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A model of imbibition dynamics in a channel of flattened triangular cross-section is
presented, taking into account the liquid film flow in the corners of the channel. The
quasi-analytical solutions are derived on the basis of a lubrication approximation. The
analysis encompasses two imbibition scenarios corresponding to a constant flow rate or
constant pressure imposed in the wetting fluid at the inlet of the channel. In the former
case, the process starts with a liquid film flow regime in the corners that is followed by
a bulk and corner film flow regime characterised by a triple point advancing (far) ahead
of the bulk meniscus after its entrance in the channel. In the latter case, the occurrence
of the bulk and corner film flow regime is conditioned by an imposed pressure yielding
a capillary pressure at the inlet smaller than a threshold capillary pressure. Above this
threshold, the liquid film regime remains. For both imbibition scenarios under concern,
important features are highlighted, including (i) the time scalings of the dynamics of
both the triple point and apex of the bulk meniscus (when it exists), (ii) the contrast in
the positions of these two points showing that the classical Washburn approach, which
neglects the effect of the corner films, overpredicts the dynamics of the bulk meniscus.
The important consequence is an early wetting fluid breakthrough at the channel outlet
much before the bulk meniscus arrival. Comparisons with experimental data available in
the literature are provided, validating the approach proposed in this work.
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1. Introduction

Spontaneous or forced imbibition in porous media and fractures (i.e. invasion of the pore
space by a wetting fluid replacing a non-wetting one) is encountered in many engineering
processes (Morrow & Mason 2001; Cheng et al. 2015) and have concentrated thorough
analyses during the past recent years, particularly in porous media (Gilman 1996; Gu,
Liu & Wu 2021) for which experimental, theoretical and numerical investigations have
been reported (Lenormand, Touboul & Zarcone 1988; Zhang et al. 2011; Zheng, Rongy &
Stone 2015; Gu et al. 2021). Following the seminal works of Lucas (1918) and Washburn
(1921), many studies of imbibition in porous media or fractures have been carried out
employing their approach, relying on a cylindrical tube of circular cross-section as an
analog of the channel geometry at the pore scale. However, given the complex shapes of
the interconnected pathways, and due to the expected capillary effects, it is of interest to
consider the mechanism in channels of irregular shapes, as explored, for instance, in Cai
et al. (2022). Indeed, in the context of imbibition, the presence of liquid films that can
develop in corners may significantly modify the overall flow dynamics and may explain,
for instance, capillary instabilities leading to gas trapping (Rossen 2000). In this context,
the case of a capillary of square cross-section initially saturated by gas was considered
in Dong & Chatzis (1995) where the solution for the liquid film imbibition in a corner
was proposed, without considering the invasion of the channel core by the liquid bulk.
By making use of similarity solutions, it was shown that for a rectilinear channel, the
triple point position and the film volume in the corner are proportional to the square root
of time when flow is governed by capillary effects. Here, as in the rest of this work, the
triple point refers to the three-phase (liquid–gas–solid) contact point, corresponding to the
terminal point of the wetting phase in the corner. A similar simplified study in a rectilinear
channel of triangular cross-section with flow rate or pressure imposed at the inlet of the
channel was made in Amyot (2004). In accordance with experimental observations, it
was shown that the dynamics of the bulk meniscus is perturbed by that of the liquid film
in the corner. This corroborates observations reported in Lenormand & Zarcone (1984)
where flow visualisation in an etched square network of channels of roughly rectangular
cross-section was carried out. The imbibition pattern was shown to depend on the capillary
number (i.e. the ratio of viscous to capillary forces), the presence of surface roughness
and edges. Flow solutions in a model roughness pattern and in the corner films were
approximated by Poiseuille’s law in an equivalent circular channel having the same local
hydraulic diameter. Using a self-similar solution, the flow rate in the corner film was shown
to depend on the square root of time.

More recently, imbibition triggered by capillarity counterbalanced by gravity and
viscosity in a sharp corner formed by two intersecting vertical plates was investigated
numerically on the basis of the lubrication approximation (Higuera, Medina & Liñán
2008). The analysis showed that, at the early stage of the wedge imbibition, the wetting
fluid rise in the vicinity of the triple point is proportional to time and gravity has a
negligible effect. At later times, the height of the triple point was found to increase
proportionally to the cubic root of time, t, whereas the thickness is self-similar when scaled
as t−1/3. These predictions were found in good agreement with experimental observations.
A modified version of the later configuration was envisaged in Zhou & Doi (2020), with
the two walls having a curvature in the horizontal direction such that the gap between
them is a power law of the distance from their intersection. The results derived from
this work confirm that the interface height depends on t1/3 with a rising dynamics that
is quite universal, further justifying the observations reported in Ponomarenko, Quéré &
Clanet (2011). This universality was recently revisited in Wu, Duprat & Stone (2024).
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Figure 1. Sketch of the imbibition problem in a narrow channel of triangular cross-section of small aspect ratio
ε = h0/� � 1. (a) Three-dimensional view. For clarity in presentation, the aspect ratio has been expanded.
(b) Cross-sectional illustration of the area occupied by the liquid film corners. (c) Top view illustration of the
pure film regime, prior to the entrance of the bulk meniscus. (d) Top view of the bulk and corner film flow
regime after entrance of the bulk meniscus.

In Weislogel (2012) the classical Washburn approach, combined with the corner flow
model developed in Weislogel & Lichter (1998), together with scaling arguments, were
employed to predict the capillary rise in a channel. An approximate solution for the
position of the liquid column was obtained in terms of a third-order polynomial involving
the ratio between the cross-section characteristic sizes in the corner film and in the bulk
region, respectively, a parameter that needs to be identified a priori. It was outlined that
corner films contribute to an increase in the flow rate.

Among the diverse situations of disordered structures in which imbibition is of interest,
the special case where the microstructure is made of channels characterised by a small
aspect ratio (i.e. a width to height ratio much smaller than unity) is of particular relevance.
The case of a fracture resulting from the contact between rough surfaces obtained by
a manufacturing process pertains to this class of situations encountered in sealing for
example (see the work by Marie & Lasseux 2007). The prediction of the wetting fluid
invasion in such a configuration still requires an in-depth analysis, which is the focus of
the present study. In particular, it is of interest to investigate whether the contrast between
the breakthrough of the triple point and the bulk meniscus is significant or not and how the
bulk meniscus dynamics is affected by the corner film flow. As an archetypal geometry,
representative of a machined surface resulting from turning, a straight channel of triangular
cross-section with sharp side corners is considered (see figure 1). The purpose of the
present analysis is the derivation of quasi-analytical solutions for the dynamics of the bulk
meniscus, including that of the wetting liquid film in the corners that are further compared
with experimental data from Amyot (2004). To this aim, the paper is organised as follows.

The flow formulation, relying on the lubrication approximation supported by the channel
aspect ratio, together with the assumption of small capillary and Reynolds numbers
(i.e. creeping flow), is provided in § 2. In § 3, flow in the liquid films developing in the
corners of the channel is analysed. The criterion on the film width at the channel inlet
that permits the bulk meniscus entrance is derived. These features are further used in
the following sections to carry out the complete description of the imbibition process.
Section 4 is dedicated to the case where a constant flow rate is imposed at the channel inlet.
First, the regime corresponding to liquid wicking in the corner only is described in § 4.1
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where it is shown that the triple point position varies with t3/5. The threshold value of the
film width allowing the bulk meniscus entrance is derived in § 4.2. Second, the imbibition
dynamics, considering bulk and corner film flow in the whole channel, is described in § 4.3
on the basis of a quasi-static fluid–fluid interface approximation for the bulk meniscus, in
accordance with the small capillary number assumption. Matching of the solution in the
bulk region with that in the film (Lasseux & Quintard 1991; Lasseux 1995) is employed.
The dynamics of the bulk meniscus and triple point positions are shown to combine a
linear and square root dependence on time. Results in the case of an imposed flow rate
are discussed in § 4.4 and are further compared with experimental results. The case where
imbibition results from a constant pressure imposed at the channel inlet is explored in § 5,
following an approach similar to that developed in § 4. The triple point position in the pure
liquid film regime (§ 5.1) and in the regime of bulk and film coupled flow (§ 5.2) is found
to vary as t1/2. The bulk meniscus dynamics is shown to scale as the square root of time as
well and the contrast with the classical Washburn’s result (Washburn 1921) is highlighted.
Results from the models derived in the case of an imposed pressure are discussed and
compared with experimental data in § 5.3. Finally, conclusions are presented in § 6.

