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NECESSARY AND SUFFICIENT FIXED POINT CRITERA
INVOLVING ATTRACTORS

JACEK JACHYMSKI

Let / be a continuous self-map on a complete metric space X and p 6 X. Let c
be a positive real. Equivalent conditions are given for the singleton {p} to be an
attractor of a set of c-fixed points of / . We also establish equivalent conditions
for the existence of a contractive fixed point of / . These results subsume a body
of fixed point theorems.

1. INTRODUCTION

In recent years many papers have appeared offering conditions of a contractive type
which a self-map / on a metric space X is to fulfil to ensure the convergence of succes-
sive approximations and the existence of a fixed point. These conditions usually have
the form of inequalities in which some auxiliary functions occur, and thus they are too
special to be necessary also for the existence of a fixed point. Since few papers deal with
equivalent conditions, it may be of interest to find some necessary and sufficient fixed
point criterions in such a way they could easily yield some of these special contractive
theorems. This is our purpose here - we offer in Section 3 a principle which will enable
us to give some equivalent conditions for a point p to attract a set of c-fixed points
of / (Theorem 3) and to attract each point of X under / (Theorem 2). As will be
indicated in Section 5, both criteria subsume a body of fixed point theorems.

2. PRELIMINARIES

Let / be a self-map on a topological space X and let A, B be subsets of X. Let
N be the set of all positive integers. A is an attractor for B under / if A is nonempty
compact and /-invariant, and for any open set G containing A there exists l £ N such
that

fn(B) CA, for all n ^ k.

The concept of attractor was first introduced by Nussbaum [10] who considered
attractors for compact sets. Later several authors examined the case when the singleton
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{p} was an attractor for some family F of sets under / . The following families F were
considered:

(a) F= {B <ZX: B is compact}, (Janos, Ko, Tan [5]);
(b) ¥={X}, (Leader [8]);

(c) F = {{«}: x £ X} U {Up}, where Up is a neighbourhood of p (Leader

[7])-

It is clear that if p attracts some nonempty subset of X then p = fp. We say

that p is a contractive fixed point of / , if p attracts each point of X ([8]). We shall be

employing the concept of attractor in Section 4.

Throughout this note Z+ denotes the set of all non-negative integers, R+ is the

set of all non-negative reals. The set {x, fx, / 2 x , . . .} is called an orbit of a point x

and it is denoted by O(x). Occasionally, we use the notation xk — fkx, for the sake of

brevity. For c £ R + ) Fixc / denotes the set of all c-fixed points of / , that is points x

with d(x, fx) ^ c ([2]). The Hausdorff metric for sets is denoted by dn •

3 . A NECESSARY AND SUFFICIENT UNIFORM CAUCHY CRITERION

AND COROLLARIES

THEOREM 1 . Let f be a self-map on a metric space X, c > 0 and let F be a
non-empty subset of F i x c / . Define the set P by (x, y) £ P if and only if there exist
i, j £ Z+ and z £ F such that x — flz, y = f}z and d(x, y) Sj c. Then the following
statements are equivalent:

(i) For z £ F, the sequences {fnz} are uniformly Cauchy;

(ii) d(fnx, fny) -» 0 uniformly for all (x, y) £ P;

(hi) For some increasing sequence {&„} of positive integers d(/*nx, fkny) —» 0
uniformly for all (x, y) £ P, and d(fnz, fn+lz) -> 0 uniformly for all

z£F.

PROOF: We shall verify implications (i) => (ii) => (iii) => (i). Given (i), observe
that d(fnx, fny) -> 0 uniformly for all x, y £ O(z) and z £ F, so (ii) holds. Given
(ii), since (2, fz) £ P for all z £ F, we have that d(fnz, fn+1z) —» 0 uniformly for all
z £ F, so (iii) holds.

To prove (iii) implies (i) take r £ N such that d(frx, fry) ^ c/2 for all (x, y) in
P. It means that

(1) if d(z*, z3) ^ c for some z £ F and i, j £ Z + then

d(* i + r , 2>'+r) < c/2.

Consider a subsequence {zrn}£Li • From (iii) and by the triangle inequality, we get
that

d(zm, zr<n+1)) -> 0, a s n - t o o , uniformly for all z in F,
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so there exists no in N such that

(2) d(zrn°, zHio+i)^ < c/2 for all z in F.

By induction we shall prove that, for any n ^ no and all z in F,

(3) dfz-o, *"•)<«•

The case n = no is obvious. Assuming (3) to hold for some n ^ no we shall prove it
for n + 1. Observe that (1) and our induction hypothesis give

(4) c*(zr<n°+1\ z r ("+ 1^ < c/2.

So apply (2), (4) and the triangle inequality to get that (3) holds for n + 1.

