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In rotating convection, analysis of heat transfer reveals a distinct shift in behaviour as the
system transitions from a steep scaling regime near the onset of convection to a shallower
scaling at higher Rayleigh numbers (Ra), irrespective of whether the top and bottom plates
have stress-free, no-slip or no boundaries (homogeneous convection). However, while
most research on this transition focuses on no-slip boundary conditions, geophysical and
astrophysical flows commonly involve stress-free and homogeneous convection models as
well. This study delves into the transition from the rapidly rotating regime to the non-
rotating one with both stress-free and homogeneous models, leveraging direct numerical
simulations (DNS) and existing literature data. Our findings unveil that for stress-free
boundary conditions, the transitional Rayleigh number (RaT ) exhibits a relationship
RaT ∼ Ek−12/7, whereas for homogeneous rotating convection, RaT ∼ Ek−2 Pr , where
Ek denotes the Ekman number, and Pr denotes the Prandtl number. Both of these
relationships align with the data obtained through DNS.
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1. Introduction
Rotating convection serves as a fundamental paradigm in fluid dynamics, where the
interplay between buoyancy-driven flow and rotation gives rise to intricate patterns
and behaviours. This phenomenon is relevant across a wide range of natural and
engineering systems, including atmospheric and oceanic circulation (Atkinson & Zhang
1996; Marshall & Schott 1999), as well as the dynamics of planetary interiors (Aurnou
et al. 2015; Wicht & Sanchez 2019). In engineering applications, it plays a critical
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role in rotating machinery cooling systems, industrial heat exchangers and chemical
reactors, where efficient thermal management is essential (Incropera & DeWitt 1996).
Among the various manifestations of rotating convection, rotating Rayleigh–Bénard
(RRB) convection (Plumley & Julien 2019; Kunnen 2021; Ecke & Shishkina 2023)
occupies a central position, representing a canonical example that integrates buoyancy-
driven flow with rotation. In the RRB convection configuration, a horizontal layer of fluid
is confined between a heated bottom plate and a cooled top plate, subjected to constant
rotation aligned with gravity. The three main control parameters of RRB convection
are the Rayleigh number Ra ≡ αT gL3�/(νκ), the Ekman number Ek ≡ ν/(2ΩL2), and
the Prandtl number Pr ≡ ν/κ , where αT is the thermal expansion coefficient, g is the
gravitational acceleration, L is the distance between the top and bottom plates, Δ is the
temperature difference across the domain, ν is the kinematic viscosity, κ is the thermal
diffusivity, and Ω is the rotation rate. The primary system response in this set-up is the
Nusselt number (Nu), which is calculated as Nu = √

Ra Pr 〈uzθ〉A,t − 〈∂zθ〉A,t , where
uz is the vertical velocity, θ is the temperature, and 〈 · 〉A,t denotes a horizontal and
temporal average. Here, uz and θ are scaled using the free-fall velocity

√
αT gL� and

Δ. Alternatively, the Nusselt number can be written in its equivalent dimensional form as
Nu = q L/κ�, where q is the total heat flux. In recent years, major efforts have been made,
both experimentally and numerically, to approach regimes closer to those of planetary
interest, where the control parameters are often extreme (van Kan et al. 2024). For
example, in the Earth’s fluid core, Ek ≈ 10−15 and Ra ≈ 1029 (Gubbins 2001; Guervilly,
Cardin & Schaeffer 2019).

A key aspect of RRB convection research is understanding how Nu scales with the
control parameters. For a comprehensive overview of RRBconvection, including the key
scaling laws for Nu as a function of control parameters, we refer to the recent reviews by
Plumley & Julien (2019), Kunnen (2021)and Ecke & Shishkina (2023). Specifically, for
no-slip boundary conditions and fixed Ek, Nu increases steeply with Ra from its value
unity at the onset of convection towards a shallower scaling typical of the non-rotating
case. In the steep scaling regime, rotation dominates, and the Coriolis force balances
the pressure gradient, a condition known as geostrophic balance (Greenspan 1969). In
this rotation-dominated regime, the heat transfer scaling follows Nu ∼ (Ra/Rac)

ξ ∼
(Ra Ek4/3)ξ , where Rac ∼ Ek−4/3 is the critical Rayleigh number for the onset of
convection with rotation (Chandrasekhar 1961; Julien et al. 2012b; Stellmach et al. 2014).
The significant effect of Ekman pumping in no-slip boundaries can lead to a very steep
scaling relation Nu ∼ Ra3.6 Ek4.8 (Cheng et al. 2015), when Pr = 7. Cheng et al. (2015)
report a very steep scaling for the heat transport in rotating convection, expressed as Nu ∼
(Ra Ek4/3)ξ . Crucially, their main finding is that the scaling exponent ξ is dependent
on the Ekman number; specifically, as Ek decreases, ξ increases, indicating a steeper
heat transport scaling under more rapid rotation. Theoretically, in extreme parameter
regimes, a diffusion-free heat transport scaling Nu ∼ Ra3/2 Ek2 Pr−1/2 (Gillet & Jones
2006; Julien et al. 2012a), analogous to the asymptotic ultimate regime Nu ∼ Ra1/2 Pr1/2

in non-rotating Rayleigh–Bénard convection (Ahlers, Grossmann & Lohse 2009; Lohse
& Shishkina 2024), is expected in the geostrophic turbulent regime. Recently, this scaling
has been observed with no-slip boundaries at very high Ra � 1012 and very strong rotation
Ek � 10−8 (Song, Shishkina & Zhu 2024b,c).

Beyond the rotation-dominated regime, as the thermal driving force increases, the
flow transitions into a rotation-affected regime. This regime, which marks the boundary
between rotation-dominated and buoyancy-dominated regimes, has garnered considerable
attention (Kunnen 2021; Ecke & Shishkina 2023). It is suggested that this transition occurs
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when the thermal and Ekman boundary layer thicknesses become comparable, with the
transitional Rayleigh number RaT between the two regimes following the relation RaT ∼
Ek−7/4 (King et al. 2009), which is derived from δθ ∼ Nu−1 ∼ Ra−2/7 ∼ δE ∼ Ek1/2,
where δθ represents the thermal boundary layer thickness, Ra−2/7 indicates the Nu scaling
for non-rotating convection, and δE is the Ekman layer thickness. This scaling was later
refined to RaT ∼ Ek−3/2 (King, Stellmach & Aurnou 2012), based on the assumption that
Nu ∼ Ra1/3 instead of Nu ∼ Ra2/7. This transitional scaling has been validated across
various datasets under different conditions (Cheng et al. 2015; Kunnen 2021; Ecke &
Shishkina 2023; Song et al. 2024a).