2. Imbibition flow model: the lubrication approximation

The focus is laid on imbibition by a wetting liquid (the β phase) of a channel initially
saturated by a gas (the γ phase), as illustrated in figure 1. Two situations are envisaged,
namely a constant flow rate (§ 4) or a constant pressure (§ 5) imposed at the inlet of
the channel. Due to the viscosity contrast between the two phases β and γ , the latter
is supposed to remain at constant pressure. The liquid flow is considered as isothermal,
Newtonian, incompressible and in the creeping regime, i.e. for a Reynolds number much
smaller than unity. No slip effects are considered at the solid–liquid interface and no body
force is supposed to apply. The channel under consideration is of triangular cross-section,
of height h0 and width 2�, as depicted in figure 1, and is y symmetric. It is assumed to
have a small aspect ratio characterised by a slope given by

ε = tan(2ψ) = h0/� � 1. (2.1)

On the basis of the above listed assumptions, it is reasonable to make use of the
lubrication approximation (Reynolds 1886). This approach allows a simplification of the
three-dimensional continuity and momentum (Stokes) equations for the β phase resulting
from their pre-integration in the z direction as detailed in Vallet et al. (2009) and Zaouter,
Lasseux & Prat (2018), which reduces the flow model to two dimensions in the region
Aβ occupied by the β phase in the (x, y) plane (see figures 1a–d). The ensuing mass and
momentum conservation equations, that are accurate at O(ε2), are given by

∇ · qβ(x, y) = 0 in Aβ, (2.2a)

qβ(x, y) = −h3( y)
12μβ

∇pβ(x, y) in Aβ. (2.2b)

Here, qβ is the vector of the local volume flow rate per unit width of the β phase, μβ
is the (constant) liquid dynamic viscosity, pβ the pressure and h( y) the aperture, that is,
the distance along z between two opposite walls of the channel. Furthermore, since β and
γ are immiscible phases, there is no mass transport nor phase change at the liquid–gas
interface, Aβγ , located at y = e(x, t) ≡ e (see figure 1c,d). Consequently, the following
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boundary condition is deduced from the mass-jump condition at Aβγ (Slattery 1999):

qβ
h(e)

= vβγ at Aβγ . (2.2c)

Here vβγ is the velocity of Aβγ in the (x, y) plane.
Special attention may be dedicated to the momentum jump boundary condition at

Aβγ . In the original three-dimensional configuration, this condition writes [( pγ − pβ)I +
μβ(∇vβγ + ∇vT

βγ )] · nβγ = σκnβγ , I being the identity tensor, pγ the (constant) gas
pressure, σ the surface tension and κ the double mean curvature of Aβγ whereas nβγ
is the unit normal vector at the fluid-fluid interface, directed from the β phase towards
the γ phase. In this expression, the scale of the pressure jump term on the left-hand side
and the capillary term on the right-hand side can be taken as σ/h, whereas the order of
magnitude of the viscous stress term is expected to be μβu/h, u being the characteristic
velocity in the β phase. If the capillary number, Ca = μβu/σ , remains smaller than ε, this
boundary condition at O(ε) reduces to the Young–Laplace relationship

pc = pγ − pβ = σκ at Aβγ . (2.2d)

Here, pc is the capillary pressure and κ can be expressed as

κ =
∂2e
∂x2(

1 +
(
∂e
∂x

)2
)3/2 + κ1. (2.2e)

The two terms in (2.2e) represent the principal curvatures. In accordance with an
approximation at O(ε), the first one is taken as the curvature in the (x, y) plane whereas
the second one is that in the plane defined by ez and the normal at Aβγ . The model given
in (2.2) has an overall accuracy at O(ε).

The imbibition process in the channel under concern may typically comprise two distinct
stages after liquid is in contact with the channel inlet. First, due to the strong capillary
effect induced by the corner, a film settles in this region of the channel, a step that is
referred to as the ‘liquid film regime’, as schematically depicted in figure 1(c). Second,
once a sufficiently large area of the channel inlet is invaded by the β phase so that the
threshold capillary pressure compatible with the formation of a bulk meniscus is reached,
the bulk meniscus may take place and the imbibition process can continue, including flow
both in the corner films and in the liquid bulk behind the bulk meniscus. This second stage,
schematised in figure 1(d), is called the ‘bulk and corner film flow regime’ in the following.
The flow modelling developed in the next sections aims at the description of both regimes.
Moreover, two different situations are envisaged, depending on the condition imposed at
the channel inlet, namely, either a constant (volume) flow rate or a constant pressure. It
should be noted that the bulk and corner film flow regime, that is conditioned by the
penetration of the meniscus in the channel, may not be possible in the case of an imposed
constant pressure at the channel inlet, as will be made clear in § 5. Note also that the initial
stage of the process, when the liquid is brought in contact with the channel inlet, is subject
to the existence of inertial effects (Quéré 1997). However, these effects are prone to rapidly
decrease and are supposed to not influence the dynamics after they vanish. Therefore, they
are ignored in the overall flow description that follows.
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In the sequel of this work, dimensionless quantities shall be used that are defined from
their dimensional counterpart with a superscript ∗ according to

λ∗ = λ
�
, (2.3a)

t∗ = vβr

�
t, (2.3b)

where λ denotes any variable having units of a length and vβr is a reference velocity given
by

vβr = σ

μβ
. (2.3c)

Moreover, dimensionless pressures are defined as

p∗ = ε�

2σ
p. (2.3d)

3. Corner liquid film

To begin with, the liquid film regime is explored (cf. figure 1b,c). To do so, it is necessary
to derive the governing equation for the evolution of the film profile between the inlet of
the channel and the triple point as schematically depicted in figure 1(c). This description
will be further used to determine the condition of entrance of the meniscus in the channel
and the dynamics in the two regimes in both cases of an imposed flow rate and imposed
pressure at the channel inlet.

3.1. Liquid film width
The liquid–gas interface, Aβγ , is parameterised by denoting φ(x, y, t) = y − e(x, t).
Calling upon the kinematic condition, which expresses the fact that a fluid particle present
at Aβγ remains at this interface during the flow, allows one to write

∂φ

∂t
+ vβγ · ∇φ = 0 at Aβγ . (3.1a)

By making use of the mass condition given in (2.2c), this can be equivalently expressed as

h(e)
∂e
∂t

+ qβx(e)
∂e
∂x

− qβy(e) = 0. (3.1b)

Since the above equation is valid at the interface, the components qβx, qβy of qβ , as well
as h, must be taken at y = e and are respectively denoted as qβx(e), qβy(e) and h(e).

Integrating the mass conservation equation given in (2.2a) between y = 0 and y =
e(x, t), and employing the Leibniz integral rule, yields the following expression of qβy(e):

qβy(e) = qβx(e)
∂e
∂x

− ∂

∂x

∫ e(x,t)

0
qβx dy. (3.1c)

Upon substitution of this result into (3.1b) and making use of the expression of the x
component of the momentum conservation equation (2.2b), yields

h(e)
∂e
∂t

− 1
12μβ

∂

∂x

(∫ e(x,t)

0
h3( y)

∂pβ
∂x

dy

)
= 0. (3.1d)

For symmetry reasons, the flow description can be restricted to the part of the channel
defined by 0 ≤ y ≤ � and taking into account its triangular shape, the local aperture, h,
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can be expressed as
h( y) = εy. (3.2)

Consequently, the cross-sectional area, S(x, t), of the liquid film in the corner can be
calculated as proposed in Kantzas, Chatzis & Dullien (1988) with the expression

S(x, t) = Ar2(x, t), (3.3a)

where the constant A and radius r(x, t) are respectively defined as (see figure 1b)

A = cos θe cos (θe + ψ)

sin (ψ)
+ ψ + θe − π

2
, (3.3b)

r(x, t) = ε

2B
e(x, t), (3.3c)

with B given by
B = cos (θe + ψ) cos (ψ). (3.3d)

In these expressions, θe is the contact angle of the liquid onto the solid wall in the presence
of the gas phase (θe ≤ π/2). Since Ca ≤ ε � 1, the interface near the triple point can
reasonably be considered as being unperturbed by the viscous effects, and therefore, the
contact angle can be taken as that at equilibrium. Moreover, a condition is required for the
liquid to spontaneously wick into the corner, that writes (Concus & Finn 1969, 1974)

ψ + θe � π

2
. (3.3e)

In the film region of interest here, the curvature in the (x, y) plane is expected to be
much smaller than κ1, and, to within an approximation at O(ε), this motivates taking κ1 as
the curvature in the ( y, z) plane that is given by

κ1 = 1
r(x, t)

, (3.4)

and hence,

pc(x, t) = σ

r(x, t)
. (3.5)

Upon making use of the definition of the capillary pressure, together with (3.3c) and the
fact that pγ is constant, this allows one to write

∂pβ
∂x

= σ

r2(x, t)
∂r
∂x
(x, t) = 2Bσ

εe2
∂e
∂x
. (3.6)

Once this last relationship is substituted back into (3.1d), this yields

e
∂e
∂t

− εBσ
6μβ

∂

∂x

(
1
e2
∂e
∂x

∫ e

0
y3 dy

)
= 0 (3.7)

or, after rearranging,

α
∂e2

∂t
− ∂2e3

∂x2 = 0, (3.8)

where

α = 36μβ
εBσ

. (3.9)

Equation (3.8) has the same form as that obtained in the case of a liquid film invading a
corner reported in Langbein (2002) where it was shown that a similarity solution can be
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employed by using the change of variable

e(x, t) = f (ζ )
xn , (3.10a)

with

ζ = x
(2t)1/(n+2) . (3.10b)

The boundary condition associated to (3.8) is such that e(x, t) = 0 at x = Lf (t), where
Lf (t) is the position of the triple point in the corner (see figure 1). To satisfy this condition,
the constant n in (3.10) must be equal to zero as shown in Mayer, McGrath & Steele (1983)
and this allows one to rewrite (3.8) as

