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On lower estimates for linear
forms involving certain

transcendental numbers
Keijo Vdadnédnen

Let
9,(2) = T /(1) ... (dn)
n=0

where A is rational and not an integer. The author investigates

lower estimates for example for
lxixé eet xi(xl¢k(al) + ... xk¢k(ak))| ,
where the ai are distinct rational numbers not O , and where

Ty, -..» T are integers and xé = max(1, |xi|)

1. Introduction

In 1965 Baker [1] obtained lower bounds for the expressions

A= |xlx2 cee karlFl + ...+ xka)l , B = lyFl—yl| .o Iyik—ykl N
o
where F,=e =, a, (z=121,2, ..., k} are distinct rational numbers,
and in B all o, #0 z (£=1,2, ..., k) are non-zero integers,

and Y; (=1, 2, ..., k), y > 0 are integers. He proved that there
exist positive constants Cs © depending only on k , Qs G5y eens o
such that the inequalities
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l-co(loglogx)-% -l-cl(loglogy)-%
A<z , B<y .

where zx = ma.x{ lxl| s Ix ey ka|} , are respectively satisfied only by

-

a finite number of sets of non-zero integers xl, Loy oses xk , and only by

a finite number of positive integers y . In a recent paper Mahler [4]
improved these estimates by obtaining bounds containing no unknown

constants.

In order to prove the above estimates Baker developed a new method in
which he used certain ideas of Siegel [6], [7]. The aim of the present
paper is to use this same method to obtain estimates analogous to those of

Baker, but here Fi (£ =1, 2, ..., k) are certain values of the function

«©

(1) 9, (2) = ngo 2'/(O#1) ... (xn)
with rational X # 0, 1, %2, ... .

We define
(2) fi(z) = ¢>‘(aiz) (£=1,2, ..., k) ,

where oy are distinct non-zero rational numbers. The following theorems
will be proved.

THEOREM 1. Let X # 0, #1, *2, ... be a rational number, and let
the numbers fl(l), f2(1), cees fk(l) be defined by (2), where

Oys Oy -ees Of are distinet non-zero rational numbers. There then exists
a constant ¢, = co(k, A 0s nes o:.k) > 0 such that for any integer y

the inequality

-co(loglogx)_%
(3)  l=fwy oon (=, F1(1) + oo+ (1) +y)| <= s
where x, (i =1,2, ..., k) are integers,. x! = max{1, lx,bl} and

x = ma.x{x]'_, Thy eees xf(} » can be satisfied only if x < e,

log log ¢ = 2[00/20k]h .
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THEOREM 2. Let A, 05 Oy

Theorem ). Then there exist constanis e = cl(k, Ay Oy eees uk) >0 and

cees O satisfy the hypotheses of

Z(cl] > 0 such that for any integers Yy, Yy» ---» Yy the inequality
—l—cl(loglogy)-%
(1) lyfy (V=g | - Juf (D=y | <y
can be satisfied only if the positive integer y is less than o .

Fel'dman [3] considered the function values 9y (a) , proving that if
1

53 e Ak are rational numbers

other than negative integers satisfying Ai - Aj f Z if 4 #j , then

a# 0 is a rational number and Al, A

there exists a constant ¢ = co(a, Al’ cees Ak] > 0 such that, for all

. 2 2 2
integers xl, Lpy ooy Ly 5 Y xl + x2 + ...+ xk >0,

-1-c, (1oglog(x+2)) -1
x. ¢, (@) + ... +x,¢, (o) +y| > X .
17X KA
1 k .
vhere X =ziz) ... & , T = max{1, Ixil} .
It should be noted that the arithmetic nature of the function values

¢A.(aj) has been considered in many papers. SidlovskiY [5] has
1

established the algebraic independence over § of the mm numbers
¢Ai(aj) , if Al’ A2, e An are rational numbers such that Xi ,
Ai - Aj (2, d=1,2, ..., n3; 1 # §) are not integers, and
al, a2, ey am are distinct non-zero algebraic numbers.
In the present paper we follow Baker's method. First we shall
establish certain lemmas analogous to those of [/], and we shall then prove

the above theorems using deductions analogous to the corresponding proofs
of [1].