The transition from the rotation-dominated to the buoyancy-dominated regime is a
fundamental aspect of rotating convection. Previous investigations have focused primarily
on cases with no-slip boundary conditions, where the transition is thought to be governed
by Ekman boundary layer dynamics. However, this transition is equally significant in
systems with stress-free boundary conditions (Stellmach et al. 2014; Kunnen et al.
2016; Plumley et al. 2017; Maffei et al. 2021) and in homogeneous convection without
boundaries (Toselli, Musacchio & Boffetta 2019), where Ekman boundary layers are
absent. Note that the study utilizing an asymptotic/quasi-geostrophic model (e.g. Maffei
et al. 2021), which assumes rapid rotation, is not designed to capture the full transitional
dynamics observed in direct numerical simulations (DNS) formulations. These simplified
set-ups – stress-free boundaries and homogeneous convection – provide valuable models
for studying rotating fluids in geophysical and astrophysical contexts. In this context, the
theory proposed by Cheng et al. (2015) is appealing because it does not involve Ekman
layers. The theory empirically defines RaT as the intersection between two heat transfer
scaling laws: the steep scaling Nu ∼ (Ra/Rac)

ξ , typical for rapidly rotating convection,
and the shallow non-rotating scaling Nu ∼ Raα . By equating these trends, the transition
is predicted as RaT ∼ Ek−4ξ/3(ξ−α). Using ξ = 3, the characteristic scaling exponent
in rapidly rotating convection with no-slip boundaries (King et al. 2012; Song et al.
2024c), and α = 1/3, the typical exponent for non-rotating Rayleigh–Bénard convection
in the classical regime (Malkus 1954; Ahlers et al. 2009), Cheng et al. (2015) derived
RaT ∼ Ek−3/2 as well. Motivated by this framework, we employ DNS to study the
transition under stress-free boundary conditions, and incorporate data from homogeneous
rotating convection provided by Toselli et al. (2019). Beyond investigating the transition
through Nu, we also show that the transition can be characterized and predicted using the
Reynolds number (Re = uL/ν), where u is the root mean square velocity. This additional
system response offers further confirmation of the same transitional behaviour.

2. Numerical details
The current DNS employ the Boussinesq approximation to model RRB convection in
a fluid confined between two horizontal plates. The system is subjected to a constant
angular velocity Ω around the vertical axis z, with gravitational acceleration g = −gez ,
where ez is the unit vector in the vertical direction. The reference scales used in this
study are the height of the domain L , the temperature difference between the plates Δ,
and the characteristic free-fall velocity U f f = √

αT gL�. The dimensionless variables for
temperature θ , velocity u, pressure p, and time t are defined based on these scales. The
resulting dimensionless governing equations for the incompressible fluid flow are

∇ · u = 0, (2.1)
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∂u
∂t

+ u · ∇u = −∇ p +
√

Pr

Ra
∇2u + θez − 1

Ek

√
Pr

Ra
ez × u, (2.2)

∂θ

∂t
+ u · ∇θ = 1√

Ra Pr
∇2θ. (2.3)

To solve the governing equations, the energy-conserving second-order finite-difference
code AFiD was employed (Verzicco & Orlandi 1996; van der Poel et al. 2015; Zhu et al.
2018). The code was parallelized using a two-dimensional pencil domain decomposition
strategy (van der Poel et al. 2015) and GPU acceleration (Zhu et al. 2018) for large-scale
DNS. The simulations applied stress-free boundary conditions with a constant temperature
at the top and bottom plates, along with periodic boundary conditions in both horizontal
directions.

The grid points were distributed using a Chebyshev-like scheme in the wall-normal
(z) direction, clustering points near the top and bottom plates, while a uniform distribution
was used in the periodic (x and y) directions. This arrangement ensures that at least 10
grid points are always present within the thermal boundary layer.

Additionally, to assess the grid resolution used in the DNS, we calculated the
mean dimensionless Kolmogorov microscale, defined as η/L = (ν̃3/〈ε̃〉V )1/4, where
ν̃ = √

Pr/Ra is the dimensionless viscosity, and 〈ε̃〉V is the volume- and time-averaged
dimensionless kinetic energy dissipation rate. The maximum ratio of the mesh size to the
mean Kolmogorov microscale remains below 2.2 in all simulations, a threshold that has
been found empirically to be acceptable in rotating convection simulations (Verzicco &
Camussi 2003; Shishkina et al. 2010; Scheel, Emran & Schumacher 2013).

All simulations were performed using Pr = 1 and were run long enough to achieve
saturation of thermal and kinetic energies, ensuring statistically steady flow states, and
allowing the inverse energy cascade to saturate, particularly in cases exhibiting large-scale
vortices with no evidence of secular growth. Moreover, ensemble averages were taken over
200 free-fall time units after reaching the saturation state.

To ensure accuracy, the convergence of Nu was thoroughly checked across the entire
domain. The maximum relative error in Nu, calculated using five different methods
(as outlined in Stevens, Verzicco & Lohse 2010), was kept below 1 %. The explored
parameter range, along with the corresponding grid resolution and transport parameters
in the present DNS of stress-free RRBconvection, is summarized in Appendix A.

3. Scalings and flow structures in DNS with stress-free boundaries
Inspection of the mid-plane horizontal cross-section contours of fluctuating temperature
(figure 1), vertical vorticity (figure 2) and the vertical cross-section of vertical velocity
(figure 3) for varying Ra ∈ [1.3 × 108, 5 × 1010] at a fixed Ek = 5 × 10−6 with stress-
free boundaries suggests that the flow can be classified qualitatively into several distinct
regimes. While some studies adopt a detailed classification that includes cells, Taylor
columns, plumes, geostrophic turbulence (where large-scale vortices form), and eventually
regimes where rotation becomes negligible, our work focuses primarily on the transition
between rotation-dominated and buoyancy-dominated states (Sprague et al. 2006; Julien
et al. 2012b). The cellular regime is characterized by columns that extend across the
fluid layer, formed due to the dominance of strong rotational effects over buoyancy
forces. These cells are encased in ’sleeves’ of cold fluid, which act as insulating layers
and limit interaction between adjacent columns. In contrast, the Taylor columns regime,
characterized by vertically coherent columnar structures, is typically observed for fluids
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Ra = 11.11 Ra = 34.2 Ra = 59.85

Ra = 85.49 Ra = 427.49 Ra = 598.49

Ra = 854.98 Ra = 2564.96 Ra = 4274.94

Figure 1. Horizontal cross-sections of the instantaneous contours of fluctuating temperature θ for stress-free
RRB convection at the mid-plane is shown for varying Ra, with fixed Ek = 5 × 10−6 and Pr = 1. Here,
red (blue) denotes positive (negative) temperature fluctuations. The nine plots correspond to a range of the
supercriticality parameter, 10 < R̃a ≡ Ra Ek4/3 < 4275.

with Pr > 1 (Julien et al. 2012b). However, as Ra increases, the insulating effect
diminishes, leading to greater interaction between the columns. This reduction in column
length signals the transition to the large-scale vortex regime, where vortices intensify
and occupy the entire domain (Julien et al. 2012b; Favier, Silvers & Proctor 2014;
Guervilly, Hughes & Jones 2014; Rubio et al. 2014; Favier, Guervilly & Knobloch 2019;
Aguirre Guzmán et al. 2021; Maffei et al. 2021; De Wit, Van Kan & Alexakis 2022).
As Ra continues to rise, the large-scale vortices transition from a cyclone–anticyclone
dipole structure to a cyclonic structure within an anticyclonic sheath, which eventually
disappears. The flow then transitions to a buoyancy-dominated turbulence regime, where
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Figure 2. Horizontal cross-sections of the instantaneous contours of vertical vorticity ωz for the same flow
conditions as in figure 1. Here, red (blue) denotes positive (negative) vorticity.

the influence of rotation becomes very weak or negligible, and the flow behaviour aligns
with classical non-rotating Rayleigh–Bénard convection.