2αζ
df
dζ

+ 6
(

df
dζ

)2

+ 3f
d2f
dζ 2 = 0. (3.11)

The associated boundary condition follows from e(Lf , t) = 0 and is given by

f (ζ ) = 0, at ζ = Lf (t)√
2t
. (3.12a)

The solution of this nonlinear differential equation requires an additional boundary
condition that can be obtained from close attention to the differential equation itself.
Indeed, at the triple point where f = 0, it follows from (3.11) that either df /dζ = 0 or
df /dζ = −(α/3)Lf . Since the former is not physically acceptable, the latter is retained:

df
dζ

= −α
3

Lf at ζ = Lf (t)√
2t
. (3.12b)

A strategy to solve (3.11) was reported by Mayer et al. (1983) that consists in proposing an
a priori form of the solution with a free parameter that is further identified by minimising
the residue after the guessed solution is substituted into the differential equation. An
alternative is to consider a simplified version of the above differential equation by
neglecting the harmonic term. This is briefly reported in Appendix A where it is shown,
however, that a simpler and more accurate approach can be used since a universal solution
to (3.11) subject to the boundary conditions given in (3.12a) and (3.12b) can be found. An
excellent approximation to this solution, written in terms of the variables x and t, can be
expressed as

e(x, t) =
αL2

f

t

(
a
(

x
Lf

)2

+ b
x
Lf

+ c

)
, (3.13a)

which, in dimensionless form, writes (see (2.3))

e∗(x∗, t∗) =
36L∗2

f

εBt∗

⎛
⎝a

(
x∗

L∗
f

)2

+ b
x∗

L∗
f

+ c

⎞
⎠ . (3.13b)
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The coefficients in these two equations are given by

a =
√

6 − 4
30

� −0.0517, (3.13c)

b = 3 − 2
√

6
30

� −0.0633, (3.13d)

c = 1 + √
6

30
� 0.1150. (3.13e)

The film regime persists until the bulk meniscus can enter the channel, which is possible
when the capillary pressure in the film present at the channel inlet is compatible with that
of a bulk meniscus at this location. This threshold value corresponds to a maximum film
width at x = 0 that is referred to as emax in the rest of the development. The methodology
to determine emax is detailed in the following section.

3.2. Bulk meniscus entrance: the maximum film width
Entrance of the bulk meniscus in the channel can occur when e(x = 0) = emax. Following
the assumption used in Weislogel, Baker & Jenson (2011) and supported by observations
in Amyot (2004), the bulk meniscus, once entered in the channel, is considered to adopt
a constant shape over time corresponding to that in a static configuration. This is a valid
approximation provided Ca < ε and allows one to consider emax as the value of the film
width at which the matching between the film region and the bulk meniscus region can be
performed in order to describe the coupled flow dynamics in the bulk and corner film flow
regime. It is therefore necessary to determine emax prior to the flow description in both the
film and behind the bulk meniscus.

The determination of emax can be carried out by matching the capillary pressure (i.e. the
curvatures) of the bulk meniscus to that of the film at e = emax. Since the bulk meniscus
can be considered as the static one, its double mean curvature is a constant in the absence
of body force so that the matching writes

∂2e
∂x2(

1 +
(
∂e
∂x

)2
)3/2 + 2B

εe
= 2B
εemax

, emax ≤ e ≤ �. (3.14a)

The left-hand side of the above equation represents the double mean curvature in the bulk
meniscus region, in accordance with (2.2e) in which the expression of κ1 was kept as in the
film region (see (3.4)) with the idea that it remains an approximation at O(ε). Similarly,
the right-hand side is the double mean curvature of the film at e = emax, approximated
by (3.4). Equation (3.14a) describes the profile of the meniscus, e(x), from the matching
point with the film at e = emax to the centreline of the channel where e = �. Multiplying
this equation by ∂e/∂x leads to

− ∂

∂x

(
1 +

(
∂e
∂x

)2
)−1/2

+ 2B
ε

(
1
e

− 1
emax

)
∂e
∂x

= 0, emax ≤ e ≤ �. (3.14b)

The above relationship can now be integrated between e = emax and e = �, and, due
to symmetry that implies ∂e/∂x → ∞ when e → �, this yields the dimensionless
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relationship (cf. (2.3))

(
1 +

(
∂e∗

∂x∗

)2

e∗
max

)−1/2

− 2B
ε

(
ln
(
e∗

max
)+ 1 − e∗

max

e∗
max

)
= 0. (3.14c)

The value of ∂e/∂x|emax needs more careful attention and is further explored in § 4.2.
It should be noted that, since the meniscus shape is considered as in static conditions

while moving in the channel after its entrance, emax is a characteristic of the fluid and
channel and is independent of time. In other words, once the film thickness has grown
to emax at the entrance of the channel, the meniscus enters and the section e = emax is
displaced at the same speed as the meniscus in the ensuing bulk and corner film flow
regime, as sketched in figure 1(d).

With the above material at hand, the analysis is now focused on two different cases
of imbibition: first when a constant flow rate, Q0, is imposed at the channel inlet, which
corresponds to forced imbibition (§ 4); and second, when, instead, a constant pressure is
imposed at x = 0 (§ 5).

4. Imbibition dynamics at imposed flow rate

This forced imbibition process is characterised by two distinct stages. First, the liquid
wicks into the corners from t = 0 until the film width reaches the value emax at x = 0 at a
time referred to as t = tmax in the following. This corresponds to the ‘liquid film regime’
detailed in § 4.1. At t = tmax, the meniscus enters the channel and flow takes place in the
so-called ‘bulk and corner film flow regime’ analysed in § 4.3.

4.1. Liquid film regime: triple point position
When a constant (volume) flow rate, Q0, is imposed at the inlet of the channel, volume
conservation for the β phase at time t can be written as

∫ Lf (t)

0
S(x, t) dx = Q0

2
t. (4.1)

Substituting the expressions of S(x, t) and e(x, t) given in (3.3) and (3.13a) in the above
equation provides the expression of the position of the triple point when imbibition occurs
in the liquid film regime, which is given by

Lf (t) =
(

125

3(82 + 27
√

6)

B4

A
Q0

(
σ

μβ

)2
)1/5

t3/5

� 0.7759

(
B4

A
Q0

(
σ

μβ

)2
)1/5

t3/5, (4.2a)

where A and B are respectively given in (3.3b) and (3.3d). In dimensionless form, it can
be expressed as (see (2.3))

L∗
f (t

∗) = Lf (t)
�

= 0.7759
(
εB4

A
Ca
)1/5

t∗3/5, (4.2b)
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Imbibition dynamics in a flattened triangular channel

in which Ca is a global capillary number defined as

Ca = Q0

Stvβr
, (4.3a)

St being the total cross-sectional area of the channel given by

St = h0� = ε�2 (4.3b)

and vβr given in (2.3c). The result in (4.2) slightly differs from that reported in Amyot
(2004) due to a more detailed expression of the liquid film cross-sectional area, S(x, t),
and a more accurate solution for e(x, t).

Prior to the determination of emax, the time referred to as tmax, at which e = emax at
x = 0, can be anticipated. This time corresponds to the end of the liquid film regime, at
which the corresponding triple point position is denoted Lf max. Indeed, upon substitution
of (4.2a) into (3.13a), the expression of tmax is obtained, that is, given by

tmax = (82 + 27
√

6)2

4320(1 + √
6)5

ε5A2

B3
σ

μβ

e5
max

Q2
0

� 0.0104
ε5A2

B3
σ

μβ

e5
max

Q2
0
, (4.4a)

or in dimensionless form

t∗max � 0.0104
( ε

B

)3
(

A

Ca

)2

e∗5
max. (4.4b)

Correspondingly, Lf max can be expressed as

Lf max = Lf (tmax) = 82 + 27
√

6

72(1 + √
6)3

ε3A
B

σ

μβ

e3
max

Q0

� 0.0501
ε3A
B

σ

μβ

e3
max

Q0
, (4.5a)

which, in dimensionless form, writes

L∗
f max � 0.0501

ε2A

BCa
e∗3

max. (4.5b)

These expressions require the evaluation of emax and this is carried out in the following
section where different strategies are explored, including the complete solution from
(3.14c) along with simplified versions of this equation providing quasi-analytical solutions
for e∗

max.
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4.2. Maximum film width
From (3.13a), and the fact that e(x = 0, tmax) = emax when the bulk meniscus enters the
channel, it is deduced that

∂e
∂x

∣∣∣∣
e=emax

= αbLf max

tmax
. (4.6a)

Using the expressions of α, tmax, Lf max and the value of b (see (3.9), (4.4a), (4.5a) and
(3.13d)), the above equation yields

∂e
∂x

∣∣∣∣
e=emax

= −
36
(

23
√

6 − 42
)

47
B
ε3A

μβ

σ

Q0

e2
max

, (4.6b)

which, in dimensionless form, is given by

∂e∗

∂x∗

∣∣∣∣
e∗=e∗

max

� −10.9825
B
ε2A

Ca
e∗2

max
. (4.6c)

The solution for emax can then be carried out by solving (3.14c) in which the above
expression of ∂e∗/∂x∗|e∗=e∗

max is substituted.
An analytical estimate of emax can nevertheless be obtained by noting that, when the

constraint |∂e/∂x|e=emax | � 1 is satisfied, that is,

10
B
ε2A

Ca
e∗2

max
� 1, (4.7)

