Fifth Meeting, March 11th, 1898.

Dr Morgan, Vice-President, in the Chair.

An Analysis of all the Inconclusive Votes possible with 15 Electors and 3 Candidates.

By Professor STEGGALL.

A Suggestion for a Shortened Table of Five-Figure Logarithms.

By Professor Steggall.

Note on the Centre of Gravity of a Circular Arc.

By John Dougall, M.A.

Mr Crawford's note on this subject, read at a recent meeting, reminds me of a method I gave to a class four or five years ago.

FIGURE 14.

Let AMB be an arc subtending an angle 2a at the centre O of a circle of radius a. The centre of gravity G, lies, from symmetry, on OM the line from O to the mid-point of the arc.

Let G_2 be the C.G. of an adjacent arc BNC of angle 2β .

If G be the C.G. of the whole arc AMBNC, the angle AOG is $\alpha + \beta$.

Thus $\angle G_1OG = \beta$ and $\angle G_2OG = a$. Also G_1GG_2 is a straight line.

But
$$GG_1: GG_2 = mass$$
 at $G_2: mass$ at G_1
= $\beta: \alpha$

and
$$GG_1: GG_2 = OG_1 \sin \beta : OG_2 \sin \alpha$$

 \therefore OG₁ $\cdot \frac{a}{\sin a} = \text{OG}_2 \cdot \frac{\beta}{\sin \beta}$, and therefore each must be a constant.

By taking the arc indefinitely small, we get the constant equal to a the radius, and therefore $OG_1 = \frac{a \sin a}{a}$.

It is curious to observe that the result may be deduced, though not quite so simply, from the mere consideration that G is in the line G_1G_2 .

Thus
$$\triangle G_1OG_2 = \triangle G_1OG + \triangle GOG_2$$

giving $\frac{\sin(\alpha + \beta)}{OG} = \frac{\sin\alpha}{OG_2} + \frac{\sin\beta}{OG_2}$;

or, if we denote the function of a, $\frac{\sin a}{OG}$, by $\phi(a)$,

$$\phi(\alpha + \beta) = \phi(\alpha) + \phi(\beta)$$

and $\phi(a) = a$ constant multiple of a, as before.