An overview of the characteristics of RRB convection from the beginning of the
onset can also be seen in the Nu measurements, covering a wide range of Ra and Ek
values (see figure 4a). The rapid rise from the conduction value Nu = 1 represents the
nonlinear growth from onset and a region of rotation-dominated dynamics at Ra > Rac,
where Rac is the critical Rayleigh number for onset. As demonstrated by these data, the
range of Ra spanned in this rotation-dominated region increases with decreasing Ek.
The scaling behaviour of Nu in the rotation-dominated regime provides insights into
how heat transport is influenced by the interplay of buoyancy and rotational forces. For
stress-free boundary conditions, the heat transport follows the scaling Nu ∼ Ra3/2 Ek2 in
a wide range in the rotation-dominated regime, as shown in figure 4(b). This scaling is
consistent with predictions for the diffusion-free regime, where thermal and momentum
transport are not constrained by diffusivity (Stevenson 1979; Gillet & Jones 2006; Julien
et al. 2012a, 2016; Stellmach et al. 2014; Cheng & Aurnou 2016; Plumley et al. 2017;
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Figure 3. Vertical cross-sections of the instantaneous contours of vertical velocity uz for the same flow
conditions as in figure 1. Here, red (blue) denotes positive (negative) velocity.

Bouillauta et al. 2021; Maffei et al. 2021; Oliver et al. 2023; van Kan et al. 2024; Song
et al. 2024c). Notably, the 3/2 scaling in the stress-free case can be observed at relatively
high Ek (Ek = 5 × 10−7) (Julien et al. 2012a; Stellmach et al. 2014; Plumley et al. 2017),
in contrast to the no-slip boundary condition cases, where the 3/2 scaling is limited
to extremely low Ek (Ek = 5 × 10−9) (Song et al. 2024c). As Ra increases further at
constant Ek, the balance of rotation and buoyancy shifts, such that Nu approaches the
non-rotating convection curve Nu ∼ Ra1/3, the so-called classical regime (Ahlers et al.
2009; Lohse & Shishkina 2024). Note that the scaling observed in non-rotating Rayleigh–
Bénard convection with stress-free boundary conditions is comparable to that with no-slip
boundary conditions (Petschel et al. 2013).

Within the studied parameter regime – where the dynamics is governed by a balance
between the Coriolis force and buoyancy – the Nusselt number exhibits a scaling transition
from Ra3/2 to Ra1/3. This behaviour aligns with theoretical predictions and previous
experimental and numerical studies (Ahlers et al. 2009; Julien et al. 2012b; Cheng et al.
2015). Although the Ra3/2 scaling is often interpreted as indicative of a diffusion-free
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Figure 4. (a) Dimensionless heat transport (Nu − 1) and (c) momentum transport (Re) versus Ra for various
Ek, obtained from DNS of RRB convection with stress-free boundaries and Pr = 1. Black dashed lines
show non-rotating convection scalings (Nu − 1 ∼ Ra1/3, Re ∼ Ra1/2), and dotted lines indicate geostrophic
turbulence scalings (Nu − 1 ∼ Ra3/2, Re ∼ Ra11/8). Plots of (b) Nu and (d) Re, normalized by Ra1/4, as
functions of the supercriticality parameter Ra Ek4/3. Dashed lines represent rotation-dominant regime scalings
(Nu ∼ Ra3/2 Ek2, Re ∼ Ra11/8 Ek3/2). Here, for stress-free cases, Re is defined based on uz , as the horizontal
velocity is significantly larger than the vertical velocity due to the strong inverse energy cascade. Therefore, the
horizontal velocity does not characterize the heat transfer effectively.

regime, our analysis reveals that other dynamics remain influenced by diffusive processes.
This is evidenced by a Reynolds number scaling (see discussion below) that deviates from
the diffusion-free expectation. Hence the observed transition does not signify a complete
shift from a truly diffusion-free state to a diffusive state. Rather, for stress boundary
conditions, both of the regimes remain diffusive for the data range that we explored.

To assess whether the diffusion-free regime has been achieved conclusively for stress-
free cases, we analyse the scaling of Re as a function of Ra across various Ek. Figure 4(c)
depicts Re versus Ra, showing a steep increase in Re at lower Ra within the rotation-
dominated regime. In the range of Ra where diffusion-free heat transfer is observed, Re
follows the scaling Re ∼ Ra11/8 Ek3/2 (see figure 4d), which deviates significantly from
the diffusion-free Reynolds scaling Re ∼ Ra Ek (Aurnou, Horn & Julien 2020; Song et al.
2024c). Consequently, even though the heat transfer scaling exponent reaches 3/2, the
Reynolds number does not adhere to the expected linear Ra dependence. This indicates
that the true diffusion-free regime has not yet been realized in the stress-free DNS. In
the next section, we will demonstrate that this observed scaling can be derived from
the transitional scaling RaT . As Ra increases further,the Re scaling (again similar to
the no-slip counterpart), just like Nu, gradually approaches the non-rotating convection
relation Re ∼ Ra1/2 (Ahlers et al. 2009; Lohse & Shishkina 2024), marking the transition
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Figure 5. Transition in stress-free RRB convection: (a) Nusselt number (Nu) normalized by Ra1/3, and
(b) Reynolds number (Re) normalized by Ra1/2, are shown as functions of Ra, normalized by the transitional
Rayleigh number RaT ∼ Ek−12/7 for different Ek at fixed Pr = 1.

to buoyancy-dominated dynamics. This shift reflects a regime where buoyancy forces
dominate rotational influences, fundamentally altering the flow behaviour.