(3.14c) reduces to

1 − 2B
ε

(
ln(e∗

max)+ 1 − e∗
max

e∗
max

)
= 0. (4.8)

The solution to this equation can be expressed as

e∗
max = −1

W−1

(
− exp

(
−1 − ε

2B

)) . (4.9)

In this expression, W is the Lambert function and W−1 its −1 branch (Corless et al. 1996).
Furthermore, note that when

ε � 2B, (4.10)

(4.9) yields the following approximation of e∗
max:

e∗
max � 1 −

( ε
B

)1/2
. (4.11)

A similar expression was proposed by Amyot (2004) (see also Geoffroy et al. 2006).
To better appreciate the relevance of the estimates of e∗

max from (4.9) and (4.11)
compared with the solution of (3.14c) (once (4.6c) is employed), illustrative results of
e∗

max are reported versus ε/B in figure 2. These results were obtained from the three
above-mentioned equations, considering different values of the remaining parameter
Ca/εA. In figure 2(a), for which Ca/εA = 9 × 10−4, the estimate from (4.11) is shown
to be inappropriate over the whole range of ε/B for this value of the parameter Ca/εA,
indicating that the constraint (4.10) is extremely severe. Conversely, the approximation
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0 2 4 6 8

(×10−2)

0.7

0.8

0.9

1.0

(ε/B)c = 0.0108

ε/B ε/B

e∗
max

From (4.11)
From (4.9)
From (3.14c) with (4.6c)

0 0.05 0.10 0.15 0.20

0.7

0.8

0.9

1.0

(ε/B)c = 0.0984

0.0108

0.0416

Ca/εA = 9 × 10−4

Ca/εA = 3 × 10−3

Ca/εA = 6 × 10−3

From (4.9)

(a) (b)

Figure 2. Comparison of the dependence of e∗
max = emax/� estimated from (3.14c) (together with (4.6c))

(dashed lines), (4.9) (open symbols) or (4.11) (solid line in (a)) with the parameter ε/B. Results are shown
for (a) Ca/εA = 9 × 10−4 and (b) Ca/εA = 9 × 10−4, Ca/εA = 3 × 10−3 and Ca/εA = 6 × 10−3. Vertical
dotted lines indicate the critical values, (ε/B)c, of ε/B extracted from (4.7), i.e. (ε/B)c = 10Ca/εAe∗2

max �
0.0108, 0.0416 and 0.0984 for the three above-mentioned values of Ca/εA, respectively.

from (4.9) (open symbols) reveals to be in good agreement with the solution from (3.14c)
(dashed line) when ε/B is sufficiently large compared with 10Ca/εAe∗2

max, in accordance
with the constraint expressed in (4.7). This last observation is further analysed with the
results in figure 2(b) obtained from (4.9) (open symbols) and (3.14c) (dashed lines) for
three values of Ca/εA, namely, Ca/εA = 9 × 10−4, Ca/εA = 3 × 10−3 and Ca/εA =
6 × 10−3. From this figure, it clearly appears that the constraint becomes more severe as
Ca/εA increases, making difficult a practical use of (4.9). Therefore, the determination of
emax from (3.14c) (with (4.6c)) is highly recommended, and this will be further confirmed
with the analysis of the bulk meniscus size (see the end of § 4.3.2 and Appendix C).

As an additional remark, it should be noted that (4.6c) derives from (3.14c), which
represents an approximation of the film profile, and may therefore be a source of
inaccuracy in the subsequent solution of (3.14c). However, if the value of ∂e∗/∂x∗|e∗=e∗

max
is extracted from the numerical solution of (3.11) reported in Appendix A, the relative
error on e∗

max proves to be insignificant. It is therefore preferable to keep (4.6c) that has the
advantage of providing an analytical expression of ∂e∗/∂x∗|e∗=e∗

max .
At this point, flow in the whole channel in the bulk and corner film flow regime can

be further analysed, both in the film (§ 4.3.1) and liquid bulk including the bulk meniscus
(§ 4.3.2), the latter closing the entire description.

4.3. Bulk and corner film flow regime

4.3.1. Dynamics in the liquid film
For the subsequent flow analysis, it is of interest to define a moving system of coordinates
(O′, x′, y), as schematised in figure 1(d), whose origin, O′, with respect to the fixed system
of coordinates (O, x, y), is defined by e(x = xO′, t) = e(x′ = 0, t) = emax. In the following
the x coordinate, xO′ , of O′, which corresponds to the matching point between the film and
bulk meniscus, is denoted Lb(t) (see figures 1(d) and 12).

Since flow is considered as a quasi-static process, the same description of the film as
that developed in § 3.1 can be employed in the system of coordinates (O′, x′, y)) that is
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hence supposed to move at a constant velocity with respect to (O, x, y). This allows one to
readily write

e(x′, t) =
αL

′2
f

t

⎛
⎝a

(
x′

L′
f

)2

+ b
x′

L′
f

+ c

⎞
⎠ , (4.12a)

or in dimensionless form (see (2.3))

e∗(x′∗, t∗) =
36L

′∗2
f

εBt∗

⎛
⎝a

(
x′∗

L′∗
f

)2

+ b
x′∗

L′∗
f

+ c

⎞
⎠ . (4.12b)

Here, L
′
f (t) denotes the triple point position in (O′, x′, y). Upon making use of the

condition e(x′ = 0, t) = emax, L
′
f (t) is given by

L
′
f (t) = 1

6

(
εB
c
σ

μβ
emaxt

)1/2

=
(

5

6(1 + √
6)

)1/2 (
εB

σ

μβ
emaxt

)1/2

� 0.4915
(
εB

σ

μβ
emaxt

)1/2

, t ≥ tmax, (4.13a)

or in dimensionless form (see(2.3))

L
′∗
f (t

∗) � 0.4915(εBe∗
maxt∗)1/2, t∗ ≥ t∗max. (4.13b)

In (O, x, y), the triple point position is denoted Lf (t) with

Lf (t) = L
′
f (t)+ Lb(t), t ≥ tmax, (4.14)

with the straightforward equivalent relationship in dimensionless form.
The purpose is now to determine Lb(t) and, subsequently, Lf .

4.3.2. Dynamics of the bulk meniscus and triple point
Since the bulk meniscus is assumed to remain in its static shape, all the interfacial points in
this region move with the same velocity, which is simply equal to dLb(t)/dt. To determine
this last quantity, it is convenient to write the total volume conservation in the β phase
under the form (see details on how to reach this result in Appendix B)

Q0 = St
dLb(t)

dt
+ 2Q′

f (t), (4.15)

with St the total cross-sectional area of the channel given by (4.3b). Here, Q′
f (t) is the

volume flow rate in the corner film that can be expressed as

Q′
f (t) = d

dt

∫ L
′
f (t)

0
S(x′, t) dx′, (4.16a)

with S(x′, t) the corner film cross-sectional area reported in (3.3a). Making use of the
expression of the film width in the moving frame of reference given in (4.12a), noting that
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Imbibition dynamics in a flattened triangular channel

α2c2L
′4
f /t

2 = e2
max and employing the change of variable X′ = x′/L′

f , leads to

Q′
f (t) = ε2Ae2

max

4B2
d
dt

(
L

′
f

∫ 1

0

(
a
c

X′2 + b
c

X′ + 1
)2

dX′
)

= 10 + √
6

120
ε2Ae2

max

B2

dL
′
f

dt
� 0.1037

ε2Ae2
max

B2

dL
′
f

dt
. (4.16b)

Substituting the above relationship into (4.15) yields

dLb(t)
dt

= 1
St

(
Q0 − 10 + √

6
60

ε2Ae2
max

B2

dL
′
f

dt

)
, t ≥ tmax, (4.17a)

or in dimensionless form (see (2.3) and (4.3a))

v∗
b = dL∗

b
dt∗

=
(

Ca − 10 + √
6

60
εA
B2 e∗2

max

dL
′∗
f

dt∗

)
. (4.17b)

This expression is the speed of displacement of the interfacial matching point between the
corner film and the bulk meniscus, which is also the speed of displacement of the bulk
meniscus itself, since this part of the interface is assumed to move without deforming.