2. Lemmas

We begin with a lemma which can be proved easily by means of a box

argument (see [7], p. 36).
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LEMMA 1. Let m, n be positive integers with n > m . Suppose that

a;; (Z=1,2, ..., my g =1,2, ..., n) are integers with absolute

values at most A . Then there are integers x

15 Tps eees Ty s not all

m/(n-m)

zero, with absolute values at most (nd) + 2, such that

;Z:jl a; ;% = 0 (¢=1,2, ..., m .
In the following let Co c3, ... denote positive constants which
depend only on K, Ay, Q.4 «ses cxk . First we should aim at a result
analogous to Baker's [1], Lemma 2.
LEMMA 2. Let Pis Py eees Ty be positive integers and let
r= ma.x{ri} >2, ry=r. Then there are polynomiale P,(z)
(£ =0,1, ..., k) , not all identically zero, with the following

properties:
1°, for each 1 , Pi(z) has degree at most r , a zero at
2 =0 of order at least r - r., and integer coefficients

with absolute values at most

%
r.!cr(logr) H
1772
2°, the approximation form
k o n
(5) R(z) = Py(z) + g P, (2)f;(z) = Z: 0,2
=1 h=0
vanishes at 3z = 0 of order at least
(6) m=r+rl+...+rk+k—[r(logr)'%],

and, for each h ,

¥
(1) loy | < pr(anyhtr (2o

Proof. Put L = max{lail} . Further, let I denote the least common
denominator of the numbers Oy Ops aens O and let Lh (h=0,1, ...)
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denote the least common denominator of the numbers

g!

(>\+1)()\+25...(}\+j)

(7 =0,1, ..., h) .

We put pij = 0 for all integral values %, j other than the
nErAr .., b+ k +1 pairs givenby 0=171 =k,
r -r. =<j=pr. For these values 71, J we define pij as integers, not

all zero, satisfying the following system of m equations;

k & . 1
h h h_h-g (h-g)?! =
(8) 1,1, + igl jgo (2205 TaTyRa)Owhegy Pig = ©
(h = 0, l, ey m—l)

Lemma 1 implies that such integers exist. Further, since

Ly (h=g)1 5
(A+1)(>\+2)...(>\+h_j)|} <e, (h=0,1, ...)

max {L s
§=0,1,...,8 \ P

(see [7]1, pp. 56-58), we can take pij with sbsolute values at most

m/(n-m)
M= {n (ZChZL)m} +2 .

We may now prove that the polymomials

r .
P(z) =7t ¥ pij(j!)—lzg (t=0,1, ..., k)

J=0
'satisfy the conditions of Lemma 2.
First consider 1°. We have m < n < 2(k+l)r and
)E

n-m>r(logr Thus

(9) M < {g(k.,l)r(gchul)2(k+1)r}2(k+1)(logp)% ‘o< cg(logp)% .

By noting that pij =0 for J<r- ri we obtain the upper bound

riM

r
rer ] <2 M(ri!)

for the absolute values of the coefficients of Pi(z) . By (9) this gives

part 1° of our lemma.
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To prove 2° we note that

P (z) + %P() (2) = ! E (n1) ™1
ol® 3 izfiz—r.h=och. 2,

where, for each % , LhZhOh denotes the left-hand side of (8). We thus

have {5) with Py = r!(h!)-loh satisfying (6). For h = m we have, by

(9),

%
l°h| < (2Lch)hM(k+l)(h+l) < c;u-r(logrl

This implies (7), and thus Lemma 2 is proved.

The function ¢)\(z) satisfies the differential equation

>

A
‘ - e | —
(10) T R PR
Thus the functions fo(z) =1, fi(z) = ¢>‘(0tiz) (¢=1,2, ..., k)
satisfy the following homogeneous system of differential equations,

Y < 0,
(11)

A A ;=
;yo + [ai_;]yi (‘[,— l, 2, evey k) .

