ON A CLASS OF CONFORMAL METRICS

MAURICE HEINS

Dedicated to my Japanese colleagues on the occasion of the Symposium
on the Theory of Functions held by the Theory of Functions Branch of
the Mathematical Society of Japan at Nagoya, July 3-5, 1961.

Last year when [ was preparing for course lectures the work of Ahlfors
[1]1 which establishes that the Bloch constant is at least as large as Vv 3/4, it
appeared to me that the resources of the theory of metrics of negative curva-
ture offered rich possibilities from a function-theoretic point of view. The
parallelism between certain properties of subharmonic functions and those of
the metrics introduced by Ahlfors [1] is so striking that we are led to ask
whether one can introduce a class of metrics including the metrics’ of Ahlfors
for which not only does a Schwarz-Pick-Ahlfors lemma hold, but also require-
ments of differentiability disappear, as in the modern theory of subharmonic
functions. We shall define such a class. To it part of the apparatus of the
theory of subharmonic functions, including the use of Perron families, may be
transplanted. Among the results that we obtain is the conclusion that the
inequality of the Schwarz-Pick-Ahlfors lemma is strong throughout for an
admitted metric distinct from the hyperbolic metric [§ 7]. This theorem will
permit us to show that the Bloch constant is actually greater than v 3/4[§36].

A metric of special interest from the point of view of the theory of con-
formal maps of Riemann surfaces is one having constant curvature —4 save
for a discrete set at each point of which it vanishes. Metrics induced by a
conformal map from a hyperbolic metric are of this type. ~We shall see that
the distribution of the zeros of the derivative of a non-constant bounded
analytic function with domain 4 = {|z| <1} may be characterized in terms of such
a metric [§29]. In this connection, the following result deserves mention :
The distribution: of points in 4 at which a Lindeléfian map with domain 4 is
ramified, multiplicities being taken into account, is no more general than the
distribution of the ramification points of a non-constant bounded analytic func-
tion with domain 4[§30].
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It does not appear to be desirable to summarize other results of the present
study without the benefit of a preliminary statement of the terms and concepts

we shall employ. For this reason, we turn directly to our study.

Chapter 1. S-K metric

1. Our first step will be to pass from the formulation of Ahlfors to a more
general one that looks to the theory of subharmonic functions for its model.
Let F denote a Riemann surface, and let S denote the basic family of homeo-
morphisms ¢ of plane regions into F which defines the conformal structure of
F. We adopt a general point of view and define a conformal metric 2 on F to
be a non-negative density of degree one. We do not impose any continuity
restrictions. To be precise, we mean that A is a map with domain S which
has the following two properties :

(a) 4+, the image of ¢ =S with respect to 4, is a function having the same
domain as ¢ and taking finite non-negative values.

(b) Let ¢, r= S and let their images have intersection O 0. Let ¢ denote

the univalent analytic function connecting ¢ and 7, defined by

(1.1) 0={(a"'(p), z7(p))|p€ O}
Then
(1.2) 2.(2) = :[0(2)]] 6'(2)]

for each z in the domain of 6.

Given a uniformizer ¢ of F ( = univalent conformal map of a plane region
into F), there exists a unique extension of A to SU{¢} which is a conformal
metric relative to SU{¢}. We denote the image of ¢ with respect to this ex-
tension by 1, and term it the ¢-scale of A.

If for some uniformizer ¢ satisfying ¢(a) =p, 1,(a) =0, then for every
uniformizer ¢ whose image contains p, 1,(6) =0, ¢(b) =p. In this case, we
say that A vanishes at p.

If x is also a conformal metric on F and 2,(a) < p,(a), then 2,(d) < u,(6).
In this case, we say that A does mot exceed u at p. To say “1 does not exceed
2 on F” denoted “i< 4" means that 4 does not exceed z at each point of F.
The strong inequalities at a point and on F are similarly defined.

By max {4, #} is meant the map with domain S which assigns to ¢ the
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function max{2s, #»}. max{4, pu} is a conformal metric, and if ¢ is a uni-
formizer, max {4, u}, = max {4,, u,!.

If P is a non-negative finite-valued function on ¥, then P2 will denote the
function with domain S which assigns to ¢ the function (P°s)i,. It is a con-
formal metric.

If 1, is upper semi-continuous at g, then 1, is upper semi-continuous at b.
In this case, we say that A is upper semi-continuous at p. If A is upper semi-
continuous at each point of F, we say that 1 is wupper semi-continuous on F.
Similarly, if 2, is of class C*® (or real analytic) in some neighborhood of a,
the same holds for A, in some neighborhood of b, and correspondingly, we say
that 4 is of class C'* (resp. real analytic) ina neighborhood of p. It is obvious
what is meant by saying that 2 is of class C® (resp. real analytic) on F.

If 1 enjoys adequate smoothness properties relative to a point p< F, then
we may introduce the Gaussian curvature of i at p as follows. Suppose that
A is of class C" in some neighborhood of p and that A does not vanish at .
Then for every uniformizer ¢ for which p lies in the image of ¢ and ¢(a) = p,
the value of

— dlog 1,(a)
(1.3 @

is independent of ¢ and is termed the Gaussian curvature of A at p. It will
be denoted by Ki(p;2). Metrics A that are C” and such that K(p;1) = —4,
peF, are of particular interest from a function-theoretic point of view. The
hyperbolic metric 2 on {|z|<1} given by 1.(z) =(1—1z[")"" is of special im-
portance. It is a metric of constant curvature — 4.

We are now in a position to define an S-K metric. (“S-K” is intended to
convey “curvature subordinate to —4”. The significance of this nomenclature
will become clear after Theorem 2.1.)  We should indicate that we are con-
cerned with metrics that reduce in the C' case to metrics with curvature no
greater than — 4 at points that are not zeros of the metrics. We say that a
metric 4 is an S-K metric provided that the following two conditions are ful-
filled :

(a) A is upper semi-continuous on F.

(b) Let ¢ denote a uniformizer with domain {|z|<1}, let #=1log,, and
let m(r; u) denote the circumferential mean
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27 .
2 n)“jo u(ré®ds,  0<r<1l.
Then, when 1,(0) >0,
(1.4) lim inf 7 Im(r; u) — u(0)1=12,(0) .

It is to be observed that the left-hand side of (1.4) is just one fourth of the
lower generalized Laplacian of # at 0. If A, is of class C"” in a neighborhood
of 0, the condition (1.4) is equivalent to

4u(0) =>4[2,(0) 1.

2, We now turn to the study of properties of S-K metrics. This part of
our investigation is strongly motivated by the analogy between S-K metrics
and subharmonic functions. We seek to adapt methods of the theory of sub-
harmonic functions to our class of metrics. A first task confronting us is the
extension of Ahlfors’s maximum principle to S-K metrics.

Suppose that 2 is a relatively compact region of F and that 1 is an S-K
metric on 2(2 itself being considered as a Riemann surface). Let u denote a
C'" conformal metric on £ which vanishes nowhere and has constant Gaussian
curvature taking the value —4. The following is a very evident generalization
of the maximum principle used by Ahlfors [1, p. 360].

THEOREM 2.1: If

(2.1) limpsup AMu<l, peifra,
then
(2.2) A .

Here i/u is the scalar function on £ defined by

A f Ao . .
(2.3) = {/JZWP'I J|<p a uniformizer for !2}

The possibility that fr 2 may be empty is allowed. Thanks to the boundary
condition (2.1) and the upper seini-continuity of i/x, we see that if (2.2) did
not hold, then 1/x would possess a maximum greater than one at a point g€ 2.
Let ¢ denote a uniformizer with domain {}z|<1}, ¢(0) =g, and let w=1logi,

—log #,. Now w has a positive absolute maximum at 0. Hence
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lim sup 7 *[m(7; w) — w(0)1<0.

r-=0
On the other hand, from (1.4) and the hypothesis on z we have

lim inf 7 2[m(7; w) — w(0) 1= [2,(0) FF = [2,(0) > 0.

-0

The contradiction is immediate.

3. We pursue the suggestive analogy between the theory of subharmonic
functions and S-K metrics and first ask whether the property stated in Theorem
2.1 serves as a basis for an equivalent definition of an S-K metric.

Given an arbitrary conformal metric 2 on a Riemann surface F and a non-
empty set ECF, it will be convenient to introduce A%, the restriction of A to E.
defined as follows. Given g€ S, let 7 denote the restriction of ¢ to ¢ '(E) and
let 2° denote the map whose domain is the set of the non-empty & which maps
 onto the restriction of A to the domain of 5. If E is a region, then " is
a conformal metric on E considered as a Riemann surface. For a general
E, by a conformal metric on E is meant the restriction to E of some conformal
metric on F. The meanings of continuity and non-vanishing for such a metric
are obvious.

Let us now suppose that 4 is a conformal metric on F and that 1 satisfies
the following two conditions: (a) 2 is upper semi-continuous on F. (b) For
each p € F, there exists a relatively compact neighborhood V of p» such that,
whenever ;. is a C” conformal metric with constant Gaussian curvature —4

on a region 2, p= 2C V, and p satisfies
limsup A%/ <1, qe fr &,
q

then
ZQ < u.

Under these conditions we have

TueorEM 3.1: Let ¢ be a uniformizer for ¥ whose domain contains 0 and
let w=1logi.. If u(0)> — <o, then

7 m(r;u) — u(0)]=[4,(0)
for sufficiently small positive r. 4 is an S-K melric.

In order to establish Theorem 3.1, we shall use results concerning the
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selvability of the equation

(3.1) du=4e",

exactly as we should use the Poisson integral and its properties to treat the
counterpart of Theorem 3.1 for subharmonic functions. An account of existence

theorems for the cognate equation
du = e*

including a report on Bieberbach’s investigations [2], is to be found in [4, pp.
286-287]. Since the special results that we shall want concerning (3.1) are

rapidly developed, for the sake of completeness we shall establish them.

4. Given a region £ in the finite plane. It is immediate that if %; and u.
are both continuous and take finite valués on 2 [the closure being taken in
the sense of the topology of the extended planel, satisfy (38.1) in £, and coincide
on fr @, then u; =u,. It suffices to note that if #,—u; is positive anywhere,
it attains a positive maximum at a point a€ £. On applying (8.1) we conclude
that the Laplacian of #, — u, is positive at . However, since #;— #. has an
absolute maximum at a, its Laplacian is not positive at @. Contradiction. Thus

—u:<0. Similarly % —u%;<0. Consequently u; = u,.

It is to be observed that all the maximum principles developed for S-K
metrics and their specializations have proofs hinging on the fact that at a point
of relative maximum the (upper generalized) Laplacian is not positive.

We now establish a very limited existence theorem for (8.1). Later [§16]
we shall see how Perron methods will permit us to obtain global existence
theorems adequate for applications. In this paper there will be no concern for
refinements.  Suppose then that 4(0;7) = {|z| <7} and that f is a given finite,
real continuous function on C(0;7) ={|z|=7}. Let g(z, ¢) denote Green’s func-

tion for 4(0;7) relative to the Laplace equation, i.e.

a(z, ¢) =log j

Let

A(7) = max ”mmg(z, ¢)as;,

jzl<r

the integration being with respect to euclidean area. It is easily seen that
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lim A(») =0. Let B =maxexpo(2f). We have

r—0

THEOREM 4.1: If
(4.1) 477 'A(r)B<1,

there exists a unique continuous function v on 4(0;r) which is of class C" in
4(0;7), reduces to f on C(0;7), and satisfies (3.1) in 4(0;7r).

We establish this result as follows. Given v continuous on 4(0;7), we denote
(2 n)”‘“ 8(z, Q) v(C)dS;
A{0;r)

by TL{v]. Now let % denote the solution of the Dirichlet problem (relative to
the Laplace equation) with boundary function /. If » is a function meeting

the imposed conditions, it satisfies
(4.2) v="h—T[4e").

This suggests the intreduction of a sequence of approximants defined as
follows :

v =h,
(4.3) { !
Vnr=h—=T{4*"], n=1,2,....

It follows from (4.3) and
Unia=Une1= — T4 -], n=1,2, ...,
that with M, =max |vn.1— val,
Mui <47 A(r) BM,.

It is immediate by the Weierstrass M-test that (v,)i converges uniformly in
4(0;7). Let v=Ilimwvn. Then v satisfies (4.1). It now follows from standard
potential-theoretic results that » fulfills the imposed conditions. We refer to
theorems concerning differentiability properties of logarithmic potentials and
the Poisson equation. Cf. [4, pp. 228-2301.

We note that for 0<¢ <7, m(t) =m(t;v) satisfies the differential inequality

(4.4) m'(t) + 7 m () = 470 = 462",

It follows that
m () =2e"", 0<t<r.
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Hence

(4.5) m(r) — v(0) =&YV

5. Proof of Theorem 3.1. Let B(») denote 1?;1;)’( [2,(2)F It is assumed
that 4(0;7) lies in the domain of ¢. We consider >0 so small that
47 A(ry) B(ry) <1 and that ¢[4(0;70)] lies in the neighborhood V associated
with ¢(0) in §38. For given 7, 0<r< 7, let vs denote the solution of (3.1)
whose existence is asserted in Theorem 4.1, f being a continuous function

satisfying the condition
(5.1) u(re®) < f(re") < 5 log B(7).

It follows from the condition imposed on i that
u(z) < ve(2), |zl < 7.
Consequently by (4.5) we infer that
m(r;vr) — ul0) = 2

Since = is upper semi-continuous, there exists a monotone non-increasing
sequence (f,) of functions continuous on C(0;7) which tends pointwise to «# on

C(0;7), each f, satisfying the condition (5.1) imposed on f. Hence
(5.2) m(r; u) —u(0) ="y 0<r< 70

Theorem 3.1 follows. We remark that (5.2) is stronger than (1.4). It will
follow from subsequent developments [§ 16] that (5.2) holds for all 7 such that

4(0;7) is contained in the domain of ¢.

6. In Ahlfors’s paper there are given criteria guaranteeing that a
given conformal metric on 4(0;1) is dominated by the hyperbolic metric
(1—-1]2®7"dz|. Actually, the conditions in question considered from our present
point of view are simply sufficient conditions for a conformal metric to be an
S-K metric. Following the labelling of Ahlfors’s paper [1; pp. 360-361], we
introduce the following two definitions :

A1l. A conformal metric 4 will be said to satisfy the condition A1 at a
point p € F provided that 2 does not vanish at p and that for some uniformizer
¢, ¢(0) =p, there exists a regular arc y lying in the domain of ¢, y(0) =0,
which satisfies
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6.1) lim sup u T(ItT)( 5{40) + lim sup ,u,?:r,(l r“(t_> t?)fl,?é,(,Q.),, >0,
where « =-log ..