The above equation can now be integrated over time (between tmax and t), and keeping
in mind that Lb(tmax) = 0, this leads to the expression of the position over time of the film
to bulk meniscus matching point that is given by

Lb(t) = 1
St

(
Q0(t − tmax)− 10 + √

6
60

ε2Ae2
max

B2

(
L

′
f (t)− Lf max

))

= 1
St

(
Q0t − 10 + √

6
60

ε2Ae2
max

B2 L
′
f (t)

)

= 1
St

(
Q0t − 10 + √

6

12(30(1 + √
6))1/2

A
(
ε5e5

max

B3
σ

μβ
t
)1/2)

� 1
St

(
Q0t − 0.1020A

(
ε5e5

max

B3
σ

μβ
t
)1/2)

, t ≥ tmax, (4.18a)

where A, B and St are respectively given by (3.3b), (3.3d) and (4.3b). In dimensionless
form, it reads (cf. (2.3) and (4.3a))

L∗
b(t

∗) � Cat∗ − 0.1020A
(( ε

B

)3
e∗5

maxt∗
)1/2

, t∗ ≥ t∗max. (4.18b)

Finally, the position of the triple point with respect to the channel inlet (i.e. in the system
of coordinates (O, x, y)) can be expressed upon substitution of (4.18a) into (4.14), which,
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along with (4.13a), gives

Lf (t) = 1
St

(
Q0t − 10 + √

6

12(30(1 + √
6))1/2

A
(
ε5e5

max

B3
σ

μβ
t
)1/2)

+
(

5

6(1 + √
6)

)1/2 (
εB

σ

μβ
emaxt

)1/2

� 1
St

[
Q0t +

(
0.4915(ε3B�4emax)

1/2

− 0.1020A
(
ε5e5

max

B3

)1/2)(
σ

μβ
t
)1/2

]
, t ≥ tmax, (4.19a)

with St given by (4.3b). In terms of dimensionless variables, this writes

L∗
f � Cat∗ +

(
0.4915(εBe∗

max)
1/2 − 0.1020A

(( ε
B

)3
e∗5

max

)1/2
)

t∗1/2, t∗ ≥ t∗max.

(4.19b)

Note that the time scaling of Lf in the bulk and corner film flow regime analysed here
contrasts with the dependence of Lf on t3/5 in the liquid film regime (cf. (4.2)).

Instead of Lb(t), interest shall rather be on the position of the apex (or central point) of
the bulk meniscus, denoted La(t) (see figures 1(d) and 12). This position is given by

La(t) = Lb(t)− �m, t ≥ tmax, (4.20)

and a similar dimensionless form. Here, �m represents the (constant) size of the bulk
meniscus in the x direction, i.e. its extension from the apex to its ending point (the
connection to the corner film) at e = emax. The value of �m can be obtained from a
procedure detailed in Appendix C. However, since �m is expected to be O(�), La(t) does
not significantly differ from Lb(t) provided Lb(t) � �, which, from (4.18a), imposes

t − 0.1020
A

Q0

(
ε5e5

max

B3
σ

μβ

)1/2

t1/2 � St�

Q0
, (4.21a)

with the dimensionless equivalent form given by

t∗ − 0.1020
A

Ca

(( ε
B

)3
e∗5

max

)1/2

t∗1/2 � Ca. (4.21b)

In other words, �m can be disregarded in this limit of time. For instance, for a channel with
� = 100 μm and h0 = 1 μm invaded by water (μβ = 1 mPa s, σ = 72 mN m−1) or an oil
(μβ = 100 mPa s, σ = 20 mN m−1) at Q0 = 10−4 ml min−1 with θe = 0◦, the left-hand
side of (4.21a) is a hundred times larger than the right-hand side at a critical time t � 0.66 s
for water and t � 0.60 s for oil. This critical time is expected to decrease as the flow rate
is further increased.

Should the corner film flow be omitted in the description of the imbibition dynamics,
the position of the bulk meniscus at constant volume flow rate, Q0, denoted Lw(t) in this
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case, would be linear in time, given by

Lw(t) = Q0

St
t, (4.22a)

with St defined in (4.3b). In dimensionless form (see (2.3) and (4.3a)), this writes

L∗
w(t

∗) = Cat∗. (4.22b)

At this point, the assumption of the moving frame of reference (O′, x′, y′) free of
acceleration with respect to (O, x, y) shall be reinspected. Indeed, the expression of the
speed of displacement of O′, given by dLb/dt in (4.17a), may appear in contradiction with
this assumption. Nevertheless, the hypothesis can be considered as a valid one under the
constraint extracted from this equation and given by

10 + √
6

60
ε2Ae2

max

B2

dL
′
f

dt
� Q0. (4.23)

Upon substitution of the expressions of L
′
f , this leads to

t � tmax

4
, (4.24)

that is easily satisfied, keeping in mind that this constraint is of importance after the bulk
meniscus entrance in the channel, which occurs at t = tmax.

4.4. Results and discussion

4.4.1. Validation of the model
In this section a comparison of the predictions from the model derived above with
experimental data reported by Amyot (2004) is carried out for validation purposes in the
bulk and corner film flow regime.

Details on the experimental set-up used in the above mentioned reference can be found
in Geoffroy et al. (2006). The triangular channel (2� = 50 mm, h0 = 1 mm) was obtained
from a machining process on a resin slab and was closed with a Plexiglas plate clamped at
the top of it. The channel was placed horizontally and, for the experiments at constant
flow rate under interest here, two silicone oils were employed as wetting liquids, the
characteristics of which are σ = 21.7 mN m−1, μβ = 0.068 Pa s (vβr � 0.3191 m s−1, see
(2.3c)) for fluid 1, and σ = 23.3 mN m−1, μβ = 0.22 Pa s (vβr � 0.1059 m s−1) for fluid
2. They were injected with a screw-driven pump. Images of the imbibition front taken from
the top of the channel were recorded every second during the experiments.

Three examples of recorded images (at t = 100 s, t = 500 s and t = 1000 s) are depicted
in figure 3, illustrating the liquid film regime for the first one and the bulk and corner
film flow regime for the last two ones. From image binarisation in the latter regime, the
apex of the bulk meniscus can be located relative to the channel inlet so that La(t) can
be obtained. The corresponding experimental data are reported in a dimensionless form
(L∗

a = La/�), versus the dimensionless time (t∗ = vβrt/�, see (2.3)) as open symbols in
figure 4(a,b) for fluid 1 with Q0 = 0.32 ml min−1 (Ca � 6.6851 × 10−4) and fluid 2 with
Q0 = 0.1 ml min−1 (Ca � 6.2947 × 10−4), respectively. The predictions of L∗

a (see (4.20),
(4.18b) and Appendix C) are also reported in these figures as continuous lines. Comparison
between the two confirms the validity of the model, the relative difference between
experimental data and the predictions remaining smaller than 10 %. The observations
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t = 100 s

t = 500 s

t = 1000 s

(b)

(a)

(c)

Figure 3. Invasion of a wetting liquid in a channel with a triangular cross-section at a constant flow rate
observed in Amyot (2004). Top view of the channel at times t = 100 s, t = 500 s and t = 1000 s. Here 2� =
50 mm, h0 = 1 mm, μβ = 0.068 Pa s, σ = 21.7 mN m−1 (fluid 1), Q0 = 0.32 ml min−1.

confirm the time laps before the bulk meniscus entrance in the channel, i.e. the existence
of the liquid film regime up to t∗ = t∗max (see (4.4b)), followed by the bulk and corner film
flow regime.

In figure 4(a,b) the dynamics of the bulk meniscus, L∗
w(t

∗) (see (4.22b)), when the
liquid films ahead of it are neglected is also represented as dashed lines, showing that,
this approximation overestimates the position of the bulk meniscus, as expected. Indeed,
the flow fraction supplying the corner films contributes to slow down the bulk meniscus
displacement. In these figures, the triple point dynamics, L∗

f (t
∗) (see (4.19b)), is reported

as dotted lines, showing that this point is ahead of the bulk meniscus with a distance that
increases with time. In particular, this means that the wetting liquid is expected to be in
contact with the outlet of a channel having a given finite length much before the bulk
meniscus arrival.

To further verify the validity of the theoretical development proposed above, the
hypothesis that the bulk meniscus shape remains constant, identical to its static
configuration, during the imbibition process is checked. The value of emax predicted
from (3.14c) (after substitution of (4.6c)) was positioned at the corresponding location
at the interface on recorded images and, from this point, the size of the bulk meniscus,
�m, was evaluated. This was performed in the case of the experiment with fluid 1
and a flow rate Q0 = 0.32 ml min−1, yielding �∗m � 0.37, 0.31, 0.35, 0.33, 0.31 at t =
400, 500, 600, 700, 800 s, respectively, i.e. an average value �∗m � 0.334. The value
predicted from the solution of (C2) (or (C3)) is �∗m = 0.3104, which is in satisfactory
agreement since the relative difference is ∼7 %.

4.4.2. Analysis of the model
The impact of some of the parameters involved in the model is now shortly addressed,
namely Ca and the contact angle, θe.
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Figure 4. Comparison of the dimensionless positions of the apex of the bulk meniscus, L∗
a = La/� (see (4.20),

(4.18b) and Appendix C), versus the dimensionless time, t∗ = vβrt/�, predicted from the model (see (4.20)) and
obtained experimentally by Amyot (2004). The evolution of the triple point position L∗

f = Lf /� (see (4.19b))
is also reported. The channel characteristics are 2� = 50 mm and h0 = 1 mm, assuming perfect wetting (θe =
0◦) of the injected fluid. (a) Fluid 1: σ = 21.7 mN m−1, μβ = 0.068 Pa s (vβr � 0.3191 m s−1) with Q0 =
0.32 ml min−1 (Ca � 6.6851 × 10−4) (cf. (2.3) and (4.3a)); (b) fluid 2: σ = 23.3 mN m−1 μβ = 0.22 Pa s
(vβr � 0.1059 m s−1) with Q0 = 0.1 ml min−1 (Ca � 6.2947 × 10−4). Here t∗max (see (4.4b)) indicates the
dimensionless time at which the bulk meniscus enters the channel. The dashed line represents the prediction of
the dimensionless position of the bulk meniscus while neglecting the film ahead of it, L∗

w = Lw/� (see (4.22b)).