<
)
[}

Let Yg» Yy» -5 Yy be an arbitrary solution of (11) and let

Po, Pl, T, Pk be the polynomials given in Lemma 2. We denote

k
By = L Q> Y4o=F (£=0,1, ..., k),
1=0
da’ k
Rt=S=pRt= Y% @Q.y. (=1, 2, ),
I g0 0 5, i
where, by (11),
(12) @.=@ .. +2 % g Q. .=q .. +la -2
()] 0,J-1 =z i Tod=1 > “i,J 1,4-1 T 2] i,J-1

(£=1,2, c.., k3 g=1,2, ...) .

LEMA 3. Swppose that Qio(z)$0 (i =1,2, ..., k3 L =h=k),
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and Qh+1,0 = ... = Qko = 0. Then the determinant

A (2) = det[szi. fo.

J]i,j=0,1,...,h

Proof. We follow Siegel's deduction (see [7], p. 43). If

Al(z) = 0 , then there exist W+ 1 =<h + 1 polynomials AO, cens Au
satisfying
My L s
AoQio + Aleil + ...+ Auz Qiu 0 (2 =0,1, , h)
A # 0
u

This implies that
BOR8+BlRI+...+BuR;=O; Bj=zJAJ‘ (j=0, 1, ...,Ll) ,
and, by the definition of R; >
+(1) " .=
(13) BRSM + . +BRS +BRE=0.

Thus each of the functions

k
% - -
Bo,i= X Gy (2=0,1, .., h),
1=0
where
) %2
yi,O = f%(z) . y1:’Z = Gizz e (z=0,1, ..., k; 2 =1,2, ..., h)

(here 6,;, =1 if ©=1,and §;; =0 if < # 1) satisfy the

homogeneous linear differential equation (13) of order p < h . This means

that we have constants ( - Gy s not all zero, such that

0’
h
Z‘g‘o C1Ro,0 =0 -
We now immediately obtain

Y h a2
Co(Qgg * Gyofi(a) * o + Qofy(a)) = -2 1Z£ €192

https://doi.org/10.1017/50004972700025016 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700025016

168 Kei jo Y&ananen

h 0.z
Here the left-hand side of this equation and Z CZQZOe L are entire
=1

functions, and since A f Z , we get

h a.z
=g - ® _
CO(QOO + Qlofl(z) ..+ Qkofk(z)) =0 ; Zgl €192 =0 .
The functions fl(z), cees fk(z) are algebraically independent over C(z)

(see [5]), and so €y =0 . Further a, # uj if © #J , and thus the

0.z
functions e © (i = 1,2, ..., h) are linearly independent over C(z) .

This means that C;@; =0 (1=1,2, ..., k) . Our assumption @, fo

(Z=1,2, ..., h) implies C, = 0 for all these I . This contradiction

[

means that Al(z) $ 0 , thus proving our lemma.

We now denote

id |k .
(14) Ri(z) = 7 pwi LEO Pi(Z)fi(Z)] (d=0,1,...),
obtaining
K
(15) Ri(2) = igo P, (a)f(z) (3 =0,1,...),

where the polynomials P'zlj are given by

(16) B, (=) = szij(z) (120,12, ooc k3 5=0,1, ...) .

LEMMA 4. Let the hypotheses of Lemma 2 be true, and let Pi(z)

(£ =0,1, ..., k) be the polynomials given there. Let

(1n s = [p(1og #)7F] + k(k-1)/2 ,
and suppose that r, > 28 for all i . Let the polynomials Pij(z)

(Z=0,1, ..., k; §=10,1, ...) be defiried inductively by the equations
(12) and (16). Then the determinant

A(z) = det(Pij(z))i,j=0,l,---,k o,
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and cannot have a zero at z = o ¥# 0 of order greater than s .
Proof. First we prove that P $ 0 (¢=1,2, ..., k) . The

argument here is similar to that of Baker ({1], pp. 619-620). We suppose
that exactly % of the polynomials Pi(z) (z=1,2, ..., k) do not

venish identically. Without loss of generality we may assume that these

are Pl(z), cees Ph(z) (clearly 2 =1 ). Let

A, (z) = aet (P,

1 (2))

1J 1,§=0,1,...,h °
From Lemma 3 it follows that Al(z) $0. Thus Al(z) is a polynomial of
degree at most

= (h+l)r + h(h+1)/2
On the other hand

Ry(z) R (z) ... R

Plo(z) Pll(z) .ee Plh(Z)

Phh(z)

and thus Al(z) has a zero at z = 0 of order at least

k
=m+ z (-r,) = (#1)r + & - [r(10g S IR P
1=1 =hl *

Since r, > 2g , we obtain d < do if h <k . Hence h =%k . Thus Lemma
3 implies that A(z $ 0«
The polynomial A(z) is of degree at most

dl = (k+l)r + k(k+1)/2 .

