of the graph G and the structure of its 
vicinal preorder have been studied in [2], [5], and explicitly in [6]. The number 
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V(G) appears to have a particular significance. For example, threshold graphs 
have been characterized in [2] as graphs with Dilworth number 1, i.e. graphs 
that do not have an induced subgraph isomorphic to 2K2, C4 or P 4 (Figure 1). 

2K2 
P 4 

G is a comparability graph if a strict partial order < (irreflexive, antisym­
metric and transitive relation) can be defined on V(G) in such a way that 

{x, y) G E(G) if and only if (x < y or y < x). 

G is an interval graph if there is a mapping i} called a representation of G, that 
associates to every x £ V(G) a non-empty bounded interval of the naturally 
ordered set Z of all integers, such that {x, y} Ç E{G) if and only if (x ^ 3> and 
i(x) C\ i(y) 7^0). The mapping i does not have to be infective (but if we 
required it to be injective, we would not obtain a different definition). Also, Z 
could be replaced by any other infinite linearly ordered set. 

A graph is chordal if it does not have an induced subgraph of finite girth ^ 4. 
Interval graphs are the classical examples of chordal graphs. 

2. Split graphs. The following result was proved in [4]. 

THEOREM 1. For any graph G the following three conditions are equivalent: 
(i) both G and G are chordal; 

(ii) V{G) can be partitioned into a complete and an independent set; 
(iii) G does not contain an induced subgraph isomorphic to 2K2, C4 or C5. 

2K2 C5 

A graph satisfying the conditions of Theorem 1 is called a split graph. The 
aim of this paper is to characterize interval and comparability graphs within 
the class of split graphs. 
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3. The good representation and its consequences. We shall need the 
following: 

LEMMA. Every complete graph K is an interval graph. For any representation i 
i(x) * 0. 

Proof. The first part of the lemma is obvious. The second part is proved by 
induction on \V(K)\. If K has only 1 vertex, the statement is trivially true. 
Assume it is not true for a representation i of a complete graph K, and let K 
have the smallest possible number of vertices. Let x 6 V(K). Then the sub­
graph induced by V(K)\{x} is complete and 

O i(y) 
ve V(K) 

VT*X 

is a non-empty interval [a, b] of Z. Clearly there is a vertex y ^ x with i(y) = 
[a, c] and also a z ^ x with i(z) = [d, b]. Let i(x) = [e, / ] . If / < a, then 
i(x) C\ i(y) = 0 and if e > b, then i(x) C\ i{z) = 0. Since none of the above 
intersections can be empty, we must have / ^ a and e ^ b, i.e. i(x) H [a, fc] ̂  0. 
But i(x) H [a, b] = ClyeviK) i(y). 

Let G be a split graph with a partition V(G) = KU I, K complete, I inde­
pendent. A good representation i of G is one for which all the i(x), x G / , are 
singletons. 

PROPOSITION 1. Every split interval graph G has a good representation. 

Proof. For every x Ç 7, x \J N(x) induces a complete graph. According to 
the lemma, i(x) C\ r\y^N(x)i(y) ^ 0- Let x be any element of i(x) C\ C\vtN{x)i(y)-
A good representation is obtained by replacing each i(x), x Ç / , by {x}. 

It is clear that the complement G of a split graph G is a split graph. The 
following proposition can also be obtained from Theorem 2 of [7]. We shall 
give a direct proof. 

PROPOSITION 2. Let G be a split graph. G is an interval graph if and only if G 
is a comparability graph. 

Proof. Let V(G) =KUI,Kr^I = 0,K complete, I independent. Assume 
G is an interval graph. Let i be a good representation of G. Define a strict 
partial order < on V(G) = V{G) as follows: 

x < y if and only if (\/a G i(x), \/b £ i(y), a < b in the natural 
order of Z). 

It is easy to check that {x, y] G E(G) if and only if (x < y or y < x). Thus G 
is a comparability graph. 

Let G be a comparability graph with an appropriate strict order < on 
V(G) = V(G). Since I is complete in G, its elements can be labelled Xi, . . . , xn 
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in a unique way such that Xi < . . . < xn. For each xk, 1 ^ k ^ n, let 
i(xk) = {2k}. For each y £ K, let i(y) = {21 - 1, 2/, 21 + 1\1 g> I £ n and 
{3>, x} (? E(G)}. Then i is an interval representation of G and it is in fact a 
good representation. 

THEOREM 2. Le/ G be a split graph, V(G) = K KJ I, K rM = 0, K complete, 
I independent. The following two conditions are equivalent: 

(i) Gis an interval graph; 
(ii) VG(I) S 2. 

Proof, (i) => (ii). Let Î be a good interval representation of G. Let a £ 
Oxex i(x). Define C\ = {x £ 7|i(x) = {&} and 5 ^ a in Z}, C2 = A d - It can 
be verified that d and C2 are chains in the vicinal preorder of G. 

(ii) =$ (i). Let C\ and C2 be two disjoint chains in the vicinal preorder of G 
such that C\ U C2 = / . Let G = {xi, . . . , xn) and C2 = {yi, . . . , ymS be 
enumerations of their vertices such that 1 ^ k S j ^ n implies xk > x;- and 
1 ^ & ̂  j S nt implies yk > 3^. Let i(x^) = {—&jfo r l fg£ :gn and i(yk) = 
{&} for 1 ^ fe g w. For z G X, let i{z) = {i(v)\v £ iV(z) H I j U {0}. Then 
i is a good representation of G. 

Remark. For the good representation i defined in the second part of the 
above proof, we have 

for x, y Ç K: x < 3/ <=> i(x) C i(y) ; 
for x, y Ç Ci, i(x) = {c}, i(y) = {b}: x S y *=> ° = c in Z; and 
for x, y Ç C2, i(x) = {c}, i(y) = {b} : x < y ^^ c ^ b in Z. 