4. Transition with stress-free boundary condition
As discussed in § 1, the transition between the rotation- and buoyancy-dominated regimes
in RRB convection can be determined by equating the Nu scaling laws for the two
regimes. For the no-slip boundary condition, RaT ∼ Ek−3/2 is obtained by equating
Nu ∼ Ra3 Ek4, a typical scaling for the rotation-dominated regime, with Nu ∼ Ra1/3,
the classical scaling for the buoyancy-dominated regime. It is important to note that
if RaT exists, then the scaling relations for both Nu and Re should yield consistent
results. From Song et al. (2024c), it is known that when Nu ∼ Ra3 Ek4, the Reynolds
number follows Re ∼ Ra5/2 Ek3. In the classical regime of non-rotating Rayleigh–Bénard
convection, Re scales close to Re ∼ Ra1/2. Equating these two Re scalings also leads to
RaT ∼ Ek−3/2, reinforcing the consistency of the scaling arguments derived from both
heat and momentum transport.

Now we come to the stress-free boundary condition cases. In the rotation-dominated
regime for stress-free RRBconvection, the typical scaling is Nu ∼ Ra3/2 Ek2, while
in the buoyancy-dominated regime, the scaling is again the classical Nu ∼ Ra1/3. By
equating these two scalings, the transitional Ra is derived as RaT ∼ Ek−12/7 for stress-
free boundary conditions. This prediction for RaT is verified using DNS data for the
stress-free case, as shown in figures 5(a) and 5(b) for both Nu and Re. While the
transition RaT ≈O(10) Ek−12/7 is clearly observed at Ek = 5 × 10−6, for Ek = 5 × 10−7

and Ek = 5 × 10−8, the available data suggest a similar trend, although the range of Ra
explored is more restricted due to computational constraints, and will be verified in the
future.

It is observed that beyond RaT , both Nu and Re approach their non-rotating
values, indicating that the flow has transitioned into the buoyancy-dominated regime.
Additionally, using the scaling RaT ∼ Ek−12/7, the Re value in the rotation-dominated
regime for stress-free RRB convection can also be derived as Re ∼ Ra11/8 Ek3/2

(see figure 4c,d) by equating the scaling for the buoyancy-dominated region, where
Re ∼ Ra1/2, with the scaling of RaT .

In stress-free rotating convection, the classical diffusion-free scaling Re ∼ Ra Ek is
expected when inertial effects are negligible. However, our analysis reveals that the
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(a)
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Figure 6. Dimensionless momentum transport Re, normalized by (a) diffusion-free Ra Ek scaling and
(b) Ra11/8 Ek3/2 scaling proposed in this work, shown as a function of supercriticality R̃a = Ra Ek4/3.

formation of large-scale vortices leads to enhanced momentum transport, resulting in a
scaling Re ∼ Ra11/8 Ek3/2. Figure 6 again illustrates that at moderate Ra, the measured
Reynolds number follows the steeper Ra11/8 Ek3/2 trend, consistent with the impact of
the inverse energy cascade associated with large-scale vortices formation.

Recent numerical simulations by Oliver et al. (2023), employing an asymptotically
reduced model, suggest a scaling Re ∼ Ra1.325 based on an empirical fit to their data
within the range 40 � R̃a � 200. This exponent is close to the 11/8 = 1.375 scaling
obtained in the present work for moderately supercritical parameters.

Additionally, for a fixed rotation rate (fixed Ek) but increasing Ra, the transport
properties tend towards those in the non-rotating case, i.e. Re ∼ Ra1/2, denoting the
transition from a rotation-dominatedregime to a buoyancy-dominated regime. This
behaviour is fully captured by the scaling Re/(Ra Ek) ∼ Ra−1/2, shown as a dotted line
in figure 6(a).

Having examined the transition based on the scaling laws of Nu at different regimes in
the RRB convection framework, it is also worthwhile to consider the transition based on
the convective Rossby number Ro, which is defined as the ratio of thermal buoyancy to the
Coriolis force. It has been argued that the convection regime dominated by rotation extends
from the onset of rotating convection up to where Ro � 1 (Zhong & Ahlers 2010; Stevens,
Clercx & Lohse 2013). However, it has been shown that the Ro normalization does not
accurately define the transition. Our results, as shown in figure 7(a) for the stress-free
RRB convection cases, are consistent with previous observations (King et al. 2009; Cheng
et al. 2015). These observations suggest that distinctly smaller scale motions contribute
to convective heat transfer, and the system scale parameter Ro does not collapse the data
well.

Alternatively, local Rossby numbers are defined in the literature to predict the transition.
This is given by the expression (Christensen & Aubert 2006; Sreenivasan & Jones 2006)

Ro� = U

2Ω�
=

√
Ra

Pr
Ek

L

�
. (4.1)

This formulation was used by Cheng et al. (2015) to test whether Ro� can predict
the rotation-dominant and buoyancy-dominant transitions in RRB convection simulations.
However, in their experiments, they were unable to measure velocities directly, so they
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Figure 7. Transition in stress-free RRB convection based on Rossby number, with Nu normalized by Ra1/3

shown as a function of (a) convective Rossby number Ro and (b) local Rossby number Ro� = Ro × L/� based
on convective length scale �/L .

rewrote the equation as Ro� = √
(Ra/Pr) Ek (L/�), substituting � ∼ Ek1/3 and assuming

Re ∼ (Nu − 1)1/2 Ra1/2 Ek1/3/Pr . This formulation allowed them to collapse the data
well for Pr ≈ 7.

In contrast, our work is based on DNS, so we directly computed the time-averaged
dominant length scale from the vertical velocity spectra, and substituted it into the Ro�

formulation. As shown in figure 7(b), we find that this formulation predicts the transition
more accurately compared to Ro, even for the Pr = 1 simulations performed in this study.
For Ro� > 1, the flow approaches the buoyancy-dominated regime. It is important to note
that the depth-averaged flow is subtracted from the total flow when computing the length
scale, particularly for cases exhibiting large-scale vortices.

5. Transition in the homogeneous rotating condition
Homogeneous rotating convection refers to a simplified configuration of RRB convection
in which the effects of solid boundaries are removed. The flow occurs in an unbounded,
periodic domain and is driven by an imposed linear temperature gradient in the vertical
direction, which is parallel to both the rotational and gravitational axes. This paradigm is
also frequently employed to investigate the ultimate turbulent state predicted by Kraichnan
(1962). Such a state is theorized to arise in Rayleigh–Bénard convection when the
boundary layer contribution to heat transfer becomes negligible (Grossmann & Lohse
2004). Numerical experiments have demonstrated that this set-up exhibits the ultimate
regime both with and without rotation (Lohse & Toschi 2003; Calzavarini et al. 2005;
Toselli et al. 2019). By eliminating Ekman boundary layers, this configuration serves as a
valuable model for studying geophysical and astrophysical flows, where boundary effects
are minimal.