As before, we find immediately that A(z) has a zero at z = 0 of order
at least

x -
d, =m+ 'ZA (r—r ) = (k+1)r + k - [r(log r)77] .

Thus dl - d2 < g , which proves our lemma.
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LEMMA 5. Let the hypotheses of Lemma L be valid. Then there are
integers 0 < J(0) < J(1) < ... < J(k) =k + s such that

D= det(Pi,J(j)(l))i,j=o,1,.-.,k 2o

Proof. Let J(j) (4§ =0, 1, ..., k) be any integers satisfying
0=dJ(0) <J(1) < ... < J(k) . We denote

P

PO,J(O) 0,7(1) °°° PO,J(k)

P P ... P
D(zs 7(0), J(1), ..., J(k)) = | (0} "1.5(1) 1.7 (k)

P

Pra0) Pray o Pra)

From equations (12) and (16) it follows that

k
4 = 4 + -
o5 = P05 * Pogar ~H L Bij
=1
!, =4P.., + P, . - .3- .. L = cees k3 g = s e
2P} JPiJ P, G+l (oc‘bz )\)Pw (¢ =1, 2, k; 5 =0, 1 )

Let Dij denote the complement of D ‘corresponding to the element
Pi,J(j) We then obtain
z2D' (23 J(0), J(1), ..., J(k))

k
=y {J(,j)D[z; J(0), J(1), ..., J(k))

=0
k
+ D(z; J(0), ..., g(G-1), J(j)+1, J(g+1), ..., J(k)) - A igl P 7051005
k
- igl (aiz-)\)Pi ) J(j)Dij}

k
= p(z; J(0), J(1), ..., J(k)) (J(o) + Y (J(j)—ajz+)\)
J=1

k
+ D(z; 7(0), ...y J(G-1), J(F)+1, J(G+1), ..., J(k))
=0
Thus, if our lemma were not true, then for all J(k) <k +s -1 ,

o (w5 u(0), S(1), ..., J(K)) = 0.
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On the other hand, by Lemma L4, there exists T < s such that

p{ P, 0,1, ..., k) #0 .

Hence k >k + g - T , which is impossible. Thus there exist the suffixes
J(G) (4 =0,1, ..., k) such that Lemma 5 holds.

Next we prove our final lemma, which is for use in the proof of

Theorem 1.
LEMMA 6. Let the hypothesis of Lemma 4 be valid. Then we can find

(k+l)2 integers qij (i, d =0, 1, ..., k) satisfying the following

properties:

1°. detfg,.) # 0 ;

iJ

2°. for each pair i, J we have

%
(18) lqijl < ri!cg(logr) 5
3°. the inequality
k ¥ k
r(logr) -1
(19) izg qijf;(l) <y i:{ (ri!]

holds for each j =0, 1, ..., k .

Proof. Let I ©be the least common denominator of the numbers

Xs @, » and put L = max{l, |Al, loy|s ...y [oy |} . We shall

s oy

prove that the integers

k+s
G; =t P

J)(l) (7:’.7.=O’ la sers k) )

where J(j) (j =0, 1, ..., k) are given in Lemma 5, have the required

properties.
We see immediately by Lemma 5 that 1° holds.

To prove 2° we note, by Lemma 2, (12) and (16), that the coefficients

pP. . have absolute values of at most
L’J(J)

)k+s(r ,}cg(logr)% <

%
(r+xL ri!cg(logr) , k= max{2, k} .
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We see easily that this implies (18).

From our definitions of q;; and Rj it follows that

Kk
_ k+s
P2 qq;jf'(”l = TRy 4y
Further, by (1k4),
_ a9 [k . A h

and here ph = r!(h!)-lch , where Oh is defined in the proof of Lemma 2.