THEOREM 2. Le/ C be a split graph, V(G) = K VJ I, K C\ I = ®, K complete, 
I independent. Then G is a comparability graph if and only if VG(K) ^ 2. 

COROLLARY 1. A split graph G is simultaneously an interval and a compar­
ability graph if and only ifW{G) ^ 2. 

Proof. Let V(G) = K \J I, K C\ I = 0, K complete, I independent. For 
every x £ K, y Ç I, we have x > 3/ in the vicinal preorder and consequently 
V(G) = max (VG(I), VG(K)). 

Remark. There exist interval (as well as comparability) split graphs with 
arbitrarily high Dilworth number. 

4. Forbidden subgraphs. It is clear that any induced subgraph of an 
interval split graph is an interval split graph. Consequently, these graphs are 
characterized by a set F of forbidden induced subgraphs. This set turns out to 
be finite, unlike in the case of general interval graphs (every polygon of 
girth at least 4 is a minimal non-interval graph). The problem is analogous for 
comparability graphs: every odd polygon of girth at least 5 is a minimal non-
comparability graph and therefore no characterization of these graphs can be 
given by a finite set of forbidden subgraphs. However, it will be shown in this 
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section that such a characterization can be given within the class of split 
graphs. 

THEOREM 3. A split graph G is an interval graph if and only if it does not 
contain an induced subgraph isomorphic to any of the graphs Gi, G2 or G3 of 
Figure 3. 

Gi G2 

FIGURE 3 

G3 

Proof. It is easy to see that Gi, G2 and G3 are not interval graphs but every 
proper induced subgraph of any of them is an interval graph. An interval split 
graph clearly cannot contain any of G\, G2 or G3. 

Conversely, let G be a minimal non-interval split graph. We claim that G is 
isomorphic to Gi, G2 or G3. Let V(G) = K\J I, K C\ I = 0, K complete, 
I independent. I contains three vertices Xi, x2 and x3 forming an antichain in 
the vicinal preorder of G. Since / is independent, this means precisely that 
none of the sets iV(xi), N(x2) and iV(x3) is a subset of any other. Moreover, 
since G is minimal, / = {xi, x2, x3}. Let 

ai e iV(xi)VV(x2), 

a2 e N(x2)\N(xz), 

az e N(x3)\iV(xi), 

h 6 iV(xx)\iV(x3), 

b2 e iV(*2)VV(*i), 
b, G iV(x3)\iV(x2). 

It is clear that a,\, a2, a3 are distinct and so are bi, b2, b%. 
We have to distinguish three cases. 

Case 1. ai, a2, a3, &i, b2, bz are all distinct. Then the minimality of G implies 
that 

{xi, a2}, {xi, 63}, |x2, 6i}, }x2, a3}, {x3, b2}, {x3, ax} 

all belong to E(G). But then {xi, x2, x3, ai, a2j a3} induces a subgraph isomor­
phic to G2, in contradiction with the minimality of G. 

Case 2. |{<2i, a2, a3, &i, 62, Ml < 6 but {&i, bi}, {a2, b2) and {a3, 63} are 
pairwise disjoint. There exists an i with at = bu say a2 = b2. If ai ^ &i and 
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a3 5* 63, then {x2, fei}, {x2, a3}, {xi, &3}, {x3, ax} G £ ( G ) and {xi, x2, x3, 61, &3, a3} 
induces a proper subgraph isomorphic to G2, a contradiction. Therefore, <2i = 
bi or a3 = bz; say, a i = 61. If a3 ^ 63, then G is isomorphic to G3 and if a3 = 
63, then G is isomorphic to G\. 

Case 3. {ai, &i}, {a2, fr2} and {a3, fr3} are not pairwise disjoint. We can assume 
for instance tha t {au bi] H {a3, 63j 7^ 0, i.e. t ha t ai = 63. If we have a2 = 52 

and j&i, x2}, {a3, x2} Ç £ ( G ) , then {xi, x2, x3, &i, a1, a3} induces a proper sub­
graph isomorphic to G2, which is impossible. If a2 = b2 and {Z?i, x2} $ -fi(G), 
{^3, x2} $ £ ( G ) , then {xi, x2, x3, bu b2, a3j induces a subgraph isomorphic to 
Gi, which is equally impossible. Therefore, if a2 = b2, then exactly one of the 
edges {bi, x2] and {a3, x2] is present, say {bi, x2} Ç E(G), {a3, x2} $ £ ( G ) . But 
in this case G is isomorphic to G3. Assume now tha t a2 9^ b2. The minimali ty 
of G implies {xi, a2\ Ç £ ( G ) and {x3, b2\ G £ ( G ) . I t is then easy to check 
tha t {xi, x2, x3, cii, a2, b2\ induces a proper subgraph isomorphic to G2, which 
is impossible. The proof of Theorem 3 is now complete. 

Considering Proposition 2 we have the following : 

COROLLARY 1. A split graph G is a comparability graph if and only if it does 
not have an induced subgraph isomorphic to G\ or G2 of Figure 3 or G3 of Figure 4. 

# # f ^ 

G3 

FIGURE 4 

COROLLARY 2. For a split graph G, V ( G ) ^ 2 if and only if G does not con­
tain an induced subgraph isomorphic to Gi, G2, G3 or G3. 

Remark. G2 is the complement of Gi, and they are neither interval nor com­
parabil i ty graphs. G3 is a comparabil i ty graph, which is not an interval graph 
and G3 is an interval graph without being a comparabili ty graph. 
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