A2, A conformal metric 2 will be said to satisfy the condition A2 at a
point p € F provided that for some uniformizer ¢, ¢(0) = p, there exists a C"
function » that has the same domain as ¢ and satisfies : 4v=>4¢*", v < u =1log 2,
v(0) = %(0). ’

The theorem A2 of Ahlfors asserts (essentially) that a continuous conformal
metric 4 on 4(0;1) which satisfies the condition A 2 at each point is dominated
by the hyperbolic metric. Since the differential inequality (4.5) holds for v of
A 2 when r is small, we conclude that an upper semi-continuous metric satisfy-
ing the condition A 2 at p also satisfies the second condition imposed on an
S-K metric for each ¢, ¢(0) =p. The theorem A1l of Ahlfors states that a
continuous conformal metric 4 on 4(0;1) is dominated by the hyperbolic metric
if for each point z where # =1log4i. is finite (¢=identity map), either there
exists a neighborhood of z in which w is C" and satisfies du=4¢€* or else =
satisfies at z a condition involving directional derivatives which implies that Z
satisfies A1 at z. It is to be observed that the criteria of these theorems are
given from the point of view of the immediate applications of the cited paper.
We shall see that basically the theorems A1 and A2 of Ahlfors give sufficient
conditions for a conformal metric to be an S-K metric. »

It will be convenient to introduce one more condition of a local character.

B. An upper semi-continuous conformal metric A will be said to satisfy
the condition B at p provided that either A vanishes at p or else for some uni-
formizer ¢, ¢(0) = p,

(6.2) lim sup » *(7(7; u) — (0)1=[4.(0)1%, « = log 4.

r->0

It is to be observed that the condition A 2 implies the condition B.
We now give two sufficient conditions for a conformal metric to be an S-K

metric.

TuroreM 6.1: (a) An upper semi-continuous conformal metric » on F is
an S-K metric if A satisfies either the condition A1 or B at each p where i does
not vanish.

(b) A continuous conformal metric A on F is an S-K melric if the condition
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B s fulfilled at each point of the set where A does not vanish save on an

arbitrary subset E of zero rapacity.

Proof. (a) It suffices to verify that the hypotheses of Theorem 3.1 are
satisfied. We consider such x# and 2 and suppose that 1%/ attains a value
greater than one at some point of £. It follows that 1%/x has an absolute
maximum greater than one attained at say ¢< 2. Hence 1 cannot satisfy the
condition A1 at @. The condition B must be satisfied at . With ¢ a uni-

formizer for 2 satisfying ¢(0) =a, u=1logi,, v=logu,, w=u—uv,

lim sup " *[m(7; w) — w(0)1=[1,(0) P — [.(0)T>0.
r—0

On the other hand, m(7;w) <w(0) for » sufficiently small since 12/, attains
its maximum at a. The contradiction is apparent. (a) follows.

(b) Given p=F. Take V as a relatively compact region satisfying:
p=VcVxF. Consider an admitted pair (4 2). Let S denote a negative
subharmonic function (% — o) on 2 which takes the value — o at each
point of EN 2. Let % denote a positive number. Then

(6.3) e (2% ) < 1.

Otherwise, the left hand side of (6.3) attains a maximum >1 at a point e € £.
We note that 1 satisfies the condition B at a. Let ¢ be a uniformizer for 2,
¢(0) =@, such that (6.2) is satisfied. Let v=logu,, s=S°¢, w=u—v+7s.

Then w has a positive maximum at 0, so that

lim sup 7 *[m(r; w) — w(0)1< 0.

r->0
On the other hand, from the subharmonicity of s,
m(r;w) —w(0) =L[m(r; u) ~u(0)]+glmir;s) —s(0)I—Lm(r;v) —2(0)]
=0mlr;u) —aut0)]—Dmtr; v) —2(0)].

Consequently,

limsup 7 [m(r; w) — w(0)I=[2,(00F = [, (0)F

r->0

=[2,000 e = [1,(0)1>0.

Contradiction. Hence (6.3) holds. On letting % -0, we see that A/ < 1 thanks
to the continuity of A. (b) follows.

It is worth remarking that (b) has a “Phragmén-Lindelsf” character.
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7. In pursuing analogies with the theory of subharmonic functions, we are
led to ask whether an S-K metric 2 that is dominated by a C'" metric z of
constant ecurvature —4 is equal to u if A/u takes the value 1 somewhere. That
this is actually so will be established with the aid of the following lemma.

LEmMma 7.1: Let u; and us denote C" real solutions of du = 4e** on 4(0; n).

If uy=wu: and u:1(0) = u.(0), then wu = u.

Proof: Let v=u1—~u,. Given 7, 0<7<7y, let hr denote the solution of
the Dirichlet problem (relative to the Laplace equation) for 4:0:7) which
agrees with #; on C(0;7), k=1, 2. By (4.2) we have

2 T2 2607 ga, — _
(7.1) n“mslog arle ¢ 91dS; = 1(0) — hal0).
Consequently,
N
(7.2) m(r;v)SSBS (1og 7 )mit)tar
\1O8

for 0<7< <7, where B =max ™.

A0;ry)
We have

m(r) < SBm(r)XZ(log {«)tdt.

It follows that »(z) =0 for z sufficiently small. The proof of the lemma now
follows from the connectedness of 4(0;7,) and the fact that the set where » =0
and the set where v>0 are both open. The proof that {» =0} is open parallels

the argument just given.

THEOREM 7.1: Let A denote an S-K metric and let 1 denote a C" metric of
constant curvature —4 on a Riemann surface F. If A/u has maximum value

one, then A= .

Proof : Suppose that 2% x: By the upper semi-continuity of 4/, the set O
where 1/u takes values less than one is open. It is not empty and is a proper
subset of F. Hence there exists a point a=frO. At a the value of 2/ is 1.
Let ¢ denote a uniformizer, ¢(0) =a, let #=1log4i,, and let v =logu.. For
7(>0) sufficiently small, the condition (4.1) is fulfilled if B is replaced by
max expe(2v). We fix such an 7 for which u(re’®) —v(re®)£0. Let w denote

lzj=»r

a continuous function on 4(0;7) which satisfies 4w =4¢** in 4(0;7), u(re™)

https://doi.org/10.1017/5002776300002376X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002376X

12 MAURICE HEINS

<u(re®) < v(re®), and the condition that w(re®) £ v(r¢"°). Since w(0) = v(0),
by Lemma 7.1 we have w(z) =v(2), |z|<7. Hence w(z) =v(2), |[2]<7. Con-

tradiction. Theorem 7.1 follows.

8. [Induced metric. Let f denote a conformal map of a Riemann surface
F into a Riemann surface G and let 1 denote a conformal metric on G. Then
there exists a unique conformal metric 4 on F satisfying the following condi-
tions: if ¢ and r are uniformizers for F and G respectively, and if further the

image of fv¢ is contained in the image of r, then
sy =Azc0|0']

where 0 = r”_1°( Sfeo). We term p the conformal metric on F induced from i
by f and denote it by [4, f]. The following properties of induced metrics are
readily verified.

(a) If A:< 2, then [Ay, /1<, £

(b) If x is a conformal metric on a Riemann surface H. g is a conformal

map of G into H, and f is as above, then
Lo, gef1=0ly g, 1

(c) If f is locally simple, /(F) =G, and [4;, f1<[As f1, then A < Zs.

(d) If A is S-K, then so is [, 1.

(e) Let f be a covering of G and let F be simply-connected. If x is a
conformal metric on F satisfying [z, a]= u for each conformal automorphism
« leaving f fixed, then there exists a unique conformal metric 4 on G satisfying

n=1[4 fJ. If pis an S-K metric, then so is 4.

9. Let 2 denote an S-K metric on F and let f denote a conformal universal
covering of F the domain of which is one of the standard simply-connected
regions: 4(0; 1), the finite plane, the extended plane. Let #=[4, fJ. Let ¢
denote the identity map on 4(0;1) when the domain of f is 4(0; 1), and other-
wise let ¢ denote the identity map of the finite plane onto itself. It ‘follows
from Theorem 2.1 that
(9.1 /,z:(z)s;t!‘?!-,w- lz] <7,

where 0 <r<1 when the domain of f is 4(0;1) and otherwise r is finite and

positive. Consequently, we obtain
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Turorem 9.1: If a Riemann surface F possesses an S-K metric that is not
identically zero, then the domain of a conformal universal covering of F is
hyperbolic.

Further, when the domain of f is 4(0;1), (9.1) yields

(9.2) m(2) < (1—-12H7%,  lzl<L
There is a unique conformal metric r on F such that
9.3) [r, fL (R =Q1-1z7  lzl<1,

as follows from § 8(e). Further, if /1 and f; are conformal universal coverings
of F with domain 4(0;1) and if

Cre, fle(2) =1 —|z|)7, lz] <1,

then, as follows easily from §8(b), (e), y1=712. The common conformal metric
associated with the conformal universal coverings of F is termed the hypefbolic
metric. It will be denoted by 7. We note that r has constant curvature — 4.
From (9.2) and §8(c), we obtain

THEOREM 9.2: Let A denote an S-K metric on a Riemann surface F and

let the domain of a conformal universal covering of F be hyperbolic. Then
(9.4) A<,

This theorem generalizes the lemma of Schwarz-Pick-Ahlfors [1]. Two
comments should be made. First, the inequality (9.1) and its consequence
(9.2) are the essential steps in the argument of Ahlfors for the case of the
unit disk. Second, the inequality (9.4) shows that y is the maximal C” metric
of constant curvature —4 on F.

10. General properties of S-K metrics. The first two properties, (a) and
(b) below, are easily verified.

(a) If 2 and #* are S-K metrics on F, then so is max {1', A*}.
(b) If 2 is an S-K metric on F and s is a negative subharmonic function
on F, then (expos)A is an S-K metric on F.

The essential part of the proof of (b) is already implicit in the proof of
Theorem 6.1 (b). It suffices to employ the mean-value property for subharmonic
functions and the fact that s<0.
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Sequences. It is immediate how notions of “pointwise convergence”, uniform
convergence”, etc. are introduced for sequences of conformal metrics by re-
ference to the behavior of the functions that the metrics assign to uniformizers.
The following holds:

(c) If (A™) is @ monotone non-increasing sequence of S-K metrics on a
Riemann surface F, then the pointwise limit is also an S-K metric on F. If
(A™) is non-decreasing and i is its limit, then the “regularization” % of 1 given
by ¢ = 7o, 1o being the upper limit function of A, in the sense of Carathéodory,
is an S-K metric (A need not be upper semi-continuous).

Let 4%, ..., 2" denote 7 given conformal metrics on a Riemann surface F,

and let 7, . . ., 72 denote n positive numbers, kZm =1. Let 2 be defined on
=1
S by
(10.1) o = knu’:)"k.
=1

It is immediate that 4 is a conformal metric on F. It will be denoted by

TI (AF)™ (weighted geometric mean of 2', ..., ™).
1

(@) If 2%, ..., A" are S-K metrics, then so is 2 = lill(llk)"’*.

The upper semi-continuity property of A is immediate. The mean-value
property of 1 at a point where 1 does not vanish is readily concluded with the
aid of the inequality of the arithmetic and geometric means. In fact, if A does
not vanish at @, let ¢ denote a uniformizer, ¢(0) =a, let u:=log /15, and let

v=>neur. Then for >0 sufficiently small

m(r; v) —v(0) = 2Iplm(7; ur) — #(0)]
> Emﬂzezuk(m

> ,,2 eZ 0(0).

Another way of constructing an S-K metric arises from the property (e)
that will be stated below. Let x denote a euclidean metric on F. By this we
mean that x is continuous and that for each ¢ S, log 16 is harmonic save for
a set of zero capacity at each point of which u, vanishes. Suppose that 1 is

an S-K metric on F which satisfies the condition that there exists a positive
number A such that

A= Ap.
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Then
(e) For each 3, 0<9<1, there exists a positive constant B such that
B Al—ﬂ #"l
is an S-K metric on F.

To see that this is so, it suffices to verify the mean-value property at a
point a < F at which neither A nor x vanishes. Let ¢ denote a uniformizer,
¢(0)=a; let u=logi,, v=logu, and w=(1—%)u+yw. For >0 sufficiently
small

m(r; w) —w(0) = (1—9)r’e™?
= (1 — ﬂ)fzezw(mez %{2(0)—- (0]
= (1= n)re® 4",

It is now immediate that (e) follows when B satisfies
B*< (1—-9)A*™

11. Sequences of metrics of constant curvature — 4. The basic result that

we shall establish here is

TueoreM 11.1: The family of the C' conformal metrics of constant curva-
ture — 4 on a given Riemann surface F is normal in the sense of Montel. The
limit of a convergent sequence of such metrics is either a melric of the same

type or else is identically zero.
The proof of the theorem will be based upon the following lemma.

Lemma 11.1: Let (us)? denote a sequence of real-valued functions, each
belonging to C'"[4(0;1)] and satisfying

(11.1) du = 4",

If un(0) > — o, then un—> —  uniformly in 4(0;1). If liminf u,(0)> — oo,
then (un)t is equicontinuous in 4(0;1) and is bounded on each compact subset
of 4(0;1). If (un)t is pointwise convergent to a finite-valued function wu, then

ues C'[4(0;1)] and satisfies (11.1).

We remark that “uniformly in” = “uniformly on each compact subset of”
and “equicontinuous in” = “equicontinuous on each compact subset of”.
The proof of the lemma will be based on the observation [Schwarz-Pick-
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Ahlfors lemma for 4(0;1)] that
(11.2) un(2) < —log (1—1z/9), lz|<1;m=1,2...,

and the use of potential-theoretic identities satisfied by the u,. Let us fix
7, 0<r<1, and let A, denote the least harmonic majorant of the restriction of

un to 4(0; 7). Using the notation of §4 we have
(11.3) un(2) = = Ppu(2) + hal2), lz] <7,

where p, = T[4expo(2u,)].

If #,(0) > — o, then, as we see from (11.2) and (11.3), k.(0)—> — . Since
ha(2) < —log (1=7%), |z|<# it follows that k, > — o uniformly in 4(0; 7).
Hence u, > — o uniformly in 4(0; 7). The first assertion of the lemma follows.