Additionally, while both homogeneous convection and stress-free convection eliminate
Ekman boundary layers, they differ in domain geometry. In homogeneous convection,
the absence of physical boundaries – with periodic boundary conditions applied in
all directions – removes not only Ekman layers but also any wall-induced constraints,
resulting in distinct flow dynamics. In contrast, stress-free convection remains confined
between two plates, which impose discrete vertical modes and influence the thermal
boundary layers. These geometric differences can lead to distinct transitional scaling
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Figure 8. Transition in homogeneous RRB convection: (a) Nu normalized by Ra1/2 Pr1/2, and (b) Re
normalized by Ra1/2 Pr−1/2, shown as functions of Ra, normalized by RaT ∼ Ek−2 Pr for different Pr . Data
are taken from DNS by Toselli et al. (2019).

behaviours, with stress-free convection exhibiting different scaling properties compared
to homogeneous convection.

Notably, in homogeneous rotating convection, both the rotation-dominated and
buoyancy-dominated regimes correspond to the diffusion-free ultimate regime. This dual
correspondence underscores the asymptotic nature of transport dynamics in such flows.

In the rotation-dominated regime, Nu scales as Nu ∼ Ra3/2 Ek2 Pr−1/2 (Aurnou et al.
2020; Song et al. 2024c), reflecting the diffusion-free regime scaling. In contrast, the
buoyancy-dominated regime follows the scaling Nu ∼ Ra1/2 Pr1/2 (Lohse & Toschi 2003;
Toselli et al. 2019), where buoyancy forces dominate, and the transport characteristics align
with the ultimate regime for non-rotating convection. By equating these two diffusion-free
scaling laws for Nu, RaT is derived as RaT ∼ Ek−2 Pr . Similarly, Re exhibits scaling
behaviour consistent with the diffusion-free regime. In the rotation-dominated regime,
Re ∼ Ra Ek Pr−1 (Aurnou et al. 2020; Song et al. 2024c). In the buoyancy-dominated
regime, Re ∼ Ra1/2 Pr−1/2 (Toselli et al. 2019; Lohse & Shishkina 2024), again reflecting
the asymptotic scaling of turbulent convection without rotational constraints. Equating
these two scalings for Re leads to the same relation, i.e. RaT ∼ Ek−2 Pr . The consistency
of RaT obtained from both Nu and Re confirms the robustness of this approach and
underscores the diffusion-free nature of transport in both regimes.

The scaling for RaT is validated using DNS data from Toselli et al. (2019) for
homogeneous convection at Ra = 1.1 × 107 and 2.2 × 107, Pr ∈ {1, 5, 10} and Ek ∈
[3 × 10−4, 6 × 10−6]. Figure 8(a,b) present Nu and Re from the DNS data plotted against
the predicted RaT scaling. For the available dataset, the RaT scaling demonstrates good
data collapse, suggesting that the overall dynamics is well captured by the predicted
scaling. This indicates that RaT for the homogeneous case can be estimated reliably using
the proposed theory.

It is worth noting that the primary focus of Toselli et al. (2019) was to examine heat
transfer enhancement in the weakly rotating regime. Consequently, the steep scaling
regime – expected to appear on the left-hand side of the figure (Ra Ek2/Pr < 10−4)–is
not represented in the data. Although the current dataset does not include additional points
in the transition region due to inherent limitations in the simulation parameter range, the
observed trend remains consistent with the expected transition behaviour. We acknowledge
that the present data may not fully capture the detailed dynamics of the transition, and
future investigations with an extended parameter space are planned to further elucidate
these dynamics.
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Boundary condition Rotation-dominant regime Buoyancy-dominant
regime

Transitional scaling

No-slip Nu ∼ Ra3 Ek4 Nu ∼ Ra1/3 RaT ∼ Ek−3/2

Re ∼ Ra5/2 Ek3 Re ∼ Ra1/2 RaT ∼ Ek−3/2

Stress-free Nu ∼ Ra3/2 Ek2 Nu ∼ Ra1/3 RaT ∼ Ek−12/7

Re ∼ Ra11/8 Ek3/2 Re ∼ Ra1/2 RaT ∼ Ek−12/7

Homogeneous Nu ∼ Ra3/2 Ek2 Pr−1/2 Nu ∼ Ra1/2 Pr1/2 RaT ∼ Ek−2 Pr
convection Re ∼ RaEk Pr−1 Re ∼ Ra1/2 Pr−1/2 RaT ∼ Ek−2 Pr

Table 1. Scaling for Nu and Re in the rotation- and buoyancy-dominated regimes for different boundary
conditions in RRB convection, as well as for homogeneous convection, along with the scaling of RaT ,
calculated from both Nu and Re. Note that for the no-slip and stress-free boundary conditions, the scaling
relations do not include Prandtl number dependence, as simulations were conducted at a fixed Pr = 1. For the
homogeneous case, Pr dependence is included explicitly, reflecting theoretical scalings and the dataset’s Pr
variation.

This approach – equating the transport parameter scalings (both Nu and Re) in the
rotation-dominated and buoyancy-dominated regimes–proves robust for predicting the
transitional Rayleigh number across different boundary condition set-ups within the RRB
convection framework. The different scalings for no-slip, stress-free and homogeneous
RRB convection are summarized in table 1. These scalings reflect the transition between
rotation-dominated and buoyancy-dominated regimes. It is important to note that for the
no-slip and stress-free boundary conditions, the scaling relations presented in table 1
do not include a dependence on the Prandtl number, as the simulations were conducted
and the scalings were verified at a fixed Pr = 1. In contrast, for the homogeneous case,
the scaling relations explicitly incorporate the Prandtl number, reflecting both theoretical
considerations and the variation in Pr across the dataset used in Toselli et al. (2019).

It is also important to emphasize that the homogeneous convection model adopted in this
study is an idealized framework designed to isolate the intrinsic, diffusion-free turbulent
transport mechanisms in rotating convection. Although geophysical and astrophysical
convective layers are indeed bounded – such as Earth’s liquid outer core, which is confined
between the solid inner core and the overlying mantle – the effective boundary conditions
in these systems can, in some cases, approximate stress-free or even partially free-slip
conditions rather than the strict no-slip condition often assumed in laboratory experiments.
In this regard, homogeneous convection serves as a useful reference model that strips
away the complexities introduced by boundary layers, allowing us to test and validate the
diffusion-free scaling laws in the interior flow. We stress that this approach is intended to
complement, not replace, more realistic bounded models. In practice, the insights gained
from homogeneous convection help to clarify how boundary effects modify the transition
between rotation- and buoyancy-dominated regimes in fully bounded systems.