The dependence of the dimensionless positions of the apex of the bulk meniscus,
L∗

a = La/� (cf. (4.20), (4.18b) and Appendix C), and of the triple point, L∗
f = Lf /� (see

(4.19b)), is illustrated versus t∗ (see (2.3)) in figure 5(a) for two values of the capillary
number, Ca, namely Ca1 � 1.8519 × 10−5 and Ca2 � 0.0042, taking ε = 0.08. The time
evolution of the position of the bulk meniscus, L∗

w = Lw/� (see (4.22b)), when the corner
films are neglected is also reported as a dashed line in this figure. These results show
that the dynamics of the triple point is significantly faster when Ca decreases and,
simultaneously, that the dynamics of the bulk meniscus is slowed down. This is explained
by the fact that, when the capillary number decreases, capillary effects become more
dominant compared with viscous effects, favouring the development of the corner films
that contribute to deplete flow in the bulk behind the bulk meniscus, thus contributing to
its slow down. This also explains the concomitant increase of the time, t∗max, at which the
bulk meniscus enters the channel, depicted as t∗max,1 and t∗max,2 in figure 5(a) for the two
capillary numbers under consideration. When viscous effects become more significant
compared with capillary effects (see results for Ca2), the corner films are so short that
L∗

a � L∗
w.

In figure 5(b) the impact of the contact angle, θe, on the dynamics of the bulk
meniscus and the triple point is explored in the range 0◦ ≤ θe ≤ 30◦, keeping ε = 0.08
and Ca � 1.8519 × 10−5. As expected, when θe increases, the triple point is slowed down,
again due to the fact that capillary effects are weakened with respect to viscous effects
and, consequently, the bulk meniscus dynamics is favoured, while t∗max is shortened.
Nevertheless, as indicated by this figure, the contrast remains weak in the range of θe
investigated here, in particular regarding the bulk meniscus dynamics.

In order to better illustrate the contrast in the dynamics of the bulk meniscus and the
triple point induced by the corner film flow, the ratio between the times for the apex
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Figure 5. Dimensionless positions versus t∗ (see (2.3)) of the triple point, L∗
f = Lf /� (see (4.19b)), and of

the apex of the bulk meniscus with the film ahead of it, L∗
a = La/� (see (4.20), (4.18b) and Appendix C), and

without the film, L∗
w = Lw/� (see (4.22b)), for (a) two values of the global capillary number, Ca1 � 1.8519 ×

10−5 and Ca2 � 0.0042, and (b) two values of the contact angle, θe = 0◦ and θe = 30◦, taking Ca � 1.8519 ×
10−5. Here ε = 0.08. In (a), t∗max,1 � 2.2316 × 106 and t∗max,2 � 46.6631 indicate the values of t∗max (see (4.4b))
at which the bulk meniscus enters the channel for the above two values of Ca, respectively.

10−6 10−5 10−4

101

102

103

Ca

t p∗ (
L a∗ )

/
t p∗ (

L f∗ )

ε = 0.04
ε = 0.06
ε = 0.08

Figure 6. Ratio between the times, t∗p(L∗
a) and t∗p(L∗

f ), necessary for, respectively, the apex of the bulk
meniscus and the triple point to reach a position located at 50� from the channel inlet versus Ca for ε = 0.04,
0.06 and 0.08. Here θe = 0◦.

of the bulk meniscus and the triple point to reach a given distance from the channel
inlet, namely 50�, and denoted t∗p(L∗

a)/t
∗
p(L∗

f ), is represented versus Ca in figure 6
for ε = 0.04, 0.06 and 0.08, keeping θe = 0◦. As expected, the time contrast strongly
increases when capillary forces increase as a result of a combined effect of the triple
point dynamics enhancement and bulk meniscus slow down; it also increases with ε.
This indicates that the wetting liquid can reach the channel outlet with the corner
film far before the bulk meniscus arrival, which can be of central importance in some
applications.
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Figure 7. Dimensionless time evolution of the speed of displacement of (a) the bulk meniscus in the fixed
system of coordinates (O, x, y), v∗

b = dL∗
b/dt∗ (see (4.17b)), and (b) of the triple point in the moving frame

of reference (O′, x′, y) (see figure 1(d) and 12), v
′∗
f = dL

′∗
f /dt∗ and in the fixed frame of reference (O, x, y),

v∗
f = dL∗

f /dt∗ = v
′∗
f + v∗

b (see (4.19b) and (4.13b)). The inset represents the evolution of v∗
f and v

′∗
f at large

dimensionless times. The dimensionless speed of displacement of the bulk meniscus in the absence of corner
films, dL∗

w/dt∗ = Ca (see (4.22b)), is represented as a dashed line. Here ε = 0.08, Ca � 1.8519 × 10−5 and
θe = 0◦.

As a final analysis, the dimensionless speeds of displacement of the bulk meniscus,
v∗

b = dL∗
b/dt∗, in the fixed system of coordinates, (O, x, y) (see (4.17b)), and of the triple

point both in (O, x, y) (i.e. v∗
f = dL∗

f /dt∗) and relative to the bulk meniscus (namely, v
′∗
f =

dL
′∗
f /dt∗) extracted from (4.19b) and (4.13b), are represented versus the dimensionless time

t∗ in figure 7(a,b), respectively. This is performed considering Ca � 1.8519 × 10−5, ε =
0.08 and θe = 0◦. As can be inferred from (4.18b), which indicates that v∗

b scales as t∗−1/2,
figure 7(a) shows that the bulk meniscus displacement strongly accelerates at the very early
times and slows down to reach an asymptotic value at large times that corresponds to the
dimensionless speed of displacement of the bulk meniscus if there were no attached corner
films, which is exactly dL∗

w/dt∗ = Ca (see (4.22b)). It should be noted, that in the case
under concern, the convergence towards this asymptotic value is quite slow. Conversely,
the speed of displacement of the triple point decreases with time (see figure 7b), both in
the fixed frame of reference and relative to the bulk meniscus, in accordance with (4.13b)
and (4.19b). As shown by the inset of this figure, the triple point asymptotically moves at
the same speed as the bulk meniscus at exceedingly large times (i.e. its velocity relative to
the bulk meniscus tends to zero in this time limit).

5. Imbibition dynamics at imposed pressure

The analysis is now carried out in the case of a pressure, P0, imposed in the β phase at the
inlet of the channel. As in the case of an imposed flow rate, the imbibition process under
concern in this section starts with the liquid film regime explored in § 5.1. However, as
will be understood in the development presented below, the regime of the bulk and corner
film flow (§ 5.2) does not necessarily exist, depending on the value of P0 that does or does
not allow entrance of the meniscus.
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5.1. Liquid film regime
Imbibition may be first analysed when the wetting phase only flows through the channel
corners. The condition for flow to remain in the liquid film regime and the determination of
the triple point position starts with Laplace’s law reported in (2.2d), considered at x = 0,
which leads to

pβ(x = 0, t) = P0 = pγ − pc(x = 0, t). (5.1)

This relationship is nothing else than the definition of the inlet capillary pressure pγ − P0.
With the same approximations as those made in the case of an imposed flow rate, the
capillary pressure, pc, expressed in (3.5) can be employed to obtain the film width at the
inlet of the channel, that is given by

e(0, t) = 2Bσ
ε( pγ − P0)

, (5.2a)

which, from the definition of dimensionless variables given in (2.3), equivalently writes

e∗(0, t∗) = B
p∗
γ − P∗

0
, (5.2b)

with B defined in (3.3d). Note that the film width at the inlet of the channel is independent
of time. Moreover, this expression obviously provides a necessary constraint (although not
a sufficient one as discussed below) for imbibition to take place in the film regime, that is,

P0 < pγ . (5.3)

Noting that the development that leads to the film profile given in (3.13a) remains valid
in the present case, the compatibility of the latter taken at x = 0 with (5.2a) provides the
evolution of the triple point position, Lf (t), which takes the expression

Lf (t) =
(

5

3(1 + √
6)

)1/2 Bσ
(μβ( pγ − P0))1/2

t1/2

� 0.6951
Bσ

(μβ( pγ − P0))1/2
t1/2, (5.4a)

or in dimensionless form

L∗
f (t

∗) � 0.4915B

(
ε

p∗
γ − P∗

0

)1/2

t∗1/2. (5.4b)

This result is reminiscent of Washburn’s relationship (Lucas 1918; Washburn 1921).
Attention shall now be focused on the situation where the liquid film regime no longer

exists. This occurs as soon as the bulk meniscus penetrates in the channel. This is
conditioned by a threshold value of P0, denoted P0max, which induces a film width at
x = 0 that corresponds to e∗

max satisfying (3.14c). The occurrence of the bulk and corner
film flow regime can therefore be deduced from (5.2a) with e = emax when P0 = P0max,
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Imbibition dynamics in a flattened triangular channel

yielding

P0max = pγ − 2Bσ
εemax

, (5.5a)

and its dimensionless expression

P∗
0max = p∗

γ − B
e∗

max
. (5.5b)

This relationship allows clarification of the pure film regime that is restricted to values of
P0 such that

P0 ≤ P0max < pγ . (5.6)

In other words, the condition for the bulk meniscus to enter the channel is that the inlet
capillary pressure is smaller than the threshold capillary pressure, which means

pγ − P0 ≤ pγ − P0max = 2Bσ
εemax

, (5.7a)

i.e.

p∗
γ − P∗

o ≤ p∗
γ − P∗

0max = B
e∗

max
. (5.7b)

In the above relationship, e∗
max remains to be determined. As in the case of an imposed

flow rate, it would be necessary to estimate this quantity from (3.14c). However, as will be
shown below (see end of § 5.2 and Appendix C regarding the size of the bulk meniscus),
no estimate of ∂e∗/∂x∗|e∗=e∗

max , compatible with the hypothesis of a bulk meniscus that
remains identical to its configuration without any forcing, is available for a pressure
imposed at the inlet of the channel. Therefore, e∗

max shall be estimated from (4.9), assuming
that the constraint ∂e∗/∂x∗|e∗=e∗

max � 1 remains satisfied. This hypothesis is retained in the
remainder of the analysis when a pressure is imposed at the channel inlet.