If lim inf #,(0) > — oo, then (h,)7 is equicontinuous in 4(0; 7) and is bounded

n->o

on each compact subset of 4(0; 7). Since

2
(114) |pn(21) "‘_Pn(ZZ)I < ;(—f_ﬁrzvjflglqlg(zl, ¢) — Q(Zz, C) ldS:

|zr| <7, where g is Green’s function for 4(0;7), we infer that (p,)f is equi-
continuous in 4(0;7). Hence (u,) is equicontinuous in 4(0;1). It is-also
bounded on each compact subset of 4(0;1).

It now follows from (11.3) that if «,—~># pointwise in 4(0;1), then #

satisfies
(11.5) u(z) = — T[4 expe (2u)]+ h(2), lzl <7,

where h is the harmonic function on 4(0;7) with continuous boundary values
equal to #. From (11.5) we conclude that » C"[4(0;1)] and satisfies (11.1).
The proof of the lemma is complete.

It is now easy to see how Lemma 11.1 leads us to the normality properties
of the family of C" conformal metrics of constant curvature — 4 on a given Rie-
mann surface. It is well to state that by the normality of the family we mean
that for each sequence (1") of such metrics there exists a subsequence (™)
such that for each s S the sequence (A5"") is uniformly convergent in the
domain of ¢. Theorem 11.1 is now readily concluded on introducing a countable
family of uniformizers, each with domain 4(0;1) whose images cover F. It

suffices to apply Lemma 11.1 and the selection principle to establish the first
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assertion and to use a standard connectedness -argument to establish the second
assertion.

We remark that a sequence (4") of C" conformal metrics of constant cur-
vature —4 converges uniformly in F when it converges pointwise, in particular,
when (1") is monotone. Further, we mention the following result that depends
upon the fact that ab C" solution of (11.1) is actually real analytic [4,
pp. 339-342], a property that we shall not use elsewhere in this paper: If a
sequence (A") of C" (alias real analytic) conformal metrics of constant curvature

— 4 converges pointwise on a non-empty open set, then (1) converges on F.

12. Modification. One of our objects is to apply the method of Perron to
the study of S-K metrics and their majorants of constant curvature —4. A
tool that we shall want to develop is the modification of an S-K metric. It is
the counterpart of the Poisson modification of a subharmonic function in the

original Perron theory. We first prove

HEOREM 12.1: Let A denote an S-K metric on F and let ¢ denole a unifor-
mizer the domain of which contains 4(0;R). Then there is at most one S-K
metric p-on F satisfying:

(a) A% = 4%, where E=F—¢[4(0; R)]1;
(b) u, the restriction of logpu, to 4(0; R), belongs to C"[4(0; R)] ‘and

satisfies du =4 é**.

Proof: Let » also denote an S-K metric on F meeting the conditions im-
posed on 4, and let w denote the restriction of log v, to 4(0;R). To establish
the theorem it suffices to show that #» =w. Given 7, 0<7r<R, we have

(12.1) u(z) = —T[dexpo(2u)]+ h(2), lz] <7,

where & is the harmonic function on 4(0;7) given by the Poisson integral for
4(0; 7) with boundary function «, as well as a corresponding identity for .
We let > R and infer that the counterparts of (12.1) hold for # and w on
4(0; R), as may be concluded by using the subharmonicity of log x, and log »,.
Hence # — w vanishes continuously at each point of {|z|=R}. Now |u—w] is
subharmonic and hence vanishes. The theorem follows.

We shall agree to term an S-K metric 4 meeting the conditions of Theorem

12.1 the (¢, R) modification of A. More simply, we shall say that an S-K metric
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is a modification of 1 provided that it is the (¢, R) modification of 2 for some
(¢, R).

We now establish an existence theorem for modifications.

THEOREM 12.22 Let ¢ denote a uniformizer for F, the domain of which
contains 0. There exists 7,>0 for which 4\0;7) is contained in the domain of
¢ such that each S-K metric X on F which does not vanish everywhere admils
a (¢, r) modification, 0<r < 7..

Proof: Given an admitted i, from the subharmonicity of the logi,, we
conclude that cap {A=0}=0. We fix R>0 such that 4(0;R) is contained in
the domain of ¢. For |z| <R and each 2 we have

A(2) < R(R*—|z|5)7L,

We now fix 7, 0<7<R, such that the condition (4.1) is fulfilled with
2
()

and r=7,. We now consider a given admitted 2 and let »=1logi,. Let (fn)
denote a monotone non-increasing sequence of continuous functions on {|z| =7},
0 < r <7, which tends pointwise to # on {|z| = r}, the sequence being so chosen
that max /; < (log B)/2.- Let v, denote the solution of the boundary value
problem for 4v=4¢" on 4(0; R) with boundary function f». The sequence
(v,) is monotone non-increasing and tends to a function »& C"[4(0;7)] satis-
fying: dv=4¢"" and v(2) > u(2), |z] <~

Now let 12 denote the unique conformal metric on F satisfying: (a) »" = 4%,
where E=F—~¢[4(0;7)], and (b) log u,(2) =v(2), |z|<r. We verify that x is
an S-K metric and is, in fact, the (¢, ) modification of 2. The upper semi-
continuity of x at a point not on ¢{|z]| =7} is obvious. To show that © is
upper semi-continuous at each point of ¢{|z| =7} it suffices to show the upper
semi-continuity of log u, at each point of {|z|=7}. But limzsup log u, < fa(2),
lzl=7, m=1,2,.... Hence limzsup log 1, < log u,(z). It suffices to check the
mean-value property only for points of ¢{|z|=7}. Here, just as in the case of
subharmonic functions, the desired mean-value property is verified thanks to the
fact that 4, < g, and 2,(2) = u,(2), 2| =7

13, Perron family of S-K metrics. A family ® of S-K metrics on F will
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be termed a Perron family provided that the following two conditions hold:
(a) If 4, p= 0, then max {4, ut=@. (b) If x is a modification of A(x=0)€ @,
then ;€ @. Our main concern in the present section will be to study the upper
envelope of a given Perron family and to show that it is a C" metric of constant
curvature —4 whenever the family contains members that do not vanish every-
where. Of course, by the upper envelope of a family ¥(=0) of conformal
metrics on F such that some conformal metric dominates every member, we
mean the unique conformal metric z on F satisfying: (a) 1<y, 1€ ¥, (b) if
A<v, A€¥ then n<». Before we turn to this question, let us remark that
the set of all S-K metrics on F is a Perron family, and further that if ¥ is an
arbitrary family of S-K metrics on F, there is a minimal Perron family o[¥]
containing ¥, namely the intersection of all Perron families containing ¥.
The fundamental theorem is

TaeorReEM 13.1: If @ is a Perron family conlaining a metric not vanishing
everywhere, then the upper envelope of ® is a C" metric of constant curvature
— 4, '

Proof: The proof runs parallel to that for the subharmonic situation, the
major variant lying in the use of Theorem 12.2 in place of the corresponding
theorem for subharmonic functions. We fix a uniformizer sﬁ with domain con-
taining 0 and choose 7(>0) so small that every S-K metric (£0) on F admits
a (¢, ) modification. We proceed by showing that log x, is C"” in 4(0; 7) and

satisfies there du=4¢*"

, # being the upper envelope of #. To that end, let
(»*) denote a monotone non-decreasing sequence of members (% 0) of @
such that each i is its own (¢, ) modification and lim 2%(0) = #,(0); let
U= }2152 log A%; let &( x0) € 4(0;7) and let (7¥) denote a non-decreasing sequence
of members of @ such that (a) lim 1%(a) = u.(a), (b) 7*=2% k=1,2,..., (c)
each 1% is its own (¢, ) modification; let » =lim log Zﬁ. Then v= % and »(0)
=u(0). It follows from Lemma 7.1 that v(2) =u(2), |z|<7. Consequently,
log #,(2) = u(z), |z1<7. We conclude that . is a C" conformal metric of con-
stant curvature —4.

Theorem 13.1 is rich in consequences. We note that if » is a C” conformal
metric of constant curvature — 4, then the family of S-K metrics 1 satisfying

i <vis a Perron family. We conclude
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THEOREM 13.2: If ¥ is a family of S-K metrics containing @ member that
does not vanish everywhere, then the upper envelope of OL¥] is the least C'" con-

formal metric of constant curvature — 4 dominating each member of V.

Of course, ¥ may reduce to a single element. In this case we have in the
upper envelope of @[] the counterpart of the least harmonic majorant of a
subharmonic function. ‘

An application of Theorem 13.2. Suppose that 1 is an S-K metric on F which
does not vanish everywhere. The set where 4 vanishes is a G5 of zero capacity.
If a Riemann surface admits a non-trivial S-K metric, there exists an S-K
‘metric with the property‘tha't the set on which it vanishes is a given Gs of
Zero capacity‘ [cf. §15]. For the preseﬁt we consider a problem concerning the
existence of an S-K metric that is C” and of _constant curvature —4 on the
complement of a closed set E of zero capacity, the behavior on E being
restricted in a manner that will be made explicit.

To be precise, let. 4 denote an S-K metric. on F. - We suppose that for each
uniformizer ¢ with domain 4(0;1) there exists »,, 0<7,<1, and a function P,
with domain 4(0- 7,) satisfying: (a) P, is non-negative and is harmonic save
at the points of a compact set of zero capacity (possibly >empty) at each point
of which P, takes the value + « and is continuous, (b) P, vanishes conti-
nuously on C(0;7,), (c)

(13.1) log ,(2) + P,(2) +log (1 — 7}) = O(1),

for z€ 4(0; r,) satisfying P,(2) % + «.

The motivation for (13.1) lies in the fact that we wish to impose a fairly
simple local behavior on 1 at the points where it vanishes. The condition (13.1)
and the subharmonicity of log 4, imply that the left-hand side of (13.1) is non-
positive. Because of condition (13.1) the set of points at which 2 vanishes is
a closed set E of zero capacity. Let 2=F—E. We introduce two Perron
families on £. Let 0, be the Perron family generated by 12. Let @, denote
the family of S-K metrics z on @ satisfying

(13.2) 0>log 1,(2) + P,(z) + log (1 —7})

for ze 4(0; 7,) satisfying P,(2) % + o, u, denoting the image of x with respect
to the restriction of ¢ to {P,(2)x + oo }.
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Now @, is not empty since A= @,. The maximum of two members of &,
belongs to @,. Let u= @, and let %z denote a modification of . With Z, denot-
ing the image of 7 with respect to the restriction of ¢ to {P,(2)% + =}, we
have

~ 1

It now follows that (13.2) is satisfied when u is replaced by 7. Consequently
@, is a Perron family.

Let A: denote the extension of the upper envelope of @x(k =1, 2) to F which
vanishes on E. Then the ix are continuous and satisfy /

(13.4) A< < A,

and (13.2) is satisfied when u is replaced by Z. On £ the i reduce to C”
conformal metrics of curvature —4. It is to be observed that 4, and 2. may

very well be distinct. We are led to the following theorem.

TaeoreM 13.3: Let E denote a discrete set CF and let a positive number
a(a) be assigned to each point a< E. If there exists an S-K metric A on F

satisfying: (a) its restriction to F—E is C" and of constant curvature — 4, (b)
(13.5) log 2.(2z) — a(a) log | z| = O(1),

z small, ¢ being a uniformizer, s(0) = a, then there is a maximal S-K metric

meeling the conditions imposed on A.
The proof is easy. Given ¢, we have for some 7, 0 <7 <1,

(13.6) log 2,(2) < log 3 —%r’ — o[e(0)]log I%l’ lz] <7,

where 0(a) =a(a) if acE and otherwise 6(a)=0. We take P, to be
ole(0)1log (7/1z]). We then see that 1, is the maximal 2 satisfying the imposed
conditions.

Theorem 13.3 will play a useful role when we consider function-theoretic
questions later.

It is worth remarking that if 0<8(a) < a(a), a< E, then under the hypo-
theses of Theorem 13.3 there exists an S-K metric meeting the conditions

imposed on 2 with B(a) replacing a(a).

14, Metrics with assigned zeros. It is of interest to inquire whether there
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exists on a given Riemann surface F admitting a hyperbolic metric a continuous
conformal metric that vanishes at an assigned point a€ F, its restriction to
F—{a} being C" and of constant curvature --4.

The existence of such a metric is very easy to establish when F is hyper-
bolic (i.e. when Green's function exists). To see this, let g denote Green’s

function for F with pole a < F, and let « denote a given positive number. Then
(14.1) [expeo(—ag)ly

is an S-K metric with a zero of order a at a4, r being the hyperbolic metric of
F. It follows from the consideration of the Perron family @ generated by the
restriction of (14.1) to F— {a} that there exists a continuous conformal metric
on F having a zero of order « at a whose restriction to F—{a} is C" and of
constant curvature —4. This conclusion follows readily on noting that if ¢
satisfies ¢(0) =@, ¢ being a uniformizer with domain 4(0:1), then

(14.2) 35(2) {%H}L;}) 21<1, 1€ 0.

It is to be observed that even the order of the zero is controlled.

If Fis a compact Riemann surface of genus >1 then, as we shall see, there
do exist admitted conformal metrics vanishing at an assigned point, but the
order of the zero is severely restricted in terms of the genus. [The latter
remark will become clear in the light of §21 where the conformal metrics of
Schwarz and Picard are considered.] There also exist admitted conformal
metrics when F is a non-compact parabolic Riemann surface, however it is not
known to me how far the order of the zero can be controlled in this case.

We start with an obvious lemma that will permit us to construct an S-K

metric leading to a conformal metric of the desired type. Let

aRapa—l
u(p) = R

where R>0, a>1, 0<p<R. We have

LemMA 14.1: Let 7, v denote given positive numbers. Then there exist
R>7r and a>1 such that

(14.3) w(r) <y, @9V ulr)<aq.

Suppose now that /" is a Fuchsian or Fuchsoid group operating on 4(0;1).
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We allow I" to contain elliptic transformations. Let 7, 0 <7<1, be so chosen that
the disks t[4(0;7)], r &€ I, are mutually disjoint if there is no elliptic member of I
with fixeéd point 0, but are disjoint or coincide if there is an elliptic member
with fixed point zero. We first construct an S-K metric A on 4(0; 1) invariant
with respect to the transformations of I, ie. satisfying [4, t]J=1,r€I. To that
end, we take

_ min{27, 1}

- 1-7?
and choose R and « to satisfy Lemma 14.1 with reference to this value of 7.
Let 2= p(r)(1 —7°)<1. Since we are concerned with the unit disk, we may
harmlessly use the same notation for a conformal metric and its scale function
associated with the identity. We define

(14.4) Ar2) = p(lzD (2], |zl <7, rET.