There it is also proved that

h+r( 1ogr)g§
3

|o (h=0,1, ...)

nl <

Using these facts and the inequality J(j) =k + s , we obtain the

following relations

Zk+s

k w0
Y -1,
iég qijf%(l)| hé? ((ra(d)) 1) r.ohl

A

JE o
Zk+s(r*!)cl§(l°gp) ’Z ((r=a(5)) 1)L
h=m 3

A

% ' e
zk+s(rz)c§(l°g”) ma(32)1) Y 3

%
< cg(r!)cg(logr) (e +ry+ ...+ rk-es]!)'l

A

¥ k
c;(r!)cg(logl") ((k+l)r)2s -IT (Pi!]-l
=0

< or(r0en)? TT (2.0 .
7 i=1 °

This completes the proof of our lemma.

3. Proof of Theorem 1

We define positive constants a, b , and ¢ by setting
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2
(20) a = (hkcGC )l6k , b =20k log a , log log ¢ = 2(log a)h .

T

where g and ¢, are constants appearing in Lemma 6. Here we assume, as

7

we may without loss of generality, that e and e are greater than 1 .
6 g

T
To prove Theorem 1 we suppose that (3), where co =b , is valid for some
ml, x2, cevy L35 Y 5, and prove that this implies
xz = max{xi, xly e, xi} <e.

Let us assume, against this, that x =z ¢ .

We define the function f of the positive integer »r by putting

5
(21) flr) = prgr{loer)®

Since (see [41, p. T3)

rre—r+g(r) 0 < g(r) < 1 ,

1 = kiJ
r 2mr Ton

we have, for r» = 2 ,

(22) 10g r - (log r')gE log a - 1 < 1o P(P) < log r - (log r)% log a .

From this it follows that there exists a positive integer »r satisfying

(23) log » > (log a)2 , flr=1) = x < f(») .
This yields

%
(2k) (r-1)t = o(1082)7 ¢ )

Further we define the integers rl, r2, e Pk by the inequalities

5
(25) (1) =08 0 cn (i =1, 2, )

Clearly, we have p = max{rl, Tps oes rk}

proving that these integers ri satisfy all the other hypotheses of Lemma
L. By (20) and (23),

We may now proceed by

- i
r(log r) ¥ > (log r)? > log a > l6k2 ,
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and thus 2s < 3r(log r)-% . By using this inequality we obtain, if
ri =28 ,
1 < <
log r;t zr; log r, = 28 log 2s
% %
< 3r(log r)~% log(3r(log r) %) < 3r(log ¥ .

This implies
37(10g7)®

r;l <e ,

which is impossible by (25). Thus we have r, > 28 for all

From (3) and (25) we obtain, by denoting

L=y+ xlfl(l) + xzfz(l) + ...+ xkfk(l) .
L k L ¥ k
(26) |z] < x—b(loglogx) : T~T-;¥ < x-b(loglogx) 2akr(logr) TT r.[r.!)_l
i=1 % =1 v *
. -r(logr)* TKF (r1)" m—b(loglogx)_%a(k+l)r(logr)}5rk '
=1 °
We have
2
r r

c=gx<pr!l <r <g

Using (20) we obtain

log r > (log log z)/2 = (log a)h >.16h .
By (21) and (22), this gives

log f(r-1) > (rbl){log(r—l)—[log(r—l))%

log a—l}
> (r-1){1log(r-1)-(10g r)é -1} > (r log r)/2 .
Now it follows from (23) that
(rlogr)/2<logx<rlogr .

Hence
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b(loglogx)-% -
o = exp(b log z(log log x) éj
> exp (br log r/L(log r)%j xp (5kr(log r)% log a)

aukr(logr)”frk

>
and this with (26) gives an inequality
¥ k
(1) o] < (208" T (no)™
1

Since the hypotheses of Lemma 6 hold, we can now use linearly

independent forms

2 q;:£;(1) (G =0, 1, .0, k)

obtained by this lemma. We can select k forms, say Ll’ L2, e

that together with L are linearly independent. We have

¥ qy e i L Ll .o Lk
o9 0 Yk £ 91 e 9k
. G v k| [Tk T Tk

and since the left-hand side of this equation is a non-zero integer, we

obtain, by (18),

k k k (logr)

1= ¥ |0 ¥ | (TT (rz!cG °5”%]

i=1 i/ ‘9 {11
1#J

+ ||kt 11£F [Pi!cg(logr)%1

=1

From the inequalities (19), (25), and (27) it follows that
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% %
r{logr) r(logr)
1 = (k+1)! [cé-lc7a-l] +(c§a-l}

From the definition of a it follows that this is impossible. This

contradiction proves our Theorem 1.