6. Concluding remarks
This study investigated the transition between rotation- and buoyancy-dominated regimes
in RRB convection under stress-free and homogeneous boundary conditions. Using
DNS and theoretical analysis, we established the scaling for the transitional Rayleigh
number RaT , which characterizes the transition from the rotation-dominated regime tothe
buoyancy-dominated regime, as a function of control parameters in RRB convection.
The scaling for RaT was derived by equating the scaling laws for Nusselt and
Reynolds numbers, in both the rotation-dominated and buoyancy-dominated regimes.
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The scaling was consistent regardless of whether heat or momentum transport was
analysed, with RaT ∼ Ek−12/7 for stress-free boundary conditions, and RaT ∼ Ek−2 Pr
for homogeneous conditions. These findings extend the established scaling frameworks
developed for no-slip boundary conditions and offer new insights into the effects of
boundary conditions on convective transitions.

In the asymptotic limit, the reduced Rayleigh number Ra Ek4/3 is assumed to be of
order 1, which implies RaT Ek4/3 ∼ Ek−1/3 (Julien et al. 2012b; Maffei et al. 2021),
hence RaT ∼ Ek−5/3. Our DNS results for stress-free boundary conditions indicate that
the transitional Rayleigh number scales as RaT ∼ Ek−12/7, with exponent approximately
−1.71. This is in close agreement with the asymptotic prediction −5/3 ≈ −1.67, and
the small difference can likely be attributed to finite-amplitude effects and higher-order
corrections. For homogeneous (triply periodic) convection, the scaling RaT ∼ Ek−2

reflects the distinct flow dynamics that arises in the absence of physical boundaries.
The present work lays the groundwork for exploring extreme regimes relevant to

planetary and stellar environments, where stress-free or homogeneous (boundary-free)
conditions are more representative. Future research could build upon this foundation by
investigating a wider range of Prandtl numbers and rotation rates, further broadening the
applicability of these insights to the complex dynamics of rotating fluids.
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Appendix A. Numerical parameters and grid resolutions
The range of parameters investigated, together with the associated grid resolution and
transport parameters, for the current DNS of stress-free RRB convection is outlined in
Table 2.

Case no. Ek Ra R̃a Ro Γ Nx × Ny × Nz Nu Re

1 5 × 10−6 1.3 × 108 11.11 0.06 2 960 × 960 × 240 1.83 63.57
2 5 × 10−6 1.7 × 108 14.53 0.07 2 960 × 960 × 240 2.40 106.70
3 5 × 10−6 2 × 108 17.10 0.07 2 1024 × 1024 × 256 3.26 153.40
4 5 × 10−6 2.3 × 108 19.66 0.08 2 1024 × 1024 × 256 4.38 211.51
5 5 × 10−6 2.6 × 108 22.23 0.08 2 1024 × 1024 × 256 5.96 281.29
6 5 × 10−6 3 × 108 25.65 0.09 2 1024 × 1024 × 256 8.19 381.45
7 5 × 10−6 3.3 × 108 28.21 0.09 2 1024 × 1024 × 256 9.06 442.90
8 5 × 10−6 4 × 108 34.20 0.10 2 1024 × 1024 × 256 12.39 582.74
9 5 × 10−6 5 × 108 42.75 0.11 2 1152 × 1152 × 288 17.07 761.06
10 5 × 10−6 7 × 108 59.85 0.13 2 1536 × 1536 × 384 26.23 1084.40
11 5 × 10−6 1 × 109 85.50 0.16 1 864 × 864 × 432 39.82 1525.94
12 5 × 10−6 2 × 109 171.00 0.22 1 864 × 864 × 432 70.69 2649.10
13 5 × 10−6 3 × 109 256.50 0.27 1 864 × 864 × 432 94.81 3463.90
14 5 × 10−6 5 × 109 427.49 0.35 1 864 × 864 × 432 125.94 4644.18

Table 2. For caption see next page.
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Case no. Ek Ra R̃a Ro Γ Nx × Ny × Nz Nu Re

15 5 × 10−6 7 × 109 598.49 0.42 1 1024 × 1024 × 512 148.57 5398.48
16 5 × 10−6 1 × 1010 854.99 0.50 1 1024 × 1024 × 512 178.13 6588.07
17 5 × 10−6 3 × 1010 2564.96 0.87 1 1280 × 1280 × 640 297.46 12 560.09
18 5 × 10−6 5 × 1010 4274.94 1.12 1 1536 × 1536 × 960 365.17 16 443.62
19 5 × 10−6 7 × 1010 5984.92 1.32 0.5 864 × 864 × 1024 402.27 18 708.38
20 5 × 10−6 1 × 1011 8549.88 1.58 0.5 864 × 864 × 1024 463.27 22 532.78
21 5 × 10−7 4 × 109 5.87 0.03 1 864 × 864 × 432 2.76 281.02
22 5 × 10−7 4.3 × 109 17.06 0.03 1 864 × 864 × 432 3.14 324.89
23 5 × 10−7 5 × 109 19.84 0.04 1 864 × 864 × 432 4.16 438.65
24 5 × 10−7 6.3 × 109 25.00 0.04 1 864 × 864 × 432 6.63 703.30
25 5 × 10−7 8.3 × 109 32.94 0.05 1 864 × 864 × 432 10.30 1124.74
26 5 × 10−7 1 × 1010 39.69 0.05 1 1024 × 1024 × 512 13.57 1433.84
27 5 × 10−7 1.3 × 1010 51.59 0.06 1 1152 × 1152 × 576 20.13 1978.18
28 5 × 10−7 2 × 1010 79.37 0.07 1 1920 × 1920 × 960 39.90 3479.12
29 5 × 10−7 3 × 1010 119.06 0.09 0.25 512 × 512 × 512 81.92 5898.88
30 5 × 10−7 5 × 1010 198.43 0.11 1 1920 × 1920 × 960 139.11 7621.40
31 5 × 10−7 7 × 1010 277.80 0.13 0.25 512 × 512 × 512 175.77 10 983.34
32 5 × 10−7 1 × 1011 396.85 0.16 0.25 864 × 864 × 864 217.55 14 073.71
33 5 × 10−7 1.5 × 1011 595.28 0.19 0.25 960 × 960 × 960 283.78 15 982.90
34 5 × 10−7 3 × 1011 1190.55 0.27 0.25 960 × 960 × 960 462.30 25 800.00
35 5 × 10−8 7 × 1010 12.89 0.01 0.5 1152 × 1152 × 576 1.57 154.64
36 5 × 10−8 8 × 1010 14.74 0.01 0.25 480 × 480 × 640 2.00 503.79
37 5 × 10−8 9 × 1010 16.58 0.02 0.25 480 × 480 × 640 2.47 770.47
38 5 × 10−8 1 × 1011 18.42 0.02 0.25 480 × 480 × 640 3.57 805.27
39 5 × 10−8 1.1 × 1011 20.26 0.02 0.25 576 × 576 × 768 4.17 965.57
40 5 × 10−8 1.2 × 1011 22.10 0.02 0.25 576 × 576 × 768 4.88 1119.23
41 5 × 10−8 1.3 × 1011 23.95 0.02 0.25 576 × 576 × 768 5.61 1296.02
42 5 × 10−8 1.5 × 1011 27.63 0.02 0.25 576 × 576 × 768 7.25 1704.47
43 5 × 10−8 1.7 × 1011 31.31 0.02 0.25 576 × 576 × 768 8.72 2110.53
44 5 × 10−8 2 × 1011 36.84 0.02 0.25 768 × 768 × 768 11.01 2632.32
45 5 × 10−8 3 × 1011 55.26 0.03 0.25 768 × 768 × 768 19.39 4325.23
46 5 × 10−8 4 × 1011 73.68 0.03 0.25 768 × 768 × 768 30.02 6129.86
47 5 × 10−8 5 × 1011 92.10 0.04 0.125 480 × 480 × 960 46.92 8761.22
48 5 × 10−8 7 × 1011 128.94 0.04 0.125 480 × 480 × 960 89.61 13 450.07
49 5 × 10−8 1 × 1012 184.20 0.05 0.125 512 × 512 × 1024 164.24 23 131.98
50 5 × 10−8 2 × 1012 368.40 0.07 0.125 512 × 512 × 1024 349.22 37 891.22
51 5 × 10−8 3 × 1012 552.60 0.09 0.25 1920 × 1920 × 1920 574.52 53 135.11
52 5 × 10−8 5 × 1012 921.01 0.11 0.125 768 × 768 × 1536 936.30 77 889.37