This definition is consistent in the case where an elliptic transformation with
fixed point zero is present in I For ze€ 4(0;1) — U [4(0;1)] we define

(14.5) A2) = '1’4k!3|2 -

It is now easily verified that 4 is an S-K metric on 4(0;1) thanks to the choice
of Rand a«. Further 2 has a zero of order « —1 at each point of the orbit
{r0}:er and is invariant with respect to the transformations of I. It follows
from the results of §13 that there exists a maximal continuous conformal
metric 7 on 4(0;1) which has zeros of order « —1 at each of the points 70
and is such that its restriction to 4(0;1) —{tO}:er is C"” and has constant
curvature —4. [When we say that 7 has a zero of order a —1 at a, we mean
log[i(2)|z—a|""*] = O(1) for z near a. Cf. however §18.] For each r& 1" we

have
(14.6) [7, <1< 7.

From §8 (a), (b) we conclude that

(14.7) [7, c1=7.

Applying §8 (e), we conclude, on considering the case where,I” is the group of

conformal automorphisms leaving invariant a conformal universal covering of
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a Riemann surface F with domain 4(0;1), that there exists a continuous con-
formal metric on F which vanishes at just one assigned point and elsewhere is
C" and of constant curvature - 4.

15. The zero set of an S-K metric. The method of §14 permits us to
characterize the set where an S-K metric vanishes. We have seen that the set
is a Gs of zero capacity when the metric does not vanish identically. We shall
now see that if X is a Gs of zero capacity lying in a Riemann surface F ad-
mitting a hyperbolic metric, then there exists an S-K metric on F whose zero
set is X.

Thanks to a result of Deny [5], if 0<p<7<1 and E is a G; of zero capa-
city lying in 4(0; p), there exists a Green’s potential P (relative to 4(0;7))
generated by a mass distribution in 4(0;p1), p<p:1<7, whose infinities consist
precisely of the points of E. Given ¢>0, there exist >0 and R>1 such that
the maximum of the outer normal derivative along C(0;7) of

2> —9P(z) +log —Ez_—%—z-l;

is less than ¢. The argument of §14 may now be applied to construct an S-K
metric on 4(0;1) satisfying: (a) it is invariant under the transformations of
a given Fuchsian or Fuchsoid group acting on 4(0;1), (b) the set on which it
vanishes is of the form U-:ert(E) where E is a Gs of zero capacity contained in
a non-euclidean disk of sufficiently small radius and invariant under r& I leaving
the disk fixed. It suffices to consider the case where the non-euclidean disk is of
the form 4(0; p) and for some 7, p<7<1, 4(0;7) satisfies the condition relative
to I' stated in §14. We replace % of § 14 by

R(1—-7)
TR

and take e =27(1—7")"". We replace x«(|z|) by

exp[—*//P(z)]ﬁg—_I—el—z—F

in (14.4). Finally, we suppose that P is invariant under the transformations
v I" with fixed point 0.
If I has a compact fundamental domain and E is a G5 in 4(0;1), of zero

capacity, and invariant under the transformations of I, then there exist S-K
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‘metrics i, . . ., #n, €ach invariant under the transformations of I, such that

the union of the sets on which the ur vanish is E£. It follows that
- 1n
III uk

is an S-K metric invariant under the transformations of /" and that the set on
which it vanishes is E.

The case where the fundamental domain of I' is not compact admits a
parallel treatment save that here convergence questions arise. They may be
handled by the proper use of weighted means. To treat this case, we start by
observing that there exists a sequence of S-K metrics (us)y on 4(0;1) having
the following properties: (a) each . is invariant under the transformations
of I, (b) the union E of the sets where the un vanish is a given G5 of zero
capacity in 4(0;1) invariant under the transformations of T, (c)_ for each
7, 0<7r<1, the set on which u, vanishes lies outside of 4(0;7) and ua is conti-
nuous at each point of 4(0;7) for » sufficiently large. Of course, we put aside
the trivial case where E=#. The existence of (u») may be established as
follows. We first introduce a locally finite covering of the fundamental domain
D of I" [here the set of z in 4(0;1) whose non-euclidean distance to 0 does
not exceedb its distance to 70, r € I" —it will be assumed that I" does not pos-
sess a merhber distinct from the identity having 0 as a fixed point] by non-
euclidean disks & with centers in D satisfying: (1) only a finite number of the
¢ have a non-euclidean radius exceeding a given positive number, (2) the closure
of each ¢ lies in a non-euclidean disk with the same center in which two points
are equivalent only if they differ by a non-euclidean rotation of I having the
given center as fixed point. For each ¢ such that EN( U :erté) =~ 4 we construct
as above an S-K metric invariant with respect to the transformations of I the
set on which it vanishes being EN (U:er7d). [We assume that there are in-
finitely many such 4. The finite case may be treated in the same manner as
the case where the fundamental domain of I' is compact.] We take (ux)? as
a univalent enumeration of the so constructed metrics. It has the stated pro-
perties. The convention of §14 concerning conformal metrics on 4(0;1) will
be understood to prevail.

For each positive integer £ let #(k) denote the smallest » such that for

m=mn the closure of the set where u» vanishes does not intersect 4(0;1—=2-%),
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and um is continuous on 4(0;1—2-%). We note that (n(%))y is non-decreasing
and that }‘im n(k) = . For each k satisfying n(k)<n(k+1) we choose a

positive number pr<27* such that

nlk+1) - ok
(15.1) l”(k)s_”gn(kmlogun(z)|< P , lzlg1-27%

Let 7 be such that #(/+1)>#x(])>1. We introduce

1-2pk Pk
(15.2) A=( II  pn)nh-1 1;1 L( II un) PEFD =R ]

1=a<n(l) n(k)y=n<n(k+1)

where the %k are taken as the positive integers satisfying: 2>1, n(k+ 1) > n(k).
It is readily verified that thanks to (15.1), the right-hand side of (15.2) is
convergent for |z| <1 and defines an upper semi-éontinuous function whose
zero set is E and which yields a conformal metric invariant under the trans-
formations of I There remains to be considered the mean-value property.
To that end, we consider a point a for which A(a) %0 and set v(z) = log A(a + 2).
For r>0 sufficiently small we have

n(l)—1 -
(15.3) m(r;v) —v(0)=>7" 21} [—1;1—(—1-)2_‘?” J[_'/.m(a)]2

£

2 _ N ,
+7 %l n(k+1)—n(k) J<n(k)£§u(k+1)[p”(a)] }-

On applying the weighted form of the theorem of arithmetic and geometric

means, we see that for » sufficiently small
(15.4) m(r;v) —v(0) =7 [i(a) ]

We conclude that 4 defines an S-K metric.

It is now easy to see that if a G; of zero capacity, say X, is given on a
Riemann surface F that admits a hyperbolic metric, then there exists an S-K
metric on F which vanishes precisely on X. It suffices to introduce a con-
formal universal covering ¢ of F with domain 4(0;1) and to note that ¢~'(X)
is a Gs of zero capacity invariant under the conformal automorphisms of 4(0; 1)
which leave ¢ fixed. The argument is completed by applying the construction
of the present section and §8 (e).

16. Boundary problems. The Perron method may be employed to treat

https://doi.org/10.1017/5S002776300002376X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002376X

ON A CLASS OF CONFORMAL METRICS 27

boundary problems for C” conformal metrics of constant curvature —4. We
consider the following situation. Let 2 denote a region contained in a compact
Riemann surface F. The frontier of 2 is to consist of a finite number (=1)
of mutually disjoint Jordan curves 71, ..., rn. For the sake of simplicity we
suppose that UT.=fr (F— Q) although we may easily treat by the present
methods boundary problems in the case of two-sided approach to a given
boundary component. Let B denote a continuous non-vanishing conformal
metric on fr 2. We ask: Does there exist a continuous non-vanishing con-
formal metric 2 on £ satisfying: (a) its restriction to fr 2 is 8, (b) 1% is C”
and of constant curvature —4. Of course, Theorem 2.1 assures us that there
is at most one such conformal metric. We turn to the existence problem.

To that end, let Ar denote a Jordan annulus, rk'C ArCF, which has the
property that 7 separates in A the components of fr Ax, k=1,...,n We
suppose as we may that the A are mutually disjoint. Let 7 denote a univalent
conformal map of Ar onto a plane annulus. The boundary components of
tr(Ar) are separated by tr(7z). Let Br denote the continuous function induced
on ti(ye) from B8 by rz'. There exists a Jordan annulus B;Crr(Ar) whose
frontier contains tx(rx) such that rz'(B;) C £ and the boundary value problem
with respect to By for du=4¢"* and continuous boundary function with maxi-
mum < max log B admits a solution.

In this connection we note that we may choose B in such a manner that

(16.1) max Sjskg(z, ¢)ds;

2By

does not exceed a given positive number, g being Green’s function for Bx. Such
a choice of Br may and will be made by considering first the harmonic measure
ur of tr(rr) with respect to rx(Ar N 2) and taking Br as {1>u>1- 7%} where
7, 0<% <1. is taken so small that (16.1) is fulfilled. The reasoning of §4 is
now applicable. It is to be observed that the integral in (16.1) vanishes con-
tinuously on fr B;.

To continue, we introduce a C" conformal metric ,« of constant curvature
—4 on a region containing 2 and choose a positive number ¢<1 so that the
values induced from cu by vz’ on t(r) are less than ming, k=1,..., n
There exists a continuous conformal metric o on 7% (Br) satisfying:. (a) the
restriction of o to 5 (Bp) is C"” and of constant curvature — 4, (b) the restric-
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tion of or to rk is equal to the restriction of 8 to 7, (c) the restriction of o
to 7k, the other component of frr;'(Be), is less than the restriction of cu to
7% Consequently, there exists a continuous conformal metric on £ whose
restriction to fr £ is B and whose restriction to 2 is S-K. Such a conformal
metric is the conformal metric » on £ whose restriction to 2 — U5 (Bg) is the
restriction of cu to this set and whose restriction to % (Br) is the maximum
of or and the restriction of cu to 75 (Br), k=1, ..., n.

Let « denote the continuous non-vanishing conformal metric on 2 whose
restriction to fr £ is 8 and whose restriction to 2 is euclidean. The uniqueness
of a follows from the maximum principle for harmonic functions. To establish
the existence, we introduce an analytic differential v on £ which does not
vanish and note that there exists a continuous function % on £, harmonic in
2 and reducing to log (8/|w|) on fr 2. The obvious notational gloss is to be
made. We have: a = (expeh)|wl.

We note that a majorant principle prevails for S-K metrics and non-vanish-
ing euclidean metrics dominating them on the boundary— the domination ex-
tending to the interior.

Now let 1 denote the upper envelope of the Perron family generated by the

restriction of » to £. The desired existence result follows from
(16.2) 2 < i<a’

17. Convexity properties. In the theory of subharmonic functions the con-
vexity properties of the maximum or mean on a circumference are of interest.
Corresponding properties in the case of S-K metrics yield useful information,
especially in the study of the local behavior of an S-K metric near an isolated
singularity. Even sharper information may be obtained in the case of a C”
conformal metric of constant curvature —4. As far as I am aware, such results
have not hitherto been explicitly stated. They complement m one respect the
formulation of the Schwarz-Picard problem [cf. Ch. 2, §19], for it is not at all
evident from the work of Picard to what extent the nature of the possible
isolated singularities of C" conformal metrics of constant negative curvature
was taken into account by him.

Let us start with the elementary non-linear differential equation

(17.1) =46
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—its significance for our fundamental equation 4u =4e** is obvious—and note
certain basic properties of the solutions. We fix a point (@, ) in the plane,
and for.a real we let y, denote the solution of (17.1) whose domain is a semi-
closed interval with lefthand endpoint a [possibly {a < x}], satisfying y(a) =25,
y'(a) = a, and having a maximal domain of the stated type. Given £>gq, %

arbitrary real, there exists a unique a such that
(17.2) Ya(8) =
If «a> —2¢% the domain of y, is bounded. Its right hand endpoint may even

be determined by quadratures. If a < —2¢, the domain is unbounded. If

a=-2é,

(17.3) Ya(x) = log lx +c+o0(1), % large,
while if @< —2¢,

(17.4) Yal(%) = —xjat—4 b+ o(x), % large.

These are only preliminary observations. For our local studies we shall be
concerned rather with

(17.5) Y+ %—Y'=4e”,

and shall consider solutions with domain of the form {(0<)B<r< A}, A=¢"%

satisfying Y(A) =b+a, the domain being maximal. The mapping, Y-y,
specified by

(17.6) yx)=Y(e ™) —zx, a<x< —logB,

maps the set of solutions of (17.5) taken into account onto the set of the y..
The antecedent, Y., of y. satisfies Yi(A)= —(a+1)/A. If a> —2¢" the
lefthand endpoint of the domain of Y. is positive. Otherwise it is zero. From
(17.3) and (17.4), we conclude

(17.7) Y.(r) = log L —10g<log —-1~>+c+o(1), a=—2¢,
7 7

and

(17.8) Yol7) = (1= Va?l—4¢*?) log : +o(log i ), a< —2¢é.

Let f denote a real-valued function whose domain is of the form {0 <r< A}.

https://doi.org/10.1017/5S002776300002376X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002376X

30 MAURICE HEINS

We say that / is convex relative to the family of solutions of (17.5), or more
simply, that f is *-convex provided that whenever 0 < B<C< A and Y is the
solution of (17.5) with domain {B< < C} which satisfies

Y(B) = f(B), Y(C) = f(C),
then
(7)< Y(r), B<r<C.

[We define *-convexity analogously for a function with domain {0<r< A}.]
We now introduce for each B, 0<B<A the unique solution of (17.5) with
domain {B<7< A} which satisfies

Y(B)=f(B), - Y(A) = f(A),

and denote it by Zz. We note that for B<7r <A, B- Zs(r) is non-increasing.
Letting B~ 0, we conclude that f is dominated by a solution of (i7.5) on
{0<7r< A} which agrees with f at A. We let ay be the least value of a for
which Y.>f. We have ap< —2¢®. Let 8=1—[ai—4¢&/“]"%. We assert

that
(17.9) lim L‘fl) =8
r-0 log—f—

To see this, we note that from Y.,> f and (17.7), (17.8) we have

limsup —-- < 8.

r-0

On the other hand, if

lim inf i’ (’1) <8,
7> 10g “‘7;

on taking a < «, satisfying

1—vVai—4 &4 >lim inf f(’l) ,
r=>0 log -1:

we see that <Y, and the minimal character of a, is violated. @We conclude
(17.9).