5.2. Bulk and corner film flow regime
When P0 ≥ P0max, the film width at the channel inlet takes the value emax and the bulk
meniscus enters the channel. A detailed modelling of the bulk meniscus settling cannot
be achieved in that case within the strict framework of the quasi-static assumption that
forms the basis of the present analysis. An alternative approach would be to call upon the
balance between inertia and viscous and capillary effects as proposed in Clanet & Quéré
(2002), providing an estimate of the time scale over which the bulk meniscus enters the
channel. However, for consistency of the whole description proposed in the present work,
the bulk and corner film flow regime may be described by assuming that the bulk meniscus
instantaneously enters the channel. Therefore, the same methodology as that developed in
§ 4.3.2 can be followed but with tmax = 0 and, correspondingly, Lf max = 0.

The volume conservation given in (4.15) remains formally unchanged, although Q0 is
now the time-dependent flow rate (denoted Q0(t)) at the channel inlet resulting from the
uniform pressure P0 at this location. To make progress, an expression of Q0(t) can be
obtained by integration of the x component of the Reynolds equation (2.2b) with respect
to y downstream of the bulk meniscus, i.e. for 0 ≤ x ≤ La(t) (see figures 1(d) and 12).
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Assuming that the pressure remains uniform in each cross-section of the channel in this
region of the β phase allows one to write

Q0(t) = − h3
0�

24μβ

∂pβ
∂x
, 0 ≤ x ≤ La(t). (5.8)

Further integrating this last relationship between x = 0 and x = La(t) yields

Q0(t)La(t) = h3
0�

24μβ
(P0 − P0max). (5.9)

Making use of (4.15), and noting that dLa(t)/dt = dLb(t)/dt since the bulk meniscus is
not deforming, provides the differential equation for La(t) that writes

La(t)
(

St
dLa(t)

dt
+ 2Q′

f

)
= h3

0�

24μβ
(P0 − P0max), t ≥ 0, (5.10)

where P0max, St and Q′
f are respectively given by (5.5a), (4.3b) and (4.16b) in which L

′
f (t)

is still given by (4.13a) but now for t ≥ 0.
Keeping in mind that Q′

f is proportional to t−1/2, the solution to this differential equation
that satisfies the condition La(t) = 0 at t = 0 (the bulk meniscus is instantaneously present
at the channel entrance) is given by

La(t) = ((a2
1 + a2)

1/2 − a1)

(
σ�

μβ

)1/2

t1/2, (5.11a)

or in dimensionless form (see (2.3))

L∗
a(t

∗) = ((a2
1 + a2)

1/2 − a1)t∗1/2. (5.11b)

In these two equations, a1 and a2 take the following expressions:

a1 = 10 + √
6

24(30(1 + √
6))1/2

A
(( ε

B

)3
e∗5

max

)1/2

� 0.0510A
(( ε

B

)3
e∗5

max

)1/2

, (5.11c)

a2 = ε
P∗

0 − P∗
0max

6
. (5.11d)

Finally, the triple point position is obtained from (4.14) in which (4.13a) (valid here for
t ≥ 0) is substituted to give

Lf (t) = La(t)+ �m + L
′
f (t)

� ((a2
1 + a2)

1/2 − a1 + 0.4915(εBe∗
max)

1/2)

(
σ�

μβ

)1/2

t1/2 + �m, t ≥ 0. (5.12a)

In dimensionless form, this writes

L∗
f (t

∗) � ((a2
1 + a2)

1/2 − a1 + 0.4915(εBe∗
max)

1/2)t∗1/2 + �∗m, t∗ ≥ 0. (5.12b)

As explained in Appendix C, �m remains difficult to estimate within the framework of
the quasi-static hypothesis and an imposed pressure at the channel inlet. However, since
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�m = O(�), it must be noted that

Lf (t) � La(t)+ L
′
f (t), (5.13a)

as soon as the constraint expressed as

max(La(t), L
′
f (t)) � � (5.13b)

is satisfied, i.e.

t � μβ�

σ
min

(
1

((a2
1 + a2)1/2 − a1)2

,
4

εBe∗
max

μβ

σ

)
, (5.13c)

or in dimensionless form

t∗ � min

(
1

((a2
1 + a2)1/2 − a1)2

,
4

εBe∗
max

)
. (5.13d)

To illustrate this constraint, the case of a channel with � = 100 μm and h0 = 1 μm invaded
by water (μβ = 0.001 Pa s, σ = 72 mN m−1) or an oil (μβ = 0.1 Pa s, σ = 20 mN m−1) at
P0 − P0max = 10 Pa with θe = 0◦, leads to t � 6 × 10−4 s for water and t � 0.2 s for oil.

Both the meniscus and triple point positions given by (5.11a) and (5.12a) scale as t1/2.
This is in agreement with the results obtained by Yu, Zhou & Doi (2018) for spontaneous
imbibition in a tube of square cross-section and recalls the dependence predicted by the
classical Washburn solution.

If the corner film flow is not taken into account in the imbibition process, the dynamics
of the bulk meniscus is readily obtained from (5.10) in which Q′

f = 0 and this leads to

Lw(t) =
(
σ�

μβ
a2

)1/2

t1/2, (5.14a)

or in dimensionless form

L∗
w(t

∗) = a1/2
2 t∗1/2. (5.14b)

It must be noted that the imbibition dynamics in the bulk and corner film flow regime
depends on P0 − P0max, i.e. the difference between the threshold and inlet capillary
pressures.

Comparison between the dynamics of the apex of the bulk meniscus predicted with and
without flow from the corner films from (5.11a) and (5.14a), respectively, shows important
features. First the existence of the film does not impact the time scaling of the bulk
meniscus position that remains t1/2, a behaviour that coincides with the classical result
of Lucas (1918) and Washburn (1921). Moreover, the constant a1 in (5.11a) is a direct
signature of the film flow effect ahead of the bulk meniscus that contributes to slow down
the advancement of the latter. Indeed, (5.14a) predicts larger values of the bulk meniscus
position than (5.11a) at any time. Nevertheless, the difference between the two becomes
vanishingly small when a2

1 � a2. In particular, the slowing effect of the corner film is
expected to increase when P0 approaches P0max.
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√t∗

Figure 8. Comparison of the dimensionless triple point position, L∗
f = Lf /�, in the film regime, predicted

from (5.4b) with experimental data from Amyot (2004), versus
√

t∗ (see (2.3) for the definition of t∗). The
channel characteristics are 2� = 50 mm, h0 = 1 mm. The constant capillary pressure imposed at the inlet of
the channel is pγ − P0 = 100 Pa. Here σ = 23.3 mN m−1, μβ = 0.22 Pa s, θe = 0◦. The linear regression on
the experimental data yields a slope of 0.0719, whereas the slopes corresponding to the present model and that
from Amyot (2004) are respectively 0.0671 and 0.0788.

5.3. Results and discussion

5.3.1. Comparison of the model predictions with experimental data
In this section the predictive model derived above is compared with experimental data
reported in (Amyot 2004) in the liquid film regime, i.e. for P0 < P0max. Experiments were
carried out with the same channel as in the case of an imposed flow rate (2� = 50 mm,
h0 = 1 mm, see § 4.4.1), using fluid 2 (σ = 23.3 mN m−1, μβ = 0.22 Pa s) and a constant
capillary pressure imposed at the inlet of the channel pγ − P0 = 100 Pa. The comparison
of the dimensionless position of the triple point, L∗

f = Lf /�, obtained experimentally (open
symbols) and from (5.4b) (dotted line) is reported versus

√
t∗ = (vβrt/�)1/2 (see (2.3) for

the definition of t∗) in figure 8, assuming perfect wetting (θe = 0◦). As shown in this
figure, the experimental evolution of L∗

f follows well a
√

t∗ scaling. The agreement with
the prediction from the model is satisfactory for

√
t∗ � 70. For smaller times, fluctuations

of the pressure at the channel inlet observed experimentally and inducing variations of
the film thickness predicted by (5.2b) at x = 0, may explain the discrepancy that is more
noticeable in this time range. A linear regression on the experimental data yields a slope
of 0.0719 whereas the slope from the predictive model is 0.0671, which represents a
relative difference of ∼6.7 %. The dashed line represented in figure 8 corresponds to the
model proposed in Amyot (2004), for which the slope is 0.0788, leading to a relative
difference with the linear regression on the experimental data of ∼9.6 %. The slight
underperformance of the latter model may be explained by a less accurate solution of
the film width compared with the solution developed in the present work, as discussed in
Appendix A. The conclusions reached here confirm the relevance of the model proposed
in this work.