4. Proof of Theorem 2

Let a, b , and ¢ Dbe the numbers given in the preceeding section.

Let o =2kb , B = Lke , and, further, let Y be given by the equation

log log Y = (b8)2 . We shall prove that if e, = a , then (4) has no

1
solution Yy > Y . Assume, against this, that there exist integers y > Yy ,

yl’ 92, cees Yp such that

%
,Lra(1ogloay) lyf (1-y | oo luf(D)-g | < 1.

We shall prove that this leads to a contradiction.

For this purpose we denote

(28) w = ylyfy W=y, | - luf Dyl s

(29) t; = v ¥y (Dt (=12, LK)

Without loss of generality we may assume that

Since
tlt2 oo tk =Y
we find the smallest integer X < k for which

tK+ltK+2 oo tk =1.

Consider now the following system of K + 1 linear inequalities

legl = ¢, (E=21,2, oo, k1) 3 |z st 0 on B St 5
(30)

gy + oo+ Ty * Xy] <1
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for z s x2, eees Tys X . By Minkoswki's Theorem on linear forms (see [Z],
p. 151) there exist integers xl, xe, eess X,, X , not all zero, satisfying
these inequalities. From the last inequality we get

(31) LYy * e F Ty, Xy =0

Thus we have non-zero integers in the set {xl, x2, ceey xK} . Let these
be Ti01) xi(z), cees xi(l) . Clearly, 1 =171 <K . Further, from (30)
it follows that
(32) Ixi(l)zi(z) ven xi(l)l < tlt2 ven tk =y .
By (31),
0=Z Yy + .o v Ty, + Xy = Lxlfi(l) + ...+ fok(l) + X)y
T g )
- z. \yf.(L)=y.) ,
o TVl 1
which implies
K
Crlfl(l) + o+ a 1) + Xy = iéi xi(yf%(l)—yi) .

By (29) and (30),

1/k,-1 .
|zl =t s |yfy(1)-y;| =w / t; (E=1,2, ..., K.
Hence
' 17k -1
(33) lefi(l) + o+ afi(1) + X| s ko' Ty
We define «x = ... =2, =0 , and denote as before

K+1 k

xz = max{xé} . xé = max{1, |xi|} (£=1,2, ..., k) .

Then we obtain, by (32),

(34) x

1A

@@y oo mp = 20T ) e xi(l)l =y .

By (28), (33), (34), and our original hypothesis we obtain
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(35) Ixixé cee xéﬂxlfi(l) o vz fi(1) + x|
st ky-zb(loglogy)_%

We now define rational integers v; by putting v, = 2[c]xi
(z=1,2, ..., k) . Again let

v = max{v!} , v! = max{1, Ivil} (i =1,2, ..., k) .

We then have, by (35),
(36) |vjv) ... Il(vlfl(l) * o o fi(1) + V)

< k(20)k*L,2b(Lo810m) F
where V= 2[e]X .
2

Since y > vy , where 1log logy= (bB)” , we obtain

y—b(loglogy)-% = exp(-b(1o0g log y)-% log y) < exp(-b(log log y)%j
< exp(-b28) < exp(-20kB) < g2 .
The use of (34) gives
e <v=2cx =2y < By .
This implies

% & *
y-b(loglogy) < B(By)-b(loglogy) < B(By)-b(loglog(sy))
< Bv-b(loglogv)-& .
By these estimates and (36) we obtain the following inequality

%
ooy +on vt (0 £, (1) + .+ 2 f (1) + W] < p-b(loglogy)™*

Since v > ¢ , this is impossible by the previous section. Thus we have

established the truth of Theorem 2.
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