Suppose now that « is a C" solution of du=4¢"* on 4(0; R)—{0}). We
propose to study
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M(7) = max u(r¢®)

and

1 2m i0
m(r) = o u(re”)ds, 0<r<R.
wJo

If 0<7 <7 <R, the solution of (17.5) on {71 < < r,} taking the value M(7)
at r,(k =1, 2) dominates M(7) on {r,<r<n}. Hence r- M(r) is *-convex on
{0<7r<R}. To treat the mean, we note that m(») satisfies

m+ Lo A rﬂ exp[2 u(re®)1do > 46"
7 2w Jo P - ’

an inequality that implies the *-convexity of m(z) on {0<r< R} [111.

Suppose now that 2 is an S-K metric on F— {a}. Let ¢ denote a univalent
conformal map of 4(0; R) —{0} into F—{a} which satisfies 1:3: ¢(2) =a and
let #=1logi,. Then, if A does not vanish identically, M(») and ml(s) are
x-convex. For M(7) the proof is the same as that indicated in the preceding
paragraph. For m(7») we note that if 0<7, <7 <R, and v is continuous on
{ri<lzl <7}, is C" and satisfies dv =4¢" in {n <|z| <7}, and dominates x on
C(0;7e), k=1, 2, then v dominates % throughout {7r;<|z|<7). Hence m(7)
is dominated on {7, <7 <7} by the solution of (17.5) which reduces at 7. to
the mean of v on C(0:7:), =1, 2. Now by the existence theorem for the
boundary problem for C” conformal metrics of constant curvature —4 there
exists v continuous on {7r; <{z| < 7}, C" and satisfying dv=4¢"" in {r; <|2| <n},
and reducing to a given continuous function on C(0;7), k=1, 2. Thanks to
the upper semi-continuity of u, there exists a sequence of such v, say (vs)7,
which is monotone decreasing and tends pointwise to # on C(0;7:), k=1, 2.
These remarks taken together imply that m(7) is dominated on {7, < 7 <7} by
the solution of (17.5) which reduces at 7, to m(7z), k=1, 2.

It is to be observed that there is a marked contrast between the behavior
near zero of x and that of an unrestricted subharmonic function in 4(0; R) — {0}.

In fact (17.9) yields for our present %

(17.10) lim M(7)

r->0

<1
1,

log -

a restriction to which not all subharmonic functions on 4(0; R) — {0} are

subject.
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18. Isolated singularities of solutions of du=4¢“. Let » denote a con-
tinuous function on 4(0;1) — {0} which is a C" solution of du=4¢* in
4(0;1) —{0}. We propose to study the behavior of # near 0.

Case 1. lim M(r)/log (™)< 1. Let « denote lin} m(7)/log (') and observe
r->0 r->

that # admits a representation of the form

(18.1) u(z) = h(z) +alog—}%z-l» — T{4 %], 0<|zl<1,

(cf. §4, r=1), where h is harmonic on 4(0;1). Thanks to the fact that
u(z) <alog I—lz-l- +c

for z small, we conclude that T[4¢°*] is continuous at the origin. Hence we

have
(18.2) #(z) = alog lel +eato(l),  zsmall

a consequence of which is:

a = lim Mo
™ Jog -

7
Note (18.2) refines (17.8)

It is easily seen that if » satisfies the same conditions as % and in addition
v< u and ]ign (v—u) =0, then v=u. It suffices to employ the argument of
Lemma 7.1 with obvious modifications.

Case 2. lrxr? M(r)/log (') =1. Here the treatment is somewhat more
delicate. At al-l’ events, the developments of Case 1 show that lirrol m(7r)/log (r™")
=1. r*

We observe that there is a unique # that takes a given constant value ¢ on
C(0;1) and satisfies llr_g m(r)/log (r"!)=1. The existence follows from the

remarks concerning the solutions of (17.5). If v is a second such function, we

have

v—u=TL4" - ¢€")],
so that
(18.3) (v~u)" <TLae"].
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On the other hand, (v—%)" is subharmonic in 4(0;1) —{0} and T[4¢*“] is a
Green’s potential in 4(0;1). Hence (v — #)" =0 and by symmetry = = .

We return to an unrestricted # of Case 2 and introduce a = min#(e”) and
for each 7, 0<r<1, we introduce uv,[resp. V,], the continuous function on
{r <|z] <1} reducing to a [resp. M(1)] on C(0;1) and to % on C(0;7) which
further is C"” and satisfies dw =4¢*" in {r<|z|<1}). Let v(z) =limv,(2) and

r-0
V(z) =lim V,(2), 0<]z|<1. We have

r->0

v<u<sV.

Further » and V are both of the form

—log (log —‘Ll) +c+o(1),

1 .
| z

(18.4) log Tz
since each is a function of the type considered in the previous para}graph. We
next observe that # —v and V — « are subharmonic and bounded on 4(0; 1) — {0}
and consequently admit subharmonic extension to 4(0;1). Since V-—uw»
=(V—u)+ (u—v) admits continuous subharmonic extension to 4(0;1), it
follows that #—v and V— u both possess a limit at 0. Hence #» admits a
representation of the form (18.4).

Let 2 be a C" conformal metric of constant curvature —4, on F— E where
E is a discrete subset of F. Let ac E. Let £ denote a plane region for which
0 is an isolated frontier point. Let ¢ denote a univalent conformal map of 2
into F — E satisfying lirgrls&:a. Then logi, admits a representation of the
form (18.2) or (18.4) and the coefficient of log (}z]™!) is independent of ¢. We
term the common value of the coefficient of log (|z|™) the index of 4 at a and
denote it by v(a; ).

[The index of a euclidean metric A at a point @ is analogously defined as
the coefficient of log (|z|™") in the expansion of logi, about 0 and will be
denoted by v(a;A) as above. It is to be observed that for euclidean metrics
the index may assume arbitrary real values. The index of a euclidean metric
will be employed only in the case where log 4, is of the form « log (12z|™") + h(2),
k harmonic at 0.]

It is now easy to see that if F— {a} possesses a hyperbolic metric r, then
v(a;r)=1. The property is well-known. For plane regions cf. [10]. Suppose

that »(a;7)<1, Then we may modify 7 to obtain an S-K metric x for which
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/7 takes a value greater than one somewhere. In fact, if ¢ is a univalent
conformal map of 4(0;2) — {0} into F—{a} satisfying lim ¢ =a, it suffices to
introduce a C" solution v of dv=4¢""in 4(0;1) — {0} tal:ing constant boundary
values less than gtlfl) logy, on C(0;1) and of the form (18.4). Welet « denote
the metric obtained when logy,(z) is replaced by max{logr.(2), v(z)} for
0<]z|<1. However it is not possible for such a metric 2 to exist. Hence
vla;r)=1

This result may be viewed as a corollary of the following theorem.

THEOREM 18.1: Let F denote a non compact Riemann surface admitiing a
hyperbolic metric v, and let £ denote a component of the complement of a
compact subset KCF, let v\ denote the hyperbolic metric of 2. Then r%/y: has
a positive lower bound in 2 — V, where V is a neighborhood of K.

Chapter II. The problem of Schwarz-Picard

19. The problem proposed by H. A. Schwarz and treated by Picard [13]
may be stated in the language of the present paper as follows:

Given a compact Riemann surface F, n distinct points ai, . . ., an on F and
real numbers v <1, k=1,..., n. Does there exist a C" conformal metric A

of constant curvature —4 on F—{ay, ..., a.} which satisfies
viar; X) = v, k=1,...,n7?

To be exact, Picard envisages an equivalent problem for squares of metrics.
Further, he treats the problem corresponding to that formulated here when
ve<1. It is also to be remarked that a local representation of the form (18.2)
is assumed outright by Picard as an expression of the local behavior of the
metric in the neighborhood of a singularity.

An elementary construction of a C" conformal metric in the plane with
singularities of the type considered by Picard and of curvature < —1 at the
non-singular points was given by R. M. Robinson [15].

We now give an account of the above formulated Schwarz-Picard -problem

in terms of the methods and ideas of the present paper.

20. Uniqueness. The unicity question may be handled very rapidly. Sup-
pose that 4 and ;. satisfy the specified conditions. Then 4/4 admits a continuous
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.
non-vanishing extension to F and log (4/x) is subharmonic and consequently
constant since F is compact. The constant value is not positive, for otherwise
the curvature would not be —4 for both 2 and . Hence 1< x. By symmetry
A=

21. The A-area of F—{a,, ..., an). It is classical that the area of
F—{ay, ..., an; in the sense of a metric 1 meeting the conditions of the
problem is simply

(21.1) 1+ Sutasn ],

where Z(F) is the Euler characteristic of F( =2 g—2, g being the genus of F).
Hence since the i-area is positive, we obtain ’

TaEOREM 21.1: A necessary condition for the problem of Schwarz-Picard to

Dossess an affirmative answer is that
(21.2) kEuk> - A(F).
=1

22. The condition '21.2) is sufficient for the problem of Schwarz-Picard to
have an affirmative answer. This aspect of the solution of the problem is, as
might be expected, more difficult. We first establish several lemmas. In these

lemmas we understand that n>1.

LEmMa 22.1: Given (v), ..., vy) such that there exists a C" conformal
metric X of constant curvature —4 on F—{ay, . .., an} satisfying v(ap; 1) = v},
k=1,..., n Then for each n-tuple (vy, . .., vs) satisfying vk < <1, k=1,

., n, there exists a C"” conformal metric p of constant curvature —4 on

F—Aay, . .., ax) satisfying viag;pud=ve, k=1,..., n

Proof: We modify A locally near ag, if »z> v}, to obtain an S-K metric A*
on F—{ai, ..., as} whose restriction to a deleted neighborhood of ax is C",
of constant curvature — 4, and such that »(ar;1*) =»r. Such a modification
is easily constructed on noting that there exists a C” solution of du =4¢"* on
4(0; 1) - {0} which takes an assigned constant boundary value on C(0;1), and
is of the form (18.2) with »r = & if v, <1, and is of the form (18.4) if =1
[cf. last paragraph of §18.]

Now let ¢, denote a univalent conformal map of 4(0;2) into F, ¢£(0) = a,
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the ¢x[4(0;2)] being mutually disjoint. Let uzr denote the maximal C” con-
formal metric on ¢:[4(0;1) —{0}] of constant curvature — 4 satisfying v(az; 1)
=pr. The existence of u; is readily established with the aid of a suitable solu-
tion of (17.5), i.e. Y on {0 <7 <1} satisfying l,l_)r? Y(r)= + o, Y(r) = v log (1/7)
+c+0(1) if »,<1, and otherwise Y(7)=log(1/7) —logllog (1/7)1+ ¢+ o0(1),
7 small.

The Perron family generated by A* has the property that u; dominates the
restriction to ¢x[4(0;1) —{0}] of each member of the family. The upper en-
velope of the family is the desired .

LemMmA 22.2: Under the hypotheses of Lemma 22.1 there exists a C'" con-

Jormal metric u of constant curvature —4 on F—{ai, ..., an) satisfying
viar; pn) <vh, k=1,...,n.

Proof: Let ¢ satisfy >)(»} —8) = —7(F), so that §>0. From standard
properties of abelian differentials on F and the fact that there exists a harmonic
function %2 on F less two given distinct points at which k& has logarithmic
singularities it follows that there exists a non-vanishing euclidean metric v on
F—{ai, ..., an} which satisfies v(ar;w) =vt—08,k=1,...,n Using property
(e) §10 we infer the existence of an S-K metric A* on F—{ay, . . ., as} which
satisfies for small z the condition

(22.1) log 13,(2) = ax log i—l‘—z—l — Brlog (log \l—zl) + e+ 0(1).

Here ¢ is a univalent conformal map of 4(0;2)—{0} into F—{ay, ..., ax)
satisfying lign ¢r(2) =ar and arp<pi. By a paraphrase of the argument of
Lemma 22.1 we see that the upper envelope of the Perron family generated
by A* is an admitted .. It suffices to replace ur of that lemma by a conformal

metric meeting all the same conditions save that its index at ar is to be ax.

Lemma 22.3: Let (ai, . .., an) denote an n-tuple of real numbers satisfying
Star= —J(F) and ar<1, k=1,..., n. Then for each n-tuple (v, . .., va)
satisfving
(22.2) ar<wvr <1, k=1,..., n,

there exists a C'" conformal metric 2 of constant curvature —4 on F—{a,, . .

L]

an} satisfying
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(22.3) y(ak;ﬂ) = Vk.
This is the essential lemma for the sufficiency theorem.

Proof: Let E denote the set of n-tuples (v, ..., va) satisfying (22.2).
Clearly E is convex. A fortiori E is connected. We employ an argument based
on the connectedness of E. Let A denote the set of n-tuples (vy, ..., vs) EE
for which there exists A meeting the sbeciﬁed conditions. Now (1, ...,1) e A.
[If X(F) = —2, n==38)]. Further Lemmas 22.1 and 22.2 show that A is open
in the sense of the relative topology of E.

It remains to show that A is closed in the sense of the- relative topology
of E. To that end, we consider a sequence ((»], . . ., vi))i of members of A
tending to (2], ..., vx) € E and show that(s}, ..., vn) e 4. It then follows
that A is closed in the sense of the relative topology of E. Let ¥ denote the
C" metric of constant curvature —4 on F—{aj, ..., as) which satisfies
v(ak; /1")' = v’;;, k=1,..., n. By the normal family property of the C" conformal
metrics of constant curvature —4 there exists a subsequence of (#), which we
may as well take to be (V) itself, converging uniformly in the sense defined
earlier in F—{ay, ches an} to either the identically zero metric or a C'" metric

of constant curvature — 4. The #-area of F—{a,. ..., a,) namely
| + 2|

has a positive lower bound independent of j. If (4) tended to the zero metric,
the ¥-area of F—{a,. .., a,} would tend to 0 as j » . In fact, let ¢, denote
a univalent conformal map of 4(0;2) into F, ¢x(0)=ar, k=1, ..., n the
¢rE4(0;2)] being disjoint. Then given 7, 0<7<2, for j sufficiently large the
V-area of F— {a;, ..., as) would be less than twice the sum of the areas of the
@[ 4(0; 7)1~ {ar} in the sense of the hyperbolic metric of F—{ai, ..., a@x).
This is impossible for r sufficiently small.