We shall prove that for z £ F the sequences {«rn}^Li are uniformly Cauchy. From
(iii), given 0 < e ^ c, we can choose I in N such that

(5) d{zt+\ zl+i) < e, for all z in F and i, j in Z+ with d(z\ zj) ^ c.

In particular, from (3) we get that

d(zTn°+l, zrn+l) < e, for all z in F and n ^ n0.

Since e ^ c, we can use (5) again to obtain after r steps that

d ( z r ( n o + / ) , zr(-n+t^ < e, for all z in F and n ^ n 0 .

Hence and by the triangle inequality,

d(zrn, zrm) < 2e, for all z in F and n, m ~£ n0 + 1.

Thus, for z e F, {zr n}£Lj is uniformly Cauchy.

That {z n } are uniformly Cauchy for all z in .F follows easily from {zrn}^L1 being

uniformly Cauchy and d[zn, z n + 1 ) —» 0 uniformly for z G F . D

REMARK. Theorem 1 easily yields and extends Leader's Fixed Point Principle (Theo-

rem 1 in [6]). It is also possible to generalise Theorem 1 for two mappings in such a

way it yields results of Som and Mukherjee from [12]. Let us notice here that, in our

opinion, the assumptions of Theorem 1 [12] are susceptible to various interpretations

and they need some reformulation. In particular, condition (4) of [12] should be of the

following form:

"the sequences {xn} generated by the generalised orbit of the points x with

d(x, fix) ^ c, I = 1, 2, are uniformly Cauchy",

analogous to its counterpart (number (5) in [6]) from Leader's Theorem 1.
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COROLLARY 1 . (Cauchy Criterion for a Sequence of Iterates). Let f be a self-
map on a metric space X and z 6 X. For n 6 Z+, define

cn := d(fnz, fn+1z) and Pn := {(*, y) : d(x, y) ^ cn and x, y € O(fnz)}.

Then the following statements are equivalent:

(i) The sequence {fnz} is Cauchy;
(ii) There exists r £ Z + such that d(fnx, fny) -> 0 uniformly for all (x, y)

in Pr;
(iii) There exist r € Z+ and an increasing sequence {kn} of positive inte-

gers such that d(fknx, fkny) —» 0 uniformly for all (x, y) in Pr, and

PROOF: TO get (i) <=> (ii) and (i) •£> (iii) apply Theorem 1 taking the singleton
{frz} as F and c = cT. D

COROLLARY 2 . (Convergence of the Successive Approximation). Let f be a
self-map on a complete metric space X. Then the following statements are equivalent:

(i) There exists p in X such that fnx —> p, for all x in X;

(ii) For all x, y in X, liminf d(fnx, fny) = 0 ancf, for any z £ X, there

exists r in Z+ such that d(fnx, fny) —> 0 uniformJy for all x, y in
O(frz) with d(x, y) < d(frz, r+1z);

(iii) For all x, y in X, liminf d(fnx, fny) - 0 and, for any z £ X, there
n—>oo

exist r in Z+ and an increasing sequence {Jfen} of positive integers such

that d(fknx, fkny) -> 0 uniformly for all x, y in O(frz) with d(x, y) ^

) r^z) - 0.
PROOF: Apply Corollary 1 and a completeness argument. D

4 . TWO NECESSARY AND SUFFICIENT FIXED POINT PRINCIPLES

INVOLVING ATTRACTORS

THEOREM 2 . Let f be a continuous self-map on a complete metric space X and

p 6 X . Then p attracts each point of X if and only if one (and hence all) of the

conditions (i)-(iii) of Corollary 2 holds.

In particular, if for all x, y in X d(fnx, fny) —> 0 and, for some c > 0, this

convergence is uniform for all x, y with d(x, y) ^ c then f has a contractive fixed

point.

PROOF: Apply Corollary 2 and a continuity argument. D
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THEOREM 3 . Let f be a self-map on a complete metric space X and p € X.
Let c be a positive real such that the set F — Fixc / is nonempty and let P be the set
as in Theorem 1. Then the following statements are equivalent:

(1°) The singleton {p} is an attractor for Fixc / under f;
(2°) Tile sequences {fnx} converge to p uniformly for all x in F ix c / ;

(3°) *»({?} , /» (F ix e / ) ) -»0 ;
(4°) For x,y€ Fixc / , liminf d(fnx, fny) = 0

and (*) d(fnx, fny) ->• 0 uniformly for all (x, y) in P;
(5° ) For x,ye Fixc / , liminf d{fnx, fny) = 0, d(fnz, fn+1z) -> 0 uniformly

n—*oo

for all z in Fixc / and there exists an increasing sequence {kn} of positive
integers such that <£(/*" a:, fkny) —> 0 uniformly for all (x, y) in P.