Table 2. (cntd). Summary of the parameters considered in this study: Ek is the Ekman number, Ra is the
Rayleigh number, R̃a ≡ Ra Ek4/3 is the reduced Rayleigh number, Ro = √

Ra/Pr Ek is the convective
Rossby number, Γ is the ratio of the width to the height of the computational domain, Nu is the Nusselt
number, and Re is the Reynolds number, computed from the root mean square of the vertical component of
velocity. The Prandtl number Pr is fixed at 1 for all simulations.

REFERENCES

AGUIRRE GUZMÁN, A.J., MADONIA, M., CHENG, J.S., OSTILLA-MÓNICO, R., CLERCX,
H.J.H. & KUNNEN, R.P.J. 2021 Force balance in rapidly rotating Rayleigh–Bénard convection.
J. Fluid Mech. 928, A16.

AHLERS, G., GROSSMANN, S. & LOHSE, D. 2009 Heat transfer and large scale dynamics in turbulent
Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503–537.

1011 A7-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

37
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.379


V. Kannan and X. Zhu

ATKINSON, B.W. & ZHANG, J.W. 1996 Mesoscale shallow convection in the atmosphere. Rev. Geophys.
34 (4), 403–431.

AURNOU, J.M., CALKINS, M.A., CHENG, J.S., JULIEN, K., KING, E.M., NIEVES, D., SODERLUND,
K.M. & STELLMACH, S. 2015 Rotating convective turbulence in Earth and planetary cores. Phys. Earth
Planet. Inter. 246, 52–71.

AURNOU, J.M., HORN, S. & JULIEN, K. 2020 Connections between nonrotating, slowly rotating, and rapidly
rotating turbulent convection transport scalings. Phys. Rev. Res. 2 (4), 043115.

BOUILLAUTA, V., MIQUELA, B., JULIEN, K., AUMAÎTRE, S. & GALLET, B. 2021 Experimental observation
of the geostrophic turbulence regime of rapidly rotating convection. Proc. Natl Acad. Sci. USA 118 (44),
e2105015118.

CALZAVARINI, E., LOHSE, D., TOSCHI, F. & TRIPICCIONE, R. 2005 Rayleigh and Prandtl number scaling in
the bulk of Rayleigh–Bénard turbulence. Phys. Fluids 17 (5), 055107.

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
CHENG, J.S. & AURNOU, J.M. 2016 Tests of diffusion-free scaling behaviors in numerical dynamo datasets.

Earth Planet. Sci. Lett. 436, 121–129.
CHENG, J.S., STELLMACH, S., RIBEIRO, A., GRANNAN, A., KING, E.M. & AURNOU, J.M. 2015

Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys. J. Intl 201 (1),
1–17.

CHRISTENSEN, U.R. & AUBERT, J. 2006 Scaling properties of convection-driven dynamos in rotating
spherical shells and application to planetary magnetic fields. Geophys. J. Intl 166 (1), 97–114.

DE WIT, X.M., VAN KAN, A. & ALEXAKIS, A. 2022 Bistability of the large-scale dynamics in quasi-two-
dimensional turbulence. J. Fluid Mech. 939, R2.

ECKE, R.E. & SHISHKINA, O. 2023 Turbulent rotating Rayleigh–Bénard convection. Annu. Rev. Fluid Mech.
55 (1), 603–638.

FAVIER, B., GUERVILLY, C. & KNOBLOCH, E. 2019 Subcritical turbulent condensate in rapidly rotating
Rayleigh–Bénard convection. J. Fluid Mech. 864, R1.

FAVIER, B., SILVERS, L.J. & PROCTOR, M.R.E. 2014 Inverse cascade and symmetry breaking in rapidly
rotating Boussinesq convection. Phys. Fluids 26 (9), 096605.

GILLET, N. & JONES, C.A. 2006 The quasi-geostrophic model for rapidly rotating spherical convection
outside the tangent cylinder. J. Fluid Mech. 554, 343–369.

GREENSPAN, H.P. 1969 The Theory of Rotating Fluids. Cambridge University Press.
GROSSMANN, S. & LOHSE, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of

plumes. Phys. Fluids 16 (12), 4462–4472.
GUBBINS, D. 2001 The Rayleigh number for convection in the Earth’s core. Phys. Earth Planet Inter.

128 (1–4), 3–12.
GUERVILLY, C., CARDIN, P. & SCHAEFFER, N. 2019 Turbulent convective length scale in planetary cores.

Nature 570 (7761), 368–371.
GUERVILLY, C., HUGHES, D.W. & JONES, C.A. 2014 Large-scale vortices in rapidly rotating Rayleigh–

Bénard convection. J. Fluid Mech. 758, 407–435.
INCROPERA, F.P. & DEWITT, D.P. 1996 Fundamentals of Heat and Mass Transfer. 4th edn. John Wiley &

Sons, Inc.
JULIEN, K., AURNOU, J.M., CALKINS, M.A., KNOBLOCH, E., MARTI, P., STELLMACH, S. & VASIL, G.M.

2016 A nonlinear model for rotationally constrained convection with Ekman pumping. J. Fluid Mech. 798,
50–87.

JULIEN, K., KNOBLOCH, E., RUBIO, A.M. & VASIL, G.M. 2012a Heat transport in low-Rossby-number
Rayleigh–Bénard convection. Phys. Rev. Lett. 109 (25), 254503.

JULIEN, K., RUBIO, A.M., GROOMS, I. & KNOBLOCH, E. 2012b Statistical and physical balances in low
Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4–5), 392–428.