Hence (4/) tends to a C" conformal metric 2 of constant curvature —4 on
F—{ai, ..., ar). Using the ¢, of the preceding paragraph, we put down
conformal metrics u, and z§ on ¢x[4(0;1)]— {ae} satisfying the following
conditions : (a) each be continuous; (b) the restriction of each to ¢[4(0;1)]
—{ar) be C" of constant curvature —4; (c) wvlar; uh) <vk<v(aw;ui) if vk <1,
and otherwise wv(ar; k) <v(ar;p) =1; (d) wm<Ai<ugi on ¢LC0;D)], the
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obvious gloss concerning restrictions being made. It follows that for j

sufficiently large
<V <l

on ¢.L4(0;1]1— {ar). Hence we have on the same set
1 <A< .

We conclude that

viae; up) <vlar; ) < vlak; pr),
and hence, that

D(ak;l)=v;;, k=1,...,n,
using the arbitrariness of »(a; k) and v(ag; puk). Lemma 22.3 follows.

The solution of the Schwarz-Picard problem is now readily completed. We

put aside the case where #=0. It is cared for by the hyperbolic metric.

Given (v, ..., vm), <1 k=1,..,, n, satisfying (21.2), we take (ay,...,
an)-satisfying Slar= — X(F) and ar<we, k=1,...,n and thereupon apply
Lemma 22.3.

Chapter III. Applications to Conformal Mapping

23. From this point on our central interest will be the application of con-
formal metrics, generally C" with constant curvature -4, to the study of
conformal maps of Riemann surfaces, and more particularly to conformal maps

and meromorphic functions with domain 4(0; 1).

24. Nehari’s generalization of the lemma of Schwarz. We quote Nehari’s
theorem [9]:

“Let w= f(z2) be a non-uniform function, regular for |z| <1 apart from a
finite number of algebraic branch points and let f'(2) be finite everywhere in
iz{ <1; let further, for all determinations of f(2), |f(2)|<1 for |z|<1. Then

we have

FUOIES!

for all the different values f'(0) may assume. The case | f'(0)|=1 can only
happen for f(2) = Kz, |K|=1."

Nehari’s theorem will now be considered from the point of view of our present

study. It will be seen to admit considerable generalization, The following
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reworking of Nehari's theorem indicates the nature of our approach:

Let / denote an n-sheeted conformal map of a Riemann surface F onto
4(0;1) and let g denote an analytic function of modulus <1 on F which satisfies
the condition n(p; f) <n(p;g), ps F. [Here “n(p; f)” denotes the multiplicity
of £ at p.] Let r denote the hyperbolic metric of 4(0;1). Then [r, gl< [y, 71
If the two sides are equal, g= T°f where T is a conformal automorphism of
4(0;1).

We remark that [y, f] is the maximal conformal metric on F whose re-
striction to F less the points at which f is ramified is C' of constant curvature
—4 and which has index 1—#n(p; f) at each point p with n(p; f)>1. This
is the essential fact of the part of the theorem concerning the inequality. It
suffices to consider for 7 less than but sufficiently near one the metric induced
from the hyperbolic metric of 4(0;7) by the restriction of f to f '[4(0;7)],
only 7 such tha;c f is not ramified over C(0;#) being taken into account.

More generally, a theorem of this type is available when we have (as above)

a maximal conformal metric induced from a hyperbolic metric. We have

Tueorem 24.1: Let fk denote a conformal map of a Riemann surface F
into a Riemann surface Gr possessing a hyperbolic metric rx, k=1, 2. Suppose
that n(p; f1) <n(p;fo), PEF, and that Ly, /1] is the maximal conformal metric
on F whose restriction to F—{n(p;f1)>1} is C" of constant curvature —4
with index 1 —n(p; f1) at p satisfying n(p;f)>1. Then

(24.1) L7, fo1< Ur, f1D

In addition, if G, and G: are conformally equivalent to 4(0;1) and equality
holds in (24.1), f, = Tof:, where T is a univalent conformal map of G, onto G..

We need only verify the last assertion. We assume, as we may, that
G,=G:=4(0;1). Let poe F be such that n(p,;s,) =1 and let T be analytic
on a region containing fi(o), be of modulus less than one, and satisfy 7L/1( »]
=f2(p), p near po. Then

™= _ 1
(24.2) = [T ~ 1=|zF

for z near fi(po). The equality (24.2) implies that T' is the restriction of a
conformal automorphism of 4(0;1) and the assertion follows.

[For the sake of completeness we indicate a proof. Cf.[9]). We may assume
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that f1($o) =0 and T(0) =0. The equality (24.1) then yields the result that
the hyperbolic distance between 0 and 7(z) is equal to the hyperbolic distance
between 0 and z for z small. Hence |7T(z)|=1|z| for z small and T is the
restriction of a conformal automorphism of 4(0;1). This argument will be
used later [§29].] '

We now see that interest centers on determining a comprehensive class of

conformal maps that induce maximal metrics.

25. A class of conformal maps. An interior transformation f of a surface
F into a surface G will be said to be locally of island type (inselartig im kleinen)
provided that for each ¢ = G there exists a disk 4, g€ 4, such that each com-
ponent of f~X(4) is relatively compact. It is obvious that the class of maps
that are locally of island type embraces the class of maps of constant finite
valence as well as many frequently considered interior transformations (such
as branched coverings). v

We first prove

TueoreM 25.1: Let f be a conformal map of a Riemann surface F into a
Riemann surface G and suppose that f is locally of island tvpe. Then

(a) If G possesses a hyperbolic metric v, Lr, f1 is the maximal conformal
metric on F whase restriction to F—{n(p; f)>1} is C" of constant curvature
— 4 and has index 1~ n(p; f) at p satisfying n(p; f)>1.

(b) If there does exist a C" conformal metric of constant curvature — 4 on
F—={n(p;f)> 1} with index 1 —n(p; f) at p satisfying n(p;f)>1, then G pos-

sesses a hyperbolic metric.

Proof: Let us first treat (a). Let i denote the maximal conformal metric
to which reference is made. We shall “induce” from A an S-K metric 2 on G

satisfying
(25.1) 1<ty 11

Since <7 and [y, f1< 1, we infer [r, f1=4.

The S-K metric z is introduced as follows. Given g€ G we assign a uni-
formizer ¢,, ¢,(0) =q, with domain 4(0;1) such that each component £ of
e [4(0;1)]} is relatively compact. We define

(25.2) M(z;¢, 2)
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at a point z& 4(0; 1) for which fg, the restriction of f to £, is not ramified
over ¢,(z), to be the maximum of the values A,(z) where ¢ is a uniformizer
of F whose domain contains z and which satisfies ¢;'cfoo¢(w) =w. At the
remaining points of 4(0;1), M(z, ¢,, ) is defined by taking limiting values.
So defined z—~> M(z; ¢,, ) is the identity-scale [cf. §1] of an S-K metric on
4(0;1). Hence

(25.8) M(z; ¢, 2)<(1—]2)7N

We introduce

(25.4) z-»s%pM(z;%,!zi, lz] <1,

and let A, denote its upper limit function. There exists a conformal metric

g
w on F satisfying n,, = M,,. Further A< [x,f]. To see that z is an S-K metric,
we first observe that each M, is automatically upper semi-continuous. Suppose
that. M,,(0)=0. If we fix , 0<r<1, and take » as a continuous function on
4(0;7) which dominates log M,, on C(0;7) and is C” and satisfies du=4¢**

in 4(0;7), we see that
u(2) =log M(z; ¢4, 2), lz| <7,
and consequently

u(2) > log M,,(2), Izl < 7.
From

m(r; u) — u(0) =" s,

we conclude by the arbitrariness of u that
m(r ;log M,,) —log M,,(0) = [M,,(0)F7~

Consequently u is an S-K metric. Part (a) of the theorem is established.

To establish (b) we note that the argument just employed shows the
existence of an S-K metric on G.

Part (a) of Theorem 25.1 admits the following extension: Let E denote a
discrete subset of G and let 2 denote a C'" conformal metric of constant curva-
ture —4 on G — E and suppose that i is the maximal among conformal metrics
of this type with index v(q; 1), g E. Let f, denote the restriction of f to

fM(G—E). Then [4 fi] is the maximal C" metric of constant curvature
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—4 on fUG—-E)—{np;f1)>1} whose index at a point pe f (E) is
n(p; FIVLF(P);a]1—n(p; f)+1 and at a point p, n(p;fi)>1, is 1 —n(p; f).

Part (b) yields information on the distribution of the points at which a
conformal map f is ramified in the case that f is a map locally of island type
onto a Riemann surface that does not possess a hyperbolic metric. For the
special case where the domain of f is 4'0;1), it would be of interest to study
the growth of the Nevanlinna characteristic function of f, as well as of f belong-
ing to more special classes.

[The following remark is worth making. Let G be a Riemann surface with
hyperbolic metric y and let f be a conformal map of a Riemann surface F into
G. Then a necessary and sufficient condition that Ly, f] be the hyperbolic
metric of F is that f be a covering of G (i.e. locally simple and locally of island
type). The sufficiency follows from Theorem 25.1 (a). It can be established
as well with the aid of conformal universal coverings. The necessity can be
established with the aid of conformal universal coverings. This remark must

be well-known.

26. We seek to bracket the class of conformal maps that enjoy the pro-
perty stated in Theorem 25.1 (a). Much remains to be done in this direction.
In the present section we give a bracketing from above.

Let f denote an interior transformation of a surface F into a surface G.
We say that ¢g= G is a point locally omitted by f provided that either
g G— f(F) or else g f(F) and there exists a region 2, g< &, such that for
some component w of f~!(2), the restriction of f to w omits gq.

We show

THEOREM 26.1: Let f denote a conformal map of a Riemann surface F into
a Riemann surface G that possesses a hyperbolic metric y. Suppose that f has
the property stated in Theorem 25.1 (a). Then f has no locally omitted point.

Proof: Suppose that there is a locally omitted point. At all events, f(F)
=G. Otherwise the hyperbolic metric 7' of f(F) would exceed /'™ and [/, £]
=[r, 1 so that ' =y"™. There exists a locally omitted value ¢, and a uni-
formizer ¢, ¢(0) = g, such that the domain of ¢ is 4(0;2), that f is not rami-
fied over ¢[C(0;1)], and that f omits ¢ on w for some component w of
S H{e[4(0;1)1}. Let 4 denote the continuous conformal metric on ¢[4(0;1)]
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—{q} satisfying: (a) its restriction, A, to ¢[4(0;1)]—{q} is C" of constant
curvature —4 and has index 1 at g, (b) its restriction to ¢LC(0;1)] is equal
to the restriction of v to ¢[C(0;1)]. Let u denote the conformal metric on F
satisfying
2 =1, f.]
and
ue =0, 17

It is easily verified that x is an S-K metric. Further u exceeds [7, f] at the
points of w where f is not ramified and in addition has the same index as
Lr f,] at each point of the set {n(p; f)>1}. It follows that the upper envelope
7 of the Perron family on {n(p; f) =1} generated by u restricted to {n(p; 1)
=1} exceeds the restriction of [y, f] to {(n(p; f)=1). Further the index of
7 at each point of {m(p; f)>1} is the same as that of [r, 1. The contradic-

tion is manifest.

27. On a remark of Carathéodory. In his Comformal Representation [3,
first ed. p. 29] Carathéodory considers an analytic function ¢, of modulus less
than one on 4(0;1), which is of constant valence #» on 4(0;1), which has a
ramification of order #»—1 over a given point wo€ 4(0;1), we=x0, and which
is subject to the normalization ¢,(0) =0, ¢»(0)>0. There is precisely one such
function. In §59 [loc. cit.] Carathéodory shows by direct computation that
@4(0)> ¢%,1(0) for all # and observes that the stated inequality “may perhaps
rest upon some deeper, as yet unremarked, property of the transformations”.
In the present section we shall consider a problem that embraces the situation
considered by Carathéodory and we shall see how Carathéodory’s insight may
be justified. What is lacking, of course, in Carathéodory’s example is the pos-
sibility of factoring ¢»:; in the sense of composition in the form ¢°¢, where
¢ is an analytic function of modulus less than one on 4(0;1) and ¢(0) =0.

We consider Riemann surfaces F, G, H. Let G possess a hyperbolic metric.
We also consider a conformal map f of F into H and a conformal map g of
G into H. The following conditions are to be fulfilled:

(a) g is to be locally of island type.

(b) The set E of points over which g is ramified is discrete and

N(g) = sup n(p; g <+ o, ge k.

9(p)=yq
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[The possibility that £ = 0 is allowed.]
() If fFOPYeE, n(p, f)=NLAPL

Under these conditions we show

TreorREM 27.1: F admits a hyperbolic metric. Further for each pair (a, b)
e Fx G satisfying fla) = g\b), there exists a quadruple (K, k, ¢, ¢) where K
is a Riemann surface, k€ K, ¢ is a conformal map of K into F, and ¢ is a
conformal map of K into G for which the following conditions are fulfilled :

(1) ¢(k)=a, ¢(k) =b.

(2) fog=g°¢.

(3) ¢ is a conformal map of K onlo F which is locally of island type and
which is such that if n(p;¢)>1, then foo(P)E E and nip;¢) < NLfoe(p)l

(4) The inequality

(27.1) L7, 1=, ¢]

holds. v: and 1. being respectively the hyperbolic metrics for F and G.
Furthermore, if F=G = 400;1), then equality in (27.1) implies that f =g T

where T ts a conformal automorphism of 4(0;1).

Before we turn to the proof, let us see how the observation of Carathéodory
may be explained in the light of the present theorem. To do this, we identify
9y with / and ¢, with g. From (2), (4) and the last sentence of the theorem,
we conclude that ¢5,,,(0) <¢,(0). To be sure, this way of arriving at the in-
equality is far from elegant, but it does show that the phenomenon in question

is a special instance of a fairly general situation.