Moreover, each of conditions (1° )-(5° ) implies that

(6°) {P}= n r(Fixc/).
ngAT

The proof of Theorem 3 will be preceded by two lemmas on attractors.

LEMMA 1. Let f be a self-map on a metric space X, p G X and B C X . Then
the following statements are equivalent:

(i) The singleton {p} is an attractor for B under f;
(ii) p = f(p) and the sequences {fnx} converge to p uniformly for all x in

B;
(iii) p = /(p) and dH ({p}, 7%B)) -» 0.

PROOF: The equivalence (i) -<=> (ii) was observed in [8], (ii) & (iii) follows imme-
diately from the equality

dn{{p}, /»(*)) = supd(p,fnx).

D
LEMMA 2 . Let f be a self-map on a metric space X and let A, B be nonempty

subsets of X such that A C B. Then the following statements are equivalent:

(i) A is an attractor for B under f;

(ii) A is compact and f -invariant, and dn( A, fn(B)) —» 0. Moveover, each

of the above conditions implies that
(iii) A= n

If B is compact and f(B) C B then the conditions (i)-(iii) are equivalent.
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PROOF: (i) =>• (ii). Since A is /-invariant and A C B, we get that A C fn(B),

for any n G N. Thus dH(A, fn(B)) = sup d(x, A). Given e > 0, define Ac :-
v y x6/n(B)

U K(x, e). By (i), there exists n0 in N such that / " (£ ) C Ae, for all n ^ n0. That
x€A

means given n ^ no and a; G fn(B), d(x, A) < e. Thus d/W A, fn(B)j ^ e, so (ii)
holds.

(ii) => (i). Take any open set G containing A. Since A is compact, there exists
e > 0 such that Ae C G, where Ae is as in the proof of (i) => (ii). By (ii), there exists
n0 in N such that, for n ^ n0, dH(A,fn(B)\ < e. Thus fn(B) C Ae C G, so (i)
holds.

(ii) =̂  (iii). Suppose there exists i £ f| fn(B) \ A. Then, for any n G N,

dn(A, fn(B)) ^ <i(x, A) > 0 which contradicts (ii). Since simultaneously A C

P| / " ( £ ) , we get that (iii) holds.
T.6AT

Now assume that B is compact and f(B) C JB. Then P| fn(B) is nonempty
n€N

compact and /-invariant. We leave it to the reader to verify that (iii) implies then that
dH{A, fn(B)) -> 0, so (ii) holds. D

PROOF OF THEOREM 3: The conditions (1°), (2°) and (3°) are equivalent by
Lemma 1. To prove the equivalence of (2° ), (4°) and (5°) apply Theorem 1 and use
the condition liminfn_oo d(fnx, fny) — 0, for all x, y in X. That each of conditions
(1 ° )-(5 ° ) implies (6 ° ), follows from Lemma 2. D

REMARK. Simple examples show that if X is not compact then (6 ° ) need not imply
any of the conditions (1 ° )-(5° ).

COROLLARY 3 . For a. nonexpansive self-map f on a compact metric space, the
conditions (1 ° )-(6° ) of Theorem 3 are equivalent.

PROOF: Observe that in this case Fixc / is compact and /-invariant, and apply
Theorem 3 and Lemma 2. D

COROLLARY 4 . Under the assumptions of Theorem 3, the condition (*) implies

that Fix / is nonempty closed, dH (Fix f,fn(Fixcf)) -» 0 and Fix / = f| /n(Fixc / ) .

Hence F ix / attracts Fixc / under f, if X is compact.

PROOF: Apply Theorem 1 and Lemma 2. D

5. FINAL REMARKS

The theorems of Section 4 subsume a body of fixed point theorems. In particular,
Theorem 2 easily yields Theorem 1.2 in [9] and it improves Theorem 3 in [1], which
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holds also for $ 1 functions defined there. Theorem 3 can also be used then to deduce

that a fixed point attracts a set of c-fixed points. Corollary 4 easily yields a recent

result of Hicks (Theorem 3 in [3]).

It is worth underlining that for many contractive mappings their fixed point attracts

a set of c-fixed points for some c in R+ or even for all c in R + . In particular, if / is

a continuous self-map on a complete metric space X satisfying the condition

(HR) d(fx, f2x) ^ a d(x, fx), for some 0 ^ a < 1 and all x in X

then / has a fixed point p ; if such a point is unique then it at tracts a set of c-fixed

points for all c in R + . To see that use the inequality

d(fnx, p) ^ (an/(l - a))d(x, fx), for all x in X,

which can be deduced from (HR). For examples of mappings satisfying (HR) see [4]
and [11]. Theorem 3 can be also applied to mappings satisfying some generalised (HR)
condition introduced in [3].
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