VAN KAN, A., JULIEN, K., MIQUEL, B. & KNOBLOCH, E. 2024 Bridging the Rossby number gap in rapidly
rotating thermal convection. arXiv preprint arXiv: 2409.08536.

KING, E.M., STELLMACH, S. & AURNOU, J.M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard
convection. J. Fluid Mech. 691, 568–582.

KING, E.M., STELLMACH, S., NOIR, J., HANSEN, U. & AURNOU, J.M. 2009 Boundary layer control of
rotating convection systems. Nature 457 (7227), 301–304.

KRAICHNAN, R.H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11),
1374–1389.

KUNNEN, R.P.J. 2021 The geostrophic regime of rapidly rotating turbulent convection. J. Turbul. 22 (4–5),
267–296.

1011 A7-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

37
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.379


Journal of Fluid Mechanics

KUNNEN, R.P.J., OSTILLA-MÓNICO, R., VAN DER POEL, E.P., VERZICCO, R. & LOHSE, D. 2016 Transition
to geostrophic convection: the role of the boundary conditions. J. Fluid Mech. 799, 413–432.

LOHSE, D. & SHISHKINA, O. 2024 Ultimate Rayleigh–Bénard turbulence. Rev. Mod. Phys. 96 (3), 035001.
LOHSE, D. & TOSCHI, F. 2003 Ultimate state of thermal convection. Phys. Rev. Lett. 90 (3), 034502.
MAFFEI, S., KROUSS, M.J., JULIEN, K. & CALKINS, M.A. 2021 On the inverse cascade and flow speed

scaling behaviour in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 913, A18.
MALKUS, W.V.R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A

225 (1161), 196–212.
MARSHALL, J. & SCHOTT, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys.

37 (1), 1–64.
OLIVER, T.G., JACOBI, A.S., JULIEN, K. & CALKINS, M.A. 2023 Small scale quasigeostrophic convective

turbulence at large Rayleigh number. Phys. Rev. Fluids 8 (9), 093502.
PETSCHEL, K., STELLMACH, S., WILCZEK, M., LÜLFF, J. & HANSEN, U. 2013 Dissipation layers in

Rayleigh–Bénard convection: a unifying view. Phys. Rev. Lett. 110 (11), 114502.
PLUMLEY, M. & JULIEN, K. 2019 Scaling laws in Rayleigh–Bénard convection. Earth Space Sci. 6 (9),

1580–1592.
PLUMLEY, M., JULIEN, K., MARTI, P. & STELLMACH, S. 2017 Sensitivity of rapidly rotating Rayleigh–

Bénard convection to Ekman pumping. Phys. Rev. Fluids 2 (9), 094801.
VAN DER POEL, E.P., OSTILLA-MÓNICO, R., DONNERS, J. & VERZICCO, R. 2015 A pencil distributed finite

difference code for strongly turbulent wall–bounded flows. Comput. Fluids 116, 10–16.
RUBIO, A.M., JULIEN, K., KNOBLOCH, E. & WEISS, J.B. 2014 Upscale energy transfer in three-dimensional

rapidly rotating turbulent convection. Phys. Rev. Lett. 112 (14), 144501.
SCHEEL, J.D., EMRAN, M.S. & SCHUMACHER, J. 2013 Resolving the fine-scale structure in turbulent

Rayleigh–Bénard convection. New J. Phys. 15 (11), 113063.
SHISHKINA, O., STEVENS, R.J.A.M., GROSSMANN, S. & LOHSE, D. 2010 Boundary layer structure in

turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys.
12 (7), 075022.

SONG, J., KANNAN, V., SHISHKINA, O. & ZHU, X. 2024a Direct numerical simulations of the transition
between rotation- to buoyancy-dominated regimes in rotating Rayleigh–Bénard convection. Intl J. Heat
Mass Transfer 232, 125971.

SONG, J., SHISHKINA, O. & ZHU, X. 2024b Direct numerical simulations of rapidly rotating Rayleigh–Bénard
convection with Rayleigh number up to 5 × 1013. J. Fluid Mech. 989, A3.

SONG, J., SHISHKINA, O. & ZHU, X. 2024c Scaling regimes in rapidly rotating thermal convection at extreme
Rayleigh numbers. J. Fluid Mech. 984, A45.

SPRAGUE, M., JULIEN, K., KNOBLOCH, E. & WERNE, J. 2006 Numerical simulation of an asymptotically
reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141–174.

SREENIVASAN, B. & JONES, C.A. 2006 The role of inertia in the evolution of spherical dynamos. Geophys.
J. Intl 164 (2), 467–476.

STELLMACH, S., LISCHPER, M., JULIEN, K., VASIL, G., CHENG, J.S., RIBEIRO, A., KING,
E.M. & AURNOU, J.M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary
layers versus interior dynamics. Phys. Rev. Lett. 113 (25), 254501.

STEVENS, R.J.A.M., CLERCX, H.J.H. & LOHSE, D. 2013 Heat transport and flow structure in rotating
Rayleigh–Bénard convection. Eur. J. Mech. 40, 41–49.

STEVENS, R.J.A.M., VERZICCO, R. & LOHSE, D. 2010 Radial boundary layer structure and Nusselt number
in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495–507.

STEVENSON, D.J. 1979 Turbulent thermal convection in the presence of rotation and a magnetic field – a
heuristic theory. Geophys. Astrophys. Fluid Dyn. 12 (1), 139–169.

TOSELLI, F., MUSACCHIO, S. & BOFFETTA, G. 2019 Effects of rotation on the bulk turbulent convection.
J. Fluid Mech. 881, 648–659.

VERZICCO, R. & CAMUSSI, R. 2003 Numerical experiments on strongly turbulent thermal convection in a
slender cylindrical cell. J. Fluid Mech. 477, 19–49.

VERZICCO, R. & ORLANDI, P. 1996 A finite-difference scheme for three-dimensional incompressible flow in
cylindrical coordinates. J. Comput. Phys. 123 (2), 402–413.

WICHT, J. & SANCHEZ, S. 2019 Advances in geodynamo modelling. Geophys. Astrophys. Fluid Dyn. 113
(1–2), 2–50.

ZHONG, J. & AHLERS, G. 2010 Heat transport and the large-scale circulation in rotating turbulent Rayleigh–
Bénard convection. J. Fluid Mech. 665, 300–333.

ZHU, X. et al. 2018 AFiD-GPU: a versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU
clusters. Comput. Phys. Commun. 229, 199–210.

1011 A7-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

37
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.379

	1. Introduction
	2. Numerical details
	3. Scalings and flow structures in DNS with stress-free boundaries
	4. Transition with stress-free boundary condition
	5. Transition in the homogeneous rotating condition
	6. Concluding remarks
	References