Proof: 1t will be convenient to have available some well-known facts con-
cerning analytische Gebilde for maps into Riemann surfaces. They are not
novel but they do not appear to have been explicitly formulated. We start
with given Riemann surfaces. For the purposes of the immediate consideration
we shall call them F and G without implying that any restrictions are imposed.
We consider ordered pairs (a, §), where « and § have a common domain, a
plane region containing 0, and « and B are conformal maps of this region into

F and G respectively, such that

(27.2) z-(a(2), 3(2))
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is univalent. An equivalence relation is defined in the class of such pairs as
follows. Given two such pairs (ax, Br), B=1, 2, we say that (as, B) is “equi-
valent” to (a1, B1) provided that there exists ¢ analytic at 0, ¢(0) = 0, such that
al9(2)] = as(2), Bille(z)]1= B:(2) for z sufficiently small. We let e(a, 8) denote
the equivalence class containing («, 8) and we let E denote the set whose
elements are the e(a, 8). Exactly as in the standard theory of analytische
Gebilde we introduce as a topology in E the weakest topology rendering each

of the maps

(27.3) Oup: t - ela’, B), t € domain of «a and B,

open, «' and B being defined by a'(2) =a(t+2), B'(z) = B(t+2), z € translate
by —t of the domain of « and 8. Each 0. is continuous. A component % of
E is endowed with a conformal structure by the family of the 8.; having image

in %. As in the .classical case, we introduce the maps

c: e(a, 8) - al(0),

27.4
¢ ) { v: ela, 8)-B(0),

and see that they are conformal maps of % into F and G respectively. We
term the components A Gebilde, ¢ the center map, and v the value map. [The
terms center and value are adopted from the “Analytic Functions” of Saks and
Zygmimd.]

We now return to the situation of Theorem 27.1. Suppose that foc(p)
= gov(p) for p in the neighborhood of a point of A. Then feoc=gov.

It is now easy to see that there exists («, ) satisfying
a(0) =a, B(0) =b, foa=g°B,

and further that the number of distinct equivalence classes of such pairs is
precisely n(b; g)/m where m is the smallest positive integer [ satisfying
n(b;g)llnla; f). We fix such a class and term it 2 and let K denote the
component of E containing % and let ¢ =¢ and ¢ =». It is obvious that (1)
and (2) of Theorem 27.1 are fulfilled.

To continue, we show that the covering properties of g induce correspond-
ing properties for ¢. Given p € F, there exists a disk 4 containing p such that
/s the restriction of f to 4, is a map of constant valence #n(p; f) of 4 onto

f(4) which is ramified at most at p, and on each component £ of g '[f(4)],

https://doi.org/10.1017/5002776300002376X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002376X

46 MAURICE HEINS

Zo is a map of constant valence with image f(4) which carries precisely one
point g& 2 into f(p) and is ramified at no other point of 2. We now see that
if 2 is given, there are precisely #n(q; g)/m distinct equivalence classes of (a, 8).
satisfying: (i) foa = goB, (ii) a(0) = p, 8(0) = g. Here m is the smallest positive
integer [ satisfying n(g; g)1In(p; f). There exist such (a, 8) satisfying: (iii)
the image of «a is 4, the image of 8 is £, (iv) the domain of « and 8 is 4(0; 1)
and « and B are of constant valence on their images.

We shall conclude that ¢(K) = F. At all events, ¢(K) is open. Suppose
that p < ¢(K). There exists r& 4N ¢(K), 7=p; 4 is here construed in the sense
of the previous paragraph. Let 7= ¢(s). Fro?n fLe(s)]1= gl¢(s)] we see that
there exists 2, ¢(s) € 2. One of the (a, B) satisfying all the conditions (i)-(iv)
has the property that s=e(a’, 8') for some #, |#|<1. With (a, B) so chosen,
the image of . is contained in K. Consequently p € 4C ¢(K). Hence ¢(K) is
closed. We conclude that ¢(K) = F.

We now verify that ¢ is locally of island type. Given pE F, ¢(s) =p, let
4 be associated with p as above. There exists (a, 8) € s satisfying (i), (iii),
(iv). Consequently, {e(da’, g°) I]tl<1'} is a component of ¢”'(4). Further, each
component of ¢”'(4) is a set of this kind for some s. Hence, if 4; is a rela-
tively compact disk, p € 4, 41 C 4, then each component of ¢ '(4:) is relatively
compact.

Suppose that n(s;¢)>1. From the definition of K, we see that with
p=¢(s), g=¢(s), we have n(g;g)>1. Hence f(p)eE.  From n(s;¢)
<n(g; ), n(s;¢) < NLF(p)]. We conclude (3).

The proof of (4) will be based on property (c) [stated before the theorem]
which implies that #(7; ¢) < n(s;¢), s€e K. From Theorem 25.1 (b) we con-
clude on considering {7, ¢1 and ¢ that F possesses a hyperbolic metric 7; and
we conclude (27.1) from Theorem 25.1 (a).

The final assertion of the theorem is immediate.

An application. Suppose that H is the extended plane or the finite plane
and that F=G=4(0;1). We shall obtain from (27.1) inequalities connecting
derivatives (resp. Laurent coefficients) of f and g at points @ and b respectively
where f(a) = g(b). Let us first suppose that f(a)=  and let [=n(b;g). Let
A denote the Taylor coefficient of f of order I at a and let B denote the Taylor

coefficient of g of order / at 4. Then from the local behavior of the solutions
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of f(2)=g(w) and (27.1) we obtain
(27.5) lAI"1 - 1al) <|BI"1-1b6]).

In particular, if a=b=0 and #(0; g) =1, we obtain
[ A< 1g'(0)].

[t is to be observed that if (27.5) reduces to an equality, then Theorem 27.1
and the observation at the end of § 18, Case 1, assure us that f=goT, where
T is a conformal automorphism of 4(0;1).

If f(a) = oo, it suffices to consider the reciprocals of f and g respectively
to deduce that either n(a; f)>1 or n(a; f) =1 and

(27.6) [AI" (1~ al) < |BI"™"™1~]b),

where now A is the Laurent coefficient of f at @ of order —1[ and B is the
Laurent coefficient of g at » of order — 1.

The case of equality in (27.6) also yields the result that f=g°T, T a con-
formal automorphism of 4(0;1). ‘

28. An extension of Nevanlinna's criterion for hyperbolic type. Let a;
.., an denote n distinct points of the extended plane and let »y, ..., va

denote positive integers =2 or + o satisfying
(28.1) 21—t >2
A celebrated theorem of Nevanlinna [10; p. 282] implies as an immediate corol-
lary the result:
If a non-constant meromorphic function f on 4(0; R), R< + o, satisfies
n(z; f) = v,
when f(z)=ap, k=1,..., n then R< + .

It is of interest to note that one may obtain this result as a corollary of a
monotoneity property of induced metrics. Let 1 denote the Schwarz-Picard
metric for the extended plane whose index aj at ax is 1—»z'. Let f denote a
non-constant meromorphic function on a non-compact Riemann surface. Let
E=f"{ay ..., a}). Let 2 denote a relatively compact Jordan region in F.
Let
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Sep) = SH S [1-ng; Nvi'l galp, @)

k=1 f{Q)=af

where g is Green’s function for @, p 2 —E. Let 7 denote the restriction of
fto F—E. Then

(28.2) expo( — SOIA Fla-r

is an S-A metric and is the restriction to 2 - E of an S-K metric zo on 2. If

2, and 2. are admitted 2 satisfying 2, £,, then

(28.3) a2, = (g,
We conclude

Taeorem 28.1: If there exisis a monolone increasing sequence of 2, say
(2,)7 exhausting F such that for some point a< 2: we have sup Sg,(a) < + =,
then F has a hyperbolic metric. If the given condition is fulfilled non-trivially,

then F possesses Green's function.

We note that the hypotheses of Theorem 28.1 are automatically fulfilled
in the situation of Nevanlinna’s type criterion.

Similar results hold also for conformal maps with image in a torus.

Chapter 1V. Applications. Meromorphic Functions on 4(0;1).
Fuchsoid Groups
29. Our starting point will be a theorem connecting maximal C” metrics
of constant curvature — 4 with assigned negative integral indices and bounded

analytic functions on 4(0;1).

TueoreM 29.1: Let E denote a non-empty discrete set in 4(0;1) and let 2
denote the maximal C'" conformal metric of constant curvature — 4 on 4(0;1) — E
with assigned negative integral indices at points of E, the class of such conformal
metrics being assumed not empty. Then there exists an analytic function f on
4(0;1) of modulus less than one such that
(29.1) M), 2e40;1) - E

1-1/(2)|
If g also satisfies the same condition as [, then g = Tof where T is a conformal
automorphism of 4(0;1).
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Proof: We start with the case where E is finite and the index at each
point of E is equal to — 1. In order to treat this case we proceed as follows.
Let A -denote the set of ordered #-tuples (ay, ..., @) satisfying: |ar| <1,
kE=1,...,n(=1), and aj>ar for jxk It is easy to see that A is an open

connected subset of

400;1) % + -+ x4(0;1).

”

Further let B denote the subset of A consisting of the (ai, . . . , @») for which
there exists a finite Blaschke product of degree n+ 1 of whose derivative the
zeros in 4(0;1) consist precisely of a;, ..., as. It is easy to see from
examples that B is not empty.

We next show that B is open. Given (a, ..., an) €B, let f denote a
finite Blaschke product of degree n+ 1 of whose derivative the zeros in 4(0;1)
consist of @y, . .., as. Let w satisfy: w= f(ar), k=1,..., n; |lw|<1. Let
ay, . . ., an+y denote the distinct solutions of f(z2) =w. The function f admits
a representation.of the form

n+1
(29.2) Sy =My 1 275,
1 1—agz

where 7 is a complex number of modulus one and

)= z+w

Mz

1+wz ’
Let
- -Gk 2— An+1
2 . p ( )=M Z = »
(29.3) filz [”(I} 1~ckz)1—&n+1z]
where ¢=(¢;, ..., ¢s). There exist disjoint neighborhoods of the a say

N(ay), k=1,..., n, and a neighborhood N(a) of a=(ai, ..., an) of the
form
Mag;r)x -+ X dan;7),

where the d(a;r) are mutually disjoint, such that for each ¢ € N(«) there are
n distinct zeros of f; in 4(0;1), say be(¢), k=1,..., n where br(¢) € Nag).
The mapping

(29, 4) ¢ (0,(Q), ..., bald)), ¢e N(a),
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is (1, 1) and continuous. The continuity is elementary. If ¢, w € N(a) go into
the same point under the map (29.4), then by Theorem 25.1 (a), we have

[ /¢l | ful

1=l ~ 1=1ful
Consequently f; = Seof, where S is a conformal automorphism of 4(0;1) with
fixed point w. Hence {¢;, ..., ¢x)={w1, ..., ws) and by the disjunction of
the 4(ar;7) we have { =w. Brouwer’s theorem of Gebietstreue [8] now yields
the conclusion that (ay, . .., @») €int B. Hence B is open.

To show that B is closed in the sense of the relative topology of A we
proceed as follows. Given a’=(al, . .., an) € BNA. There exists a sequence
(@™)y, @™ € B, with limit ¢". Let gn denote a finite Blaschke product of degree
n+ 1 of whose derivative the zeros in 4(0;1) ‘consist of the components .of
a”, gm(0) =0. - There exists a convergent subsequence of (gm) with limit g.
It is easy to see that g is a finite Blaschke product of degree 7+ 1 of whose
derivative the zeros in 4(0; 1) consist of the components of a”. Consequently
a’s B. B is closed in the sense of the relative topology of A. Hence B=A.
The theorem is thereby cared for in the case where E is finite and the index
is —1 at each point of E.

To treat the case where E is finite but the indices are unrestricted negative
integers, it suffices to introduce a ‘sequence (g.) of finite Blaschke products,
each of degree 1—>)»(q), »(g) being the value assigned for the index at g€ E,
g2(0) =0, such that the zeros of gy in 4(0;1) are simple and tend to the points
of E, —1(q) of them tending to g, and thereupon to observe that the limit of
a convergent subsequence of (gx) serves.

To treat the case where E is infinite, let (E,); denote a monotone increas-
ing sequence of sets with union E. Let g. denote an analytic function of
modulus less than one on 4(0;1), g»(0) =0, which has the required property

relative to E, and the values assigned for the indices. Now
lgnl(1-1galH™"

is monotone non-increasing and tends to 2. On the other hand, there exists a
subsequence of (g») which tends to an analytic function g of modulus less
than one on 4(0;1), g(0) =0. It follows that
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lg'(2)]

1-ig(a)r =M

The last sentence of the theorem does not call for special details.

30. The distribution of the ramification points of a Lindeléfian map.
Thanks to Theorem 29.1 we see that there is a very close connection between
the derivatives of bounded analytic functions on 4(0;1) and the conformal
metrics of Theorem 29.1. We introduce a divisor 0 on a Riemann surface F
as a real-valued function on F such that {3(p) =0} is discrete. Given a con-
formal map f with domain F, by the ramification divisor 9 of f is meant the

function on F defined by
(30.1) r(p) =n(p; f)—1.

Given a C" conformal metric A of constant curvature —4 on F— E, where E
is a discrete subset of F, by the divisor of 1, 2,, is meant the function with
domain F defined by

0, peF—-E;

(30.2) B ):{ _
A2 wWpi ), peE

It is now immediate that the following theorem holds.

TueoreM 30.1: The set (5.}, A admitted by Theorem 29.1, is the same as
the set { — 9y}, f bounded analytic not constant on 4(0;1).

We may go further and study the ramification divisors of Lindelséfian maps
[7] having domain 4(0;1). Let us recall that a Lindelsfian map may be defined
as a conformal map f of ‘a Riemann surface F possessing Green’s function g
into a Riemann surface G which satisfies

(30.3) S,(p) = !(Z n(r; £)g(p, 7)< + <, fP)=xq

r=q

In case G is the extended plane and F=4(0;1) the requirement that f be
Lindelsfian is equivalent to the condition that it be of bounded type in the
sense of R. Nevanlinna. [Indeed, in the unrestricted case the requirement that
a map be Lindelsfian is equivalent to its having bounded Nevanlinna charac-
teristic function in the sense of an extension of Nevanlinna’s theory to conformal
maps of Riemann surfaces {7, 12].]

We show

https://doi.org/10.1017/5S002776300002376X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002376X

52 MAURICE HEINS

TuEoOREM 30.2: Given a Riemann surface G. The set ®© of ramification
divisors of Lindelifian maps of 4(0;1) into G is the same as the set {of), f

analytic, not constant, and of modulus <1 on 4(0;1).

Proof: Given a member of the second class oy, it suffices to take a univalent
conformal map ¢ of 4(0;1) into G to obtain in ¢/ a Lindelsfian map of 4(0; 1)
into G satisfying 9,.s = 9. Hence the latter set of divisors of the theorem is
contained in the former.

Suppose now that g is a Lindelofian map of 4(0;1) into G. Let a, b, ¢
denote three distinct points of G over which g is not ramified. Let 7 denote
the hyperbolic metric for G —{a, b, c;. Let g* denote the restriction of g to
g (G~ {a, b, ¢c}). Referring to (30.3) with F= 4(0;1) and with our present
£ in place of /, we introduce

(30.4) - expel = (Sy+Sy+SH1r, &%,

where S} is taken as the restriction to g7(G—{a, b, ¢}) of S,, The metric
(30.4) is an S-K metric on g (G —{a, b, ¢}). Let x denote the restriction to
{0g(2) = 0} of the continuous conformal metric on 4(0;1) whose restriction to
g (G —{a, b, ¢}) is the conformal metric (30.4). Then the upper envelope 1
of the Perron family generated by p satisfies 9, = —0,. Hence by Theorem
30.1, ®c{3f}. Theorem 30.2 follows.

We remark that the latter part of the theorem could also have been demon-
strated by observing that given a Lindelsfian map f with domain 4(0;1) there
exists a function of bounded type with domain 4(0;1) which has the same
ramification divisor as /. However the basic argument is not altered thereby.

The following evident remark should be made. If G admits a conformal
universal covering with domain 4(0;1), then the set of ramification divisors of
conformal maps of 4(0;1) into G is the same as the set of ramification divisors
of non-constant bounded analytic functions on 4(0;1).

Theorem 30.2 permits us to characterize the distribution of the a-points of
the derivative of a function of bounded type. We recall that the sum of two
meromorphic functions of bounded type is itself of bounded type if it is not
constant. Given « finite and g meromorphic of bounded type on 4(0;1), we

introduce

(30.5) ha(2) = g(2) — az
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and notice that, with 6,(z) denoting the multiplicity of g’ at z if g'(2) =a and
otherwise zero,

8a < Ohgs (g'(2) £a).
We conclude

TaeoreM 30.3: Let g be a non-constant meromorphic junction of bounded
type on 4(0;1) and let a be a finite number. If g'(z) £ a, 5 is the ramification

divisor of a non-constant bounded analytic Sfunction on 4(0;1).

The converse result is immediate: given @ finite and © the ramification
divisor of a non-constant bounded analytic function, there exists a meromorphic
function g of bounded type on 4(0;1) for which do=29. The characterization
of the distribution of the poles of the derivative of a function of bounded type
on 4(0;1) is so obvious (in terms of the Blaschke condition) that we omit its
consideration.

31. Growth problems. It is easy to obtain upper estimates on the growth
of the Anzahlfunktion for the zeros of the derivative of a non-constant bounded
analytic function on 4(0;1), even by means of classical function-theoretic
methods. It is of interest to see to what extent the growth estimates so ob-
tained are sharp and here the results of the present paper will be seen to be
useful.

Let f denote a non-constant analytic function of modulus less than one on
4(0;1) and let

(81.1) nlr; )= > 04(2), 0<r<l,

1z|<r

and

7
Sot'lnl(t)dt i 94(0) =0

7

(31.2)  Mlrif) =Jl
fot“[mm —27(0)V]dt+ 34 0) log 7 if D£(0)>0.

By the Schwarz-Pick lemma we obtain

|f1(2)] . iz 1
(31.3) loglm*‘{J+ En(t,f’)log;;(—i;r'élog 1

lz] <7,
where the sum is taken over ¢ satisfying: |[¢| <7 and f'(¢#) =0. Hence

(31.4) Ni(rif)<log 1 +4,  0s7<1,
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A being constant. We conclude

0 _ N7 f)
(31.5) lur:_)slup “Tog (1=7) <1

We shall now see that for the class of admitted f the upper bound 1 cannot
be improved. To that end, we let p denote a positive integer =2 and we let
I" denote the Fuchsian group that leaves invariant a conformal universal cover-
ing of a compact Riemann surface of genus p. Let nr(») denote the number
of points in 4(0;7) equivalent to a with respect to I', 0 <7 <1, (& not equivalent
to 0) and let

r
(31.6) Ne(r) = melhat,  0<r<1
A well-known result [17] yields

. Nr(»r) _ 1
BLD I log(1-n) ~ 2p-2°

We know from the Schwarz-Picard existence theorem that there exists a C”
metric of constant curvature —4 on 4(0;1) less the orbit of I' containing a
having index 3 —2p at each point of the orbit. By Theorem 29.1 we see that

there exists an analytic function f of modulus less than one on 4(0;1) satisfying

. MNMlr;f) _ 2p-3
(31.8) bm —ogd=r = 2p=2

Since we may take p arbitrarily large, we see that (31.5) is the best possible
inequality of its kind.

The example that we have produced gives another solution to the problem
of Bloch which asks whether the derivative of a non-constant bounded analytic
function on 4(0;1) is necessarily of bounded type. The problem was settled
negatively by Frostman [6] who exhibited a Blaschke product the derivative
of which fails to have the Fatou property. The work of the present section
supplements the solution of Frostman in that it yields quantitative information
on Ni(7; f) for non-constant bounded analytic f on 4(0;1).

I have not determined whether there exists such an f for which

N1<7';f)

r-l "‘k)g( 1 :;:) =

1.
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It would also be of interest to study the dependence of Ni(7;f—az) on a.
One must not expect that an arbitrary non-negative integer-valued divisor
o on 4(0;1) is necessarily the ramification divisor of a non-constant bounded

analytic function f on 4(0;1) even if with ne(r) = >)a(z) and Ny(»)

1zl<r

=j t 'my(t)dt we have
Ty

: Na( 7)
(31.9) lim sup o 7y <L

In fact, suppose that g is an analytic furction on 4(0;1) which is locally of
island type with respect to the finite plane and is ramified precisely at the
antecedents of m +in, m and »n being integers, and the multiplicity of g at
each such point being 2. By Bloch’s theorem we obtain the inequality

lz] <1,

where B is a positive number. We take 2=09,. From (31.10) we see that
(31.5) holds, g replacing . However there does not exist a bounded analytic
function & on 4(0; 1) satisfying 9p=0. Otherwise from Theorem 25.1 (b) we

should infer that the finite plane possesses a hyperbolic metric.

32. The property of S-K metrics given in §10 (e¢) permits us to obtain
information concerning analytic functions on 4(0;1) which do not grow too
rapidly. Let A and a be positive numbers. Let f be analytic on 4(0;1) and
not constant, and let f satisfy

(32.1) I fDl< A -12zD7% lz1<1,

It follows from §10 (e) that for each », 0<% <1, there exists a non-trivial S-K

metric A, on 4(0;1) which has a zero of order ¢ 'yn(z; ) at a zero z of f.
Now suppose that x is an S-K metric on {Rez>0}. We follow the con-

vention put down earlier and use u for the scale associated with the identity

map on {Rez>0} as well.. Now log « is subharmonic and
(32.2) u(2) <(2Re2)7}, Re z>0,

the right-hand side of the inequality being the scale of the hyperbolic metric
corresponding to the identity map on {Rez>0}. If, in particular, =21, T]
where T is a univalent conformal map of {Rez>0} onto 4(0;1), then the
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subharmonicity of log # and (32.2) imply

l — —
(32.3) SialT(w); 1] log‘f—wzz—g;’jjﬂ—}i + oo, Rez>u, >0,

the summation being taken over w satisfying f[7T(w)]=0, Rew>u,. On
returning to 4(0; 1), we see that the zeros of the restriction of f to a disk
whose frontier is an oricycle tangent to the unit circumference satisfy the
Blaschke condition. What has been said for f holds as well for f— ¢ where ¢

is an arbitrary complex constant. We are led at once to

THEOREM 32.1: The restriction of f to a disk whose frontier is an oricycle

tangent to the unit circumference is a function of bounded type.

We need hardly remark that the derivative of a bounded analytic function
on 4(0;1) satisfies (32.1) with a=1.

Theorem 32.1 has the following consequence :

Let - N(7) denote a non-decreasing function on {0 <7<1} taking non-
negative integral values, N(0) =0, and IV being continuous on the left. If for

every divisor O taking non-negative integral values on 4(0;1) and satisfying

(32.4) S7 3(2) = N(»)

|zi<r

there exists f satisfying (32.1) for some A and a for which n(z; f) =2(2) when
2(2)>0 and f(2) =0 when 9(z) =0, then

1
(32.3) j FIN(dE< + 0, 0<n<l.

33. The class C of the ramification divisors of functions g analytic on
4(0;1), g satisfying (32.1) with a=1, may be bracketed as follows. Let A
denote the set of the ramification divisors of the non-constant bounded analytic
functions on 4(0;1). Let 0<% <1 and let By denote the class of divisors 9 on
4(0;1) with non-negative integral values for which there exists a C" conformal
metric of constant curvature —4 on 4(0;1) —{o(2) >0} with index - #o(z)
for z satisfying 8(z) >0. Then

(33.1) ASECC M Ba

0<N<1

The strong inclusion on the left follows from §31. It would be of interest to
determine whether the inclusion on the right side of (33.1) is strong.
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34. The argument of §32 may be made to yield a general oricycle property
of arbitrary Fuchsian or Fuchsoid groups. We recall that if I" is an arbitrary
Fuchsian or Fuchsoid group acting on 4(0;1), then the set of orbits I'(z)
={t(z)|r €I} may be so endowed with a conformal structure that z >1(z) is
rendered a conformal map. Such a conformal structure is essentially unique.

Thanks to the results of §14 and the argument of §32 we conclude

THEOREM 34.1: The restriction of z—1(z) to the interior of an oricycle

tangent to C(0;1) is a Lindelofian conformal map.

35. The following theorem relates the ramification divisor of a meromorphic
function totally ramified over a finite number of points to ramification divisors
for bounded analytic functions. The notation [a] will be employed to denote

the integral part of a real number «.

TueoreMm 35.1: Let @i, ..., an denote n distinct points of the extended
plane. Let v, ..., v, be real numbers, »,<1, k=1,..., n, satisfying
See>2.
)

Let f denote a non-constant meromorphic function on 4(0;1) satisfying n(z; f)
>2 when f(z)=ar, k=1, ..., n Let O denote the divisor defined by

n(z; f)—1, when f(2)xay, ..., an;

a(z)={
n(z; )1 =) — 1, when f(2)=as..

If 9=0, then o is the ramification divisor of some non-constant bounded analytic
Junction on 4(0;1).

The proof is very simple. Let 12 denote the Schwarz-Picard metric on the
extended plane less {ai, . . ., @,/ with index »x at ar. The negative of the
divisor of [, 7] where 7 is the restriction of f to {m(z;f) =1} dominates o.
It follows that there exists a C" conformal metric of constant curvature —4
on 4(0;1) —{2(z) >0} with index —92(z) when 9(z)>0. The theorem now
follows from Theorem 29.1.

A similar argument establishes

THEOREM 35.2: Let f denote a conformal map of 4(0;1) into a torus T

which has the preperty that there exists a< T such that n(z; f)>1 when f(z)
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=a. Then if 0<9<1, the divisor o defined by

w(z; f)—1, when f(2)*a;

o(2) =
(e {n(z;f)(l—-n)——l, when f(2) = a,

is the ramification divisor of a bounded analytic function on 4(0;1) provided
that 2=0.

Chapter V. The Bloch constant exceeds vV 3/4.

36. Before we turn to the proof of the theorem stated in the heading, it
will be convenient to recall some basic facts concerning the Bloch constant as
well as the argument of Ahlfors which led to the result: the Bloch constant
is at least v3/4. Let f denote a non-constant analytic function on a given
Riemann surface F. By the Bloch number b(f) of f we understand the supre-
mum of the set of positive 7 for whxch there exists a region !J(CF) which f
maps univalently onto a disk of radxus 7. By the Bloch constant B we under-
stand the infimum of the set of (/) when all f analytic on 4(0;1) and satis-
fying f'(0) =1 are taken into account.

In showing that B>V 3/4 Ahlfors proceeded (essentially) in the following
way. For each f analytic on 4(0;1) and satisfying f/(0) =1, a function py
with domain 4(0;1) is introduced. When f/(z) =0, ps(z) =0. When f/(z) %0,
then ps(z) is the supremum of the set of positive numbers » such that the
restriction of f to the component 2 of f~'[4(f(z);7)] containing z maps 2
univalently onto 4(f(z);7). In the latter case, ps(2) is actually the maximum

of such 7 and there exists ¢ satisfying |c — f(2)| = ps(z) such that
(36.1) ort) < | f(8)—ecl, te Q2.

Further ps is continuous on 4(0;1). An essential part of Ahlfors’s argument
is the fact that when b(f)< + « and V3b(f) <A< + o

AIf'I

is (in our present terminology) the scale for an S-K metric on 4(0;1) relative
to the identity, the definition at a point z where f/(z) =0 being taken as the
limit at the point. The inequality (36.1) and the restriction on A are the basis
for the support property [cf. §6 A2] at the points z where f'(z)=%0. The
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inequality B>y 3/4 follows on noting that the value of (36.2) at 0 is no greater
than one. This, in brief, is Ahlfors’s argument.

Suppose that B=v3/4. It is well known that there exists a function g
analytic on 4(0;1), g(0) =0, g'(0) =1, for which #(g) =B. For g we should
conclude that

Alg| A g

(36. 3) mv 2 ’

is the scale with respect to the identity of an S-K metric on 4(0;1). The con-
vention made in connection with (36.2) holds where g'(z) =0. Further

33/ 4

(36.4) oY (A%~ pg) < BY*(A*~B) = i

It follows that (36.3) attains the value 1 at 0, hence (36.3) is equal to
(1-12z|*)"" throughout 4(0;1). Further p.(0) =B. We take (36.1) into account
for g with z=0 noting that [c|=B. Let 2 ={|g(2) —c|<B}N Q, 2 being taken

in the present context. We note that

(36.5) pg(2) < 1g(z) —¢| <B, ze 9,
and that

(36.6) 0e(2) = g(2) —¢l, ze 2 Ng0c).
Hence

(36.7) Alg] Alg

2[g—cl(A*—|g—c) = 208 (A = pg)

in £ and equality holds along an arc. Since each side of (36.7) defines in £’
a C'" conformal metric of constant curvature — 4, the two sides of (36.7) agree
on 2. That is, the left hand side of (36.7) agrees with (1—|z[*)”" on a non-

empty open subset of 4(0;1).
We are led to the conclusion that

(36.8) g=c+ AL’

where L is a conformal automorphism of 4(0;1). But (36.8) implies that
b(g) = A%/2, that is,

3{/2 33/2

4 8
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Since this is false, we conclude that B>y 3/4. Another reason why (36.8)
cannot hold is furnished by the theorem of R. M. Robinson [14] which asserts

that a Bloch extremal function has a natural boundary.
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