5.3.2. Analysis of the model
When P0 ≥ P0max, leading to an imbibition process in the bulk and corner film flow
regime, it is of interest to investigate the contrast between the dynamics of the apex of the
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Figure 9. Dimensionless positions of the apex of the bulk meniscus, L∗
a = La/�, and triple point, L∗

f = Lf /�

(see (5.11b) and (5.12b)), versus
√

t∗ (see (2.3)) during imbibition in a channel for which ε = 0.08 and
(a) θe = 0◦, (P∗

0 − P∗
0max)1 � 1.3056 and (P∗

0 − P∗
0max)2 � 4.3318; (b) P∗

0 − P∗
0max � 1.3056 and θe = 0◦,

30◦. Dashed lines represent the dimensionless position of the apex of the bulk meniscus when corner films
are disregarded, L∗

w = Lw/� (see (5.14b)).

bulk meniscus and the triple point. In figure 9(a) the dimensionless positions of these two
points, respectively L∗

a = La/� and L∗
f = Lf /� (see (5.11b) and (5.12b)), are represented

versus
√

t∗ for two values of P∗
0 − P∗

0max, namely, (P∗
0 − P∗

0max)1 � 1.3056 and (P∗
0 −

P∗
0max)2 � 4.3318, taking ε = 0.08 and θe = 0◦. As in the case of an imposed flow rate

at the channel inlet, the contrast between the two positions is more pronounced when
capillary effects are dominant (i.e. for the smallest value of P∗

0 − P∗
0max ≡ (P∗

0 − P∗
0max)1).

Again, this results from the fact that capillarity is the driving force for the development of
the corner films, whose liquid uptake from the bulk behind contributes to slow down the
bulk meniscus.

The dependence of the contrast between the positions of the apex of the bulk meniscus
and the triple point upon the contact angle is illustrated in figure 9(b), for θe = 0◦ and
θe = 30◦, keeping ε = 0.08 and P∗

0 − P∗
0max � 1.3056. In this range of the contact angle,

the impact remains weak on both dynamics. Consistently, the smaller the contact angle,
the faster the dynamics of the triple point, and simultaneously, the slower the dynamics
of the bulk meniscus in accordance with the fact that capillary effects increase when θe
decreases.

As can be observed from figure 9(a,b), the difference between the positions of the apex
of the bulk meniscus predicted from the model including the corner films and from (5.14b)
that disregards them (dashed lines), although noticeable, is not extremely large. The last
feature is further illustrated in figure 10(a,b), respectively showing the dependence of
the ratio L∗

f /L
∗
a and L∗

a/L
∗
w upon the dimensionless imbibition driving term P∗

0 − P∗
0max,

considering ε = 0.08 and θe = 0◦. For figure 10(a), the constraint expressed in (5.13d)
is assumed to be satisfied so that �∗m can be omitted in the expression of L∗

f in (5.12b),
thus resulting in a ratio L∗

f /L
∗
a that is indeed independent of time. This ratio strongly

decreases when P∗
0 − P∗

0max increases and this simply results from the fact that increasing
the forcing counterbalances the liquid suction from the bulk into the corner films that
otherwise favours the triple point displacement ahead of the bulk meniscus. The same
effects are reflected in figure 10(b) that shows that the corner films are shortened when
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Figure 10. Influence of the dimensionless pressure difference P∗
0 − P∗

0max on the ratio between (a) the
dimensionless positions of the triple point and the apex of the bulk meniscus, L∗

f /L
∗
a , and (b) the dimensionless

positions of the apex of the bulk meniscus with and without the corner films ahead of it, L∗
a/L

∗
w (see (5.11b),

(5.12b) and (5.14b) for L∗
a , L∗

f and L∗
w, respectively). Here ε = 0.08 and θe = 0◦.

P∗
0 − P∗

0max increases, yielding a ratio L∗
a/L

∗
w that asymptotically approaches unity. This is

in agreement with the discussion provided at the end of § 5.2.

6. Conclusion

Approximated quasi-analytical solutions to the imbibition dynamics in a triangular
channel is provided in this work, based on the lubrication approximation (relevant
when the aspect ratio of the channel is small enough compared with unity), negligible
inertial effects and the quasi-steady flow assumption, together with a capillary number
characteristic of the flow that remains small enough compared with unity. The non-wetting
fluid (gas) is assumed to remain at constant pressure due to the viscosity contrast with the
wetting fluid (liquid). Two scenarios of imbibition have been explored, namely a constant
flow rate or a constant pressure in the wetting fluid at the inlet of the channel. Several
important features have been highlighted.

Imbibition at constant flow rate, Q0, starts with wetting films developing in the corners
of the channel. This liquid film regime, during which the film thickness at the channel inlet
increases as t1/5, persists until this thickness reaches a threshold value compatible with the
capillary pressure that allows the formation of a meniscus. During this period, the triple
point displacement in each corner scales as t3/5 and depends on Q1/5

0 as well on a reference
velocity, vβr, ratio of the interfacial tension to the dynamic viscosity of the wetting fluid,
as v2/5

βr . After the bulk meniscus entrance in the channel, the imbibition process goes on
in a bulk and corner film flow regime. During this regime, the bulk meniscus position in
the channel evolves according to two antagonist mechanisms: (i) the forcing at the channel
entrance pushing the bulk meniscus ahead and yielding a contribution to the position of
the bulk meniscus proportional to Q0; (ii) a slowing down effect resulting from the wetting
fluid uptake by the films attached to the bulk meniscus and flowing in the corners that
contribute as a term that scales as t1/2. Meanwhile, the triple point position in each corner
of the channel evolves faster than the bulk meniscus as a result of two co-driving effects:
(i) the forcing at the channel inlet contributing with a term that scales as t, and (ii) a
term resulting from the competition of capillary and viscous effects that scales as t1/2.
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An important feature lies in the contrast between the position of the triple point and the
apex of the bulk meniscus, the former being possibly far ahead of the later, indicating
that the wetting fluid breakthrough can occur much earlier than the expected arrival of the
bulk meniscus at the end of a channel of finite length. As expected, the contrast between
the positions of the triple point and the apex of the bulk meniscus is weakened when
capillary forces are less dominant. The classical Washburn type of approach (Washburn
1921), which omits the existence of the corner films, leads to overpredict the evolution of
the bulk meniscus with an error that increases when capillary effects increase. Comparison
of the predictions from the model derived in that case with experimental data available in
the literature confirm the validity of the approach.

When imbibition is controlled by a constant pressure imposed at the inlet of the channel,
two distinct situations may occur. If the pressure difference between the non-wetting phase
and the wetting phase imposed at the channel inlet (i.e. the inlet capillary pressure) is larger
than the threshold capillary pressure allowing the bulk meniscus to enter the channel,
the imbibition process remains in the liquid film regime. The triple point position in this
regime scales as t1/2 and depends on the inverse square root of the inlet capillary pressure.

If the inlet capillary pressure is smaller than the threshold capillary pressure, a bulk
meniscus settles at the entrance and imbibition takes place in a bulk and corner film
flow regime. Although the approach followed in this work does not allow a detailed
description of the transition period corresponding to the bulk meniscus settlement due
to the steady flow assumption, the description of the ensuing flow process shows that
the forcing is the difference between the threshold and inlet capillary pressures. Both
positions of the apex of the bulk meniscus and triple point scale as t1/2, that is reminiscent
of a Washburn approach. Nevertheless, the slowing down effect of the bulk meniscus
due to the flow rate fraction that supplies flow in the corner ahead of it is prone
to a significant overprediction of the bulk meniscus dynamics if the corner films are
disregarded. This overprediction decreases when the forcing increases. Well-controlled
imbibition experiments with a constant pressure imposed at the channel inlet are difficult
to carry out, making experimental data scarce. Although the model derived in this work
would require more thorough comparisons with direct observations, a comparison with
experimental data in the liquid film regime confirm the relevance of the model developed
in the present work.

This work raises important conclusions, in particular regarding the role of corner films
during imbibition in triangular-shaped channels that may be of central importance in some
applications due to the early wetting fluid breakthrough, much before that of the bulk
meniscus itself. Further work is required to better describe the bulk meniscus settlement
in the channel. This problem may be addressed by taking into account inertial effects
that play a significant role at this stage of the process (Clanet & Quéré 2002). Another
prospect lies in the description of the process once the triple point has reached the outlet
of the channel in a finite-size system.
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Appendix A. Solution for the film width profile

In this appendix the solution for e(x, t) to (3.8) (or, equivalently, for f (ζ ) to (3.11)) is
explored. An appealing strategy, inspired from Weislogel & Lichter (1998) and Amyot
(2004), is to assume that ∣∣∣∣ f

d2f
dζ 2

∣∣∣∣ � 2
(

df
dζ

)2

. (A1)

Under these circumstances, (3.11) can be simplified to

df
dζ

+ αζ

3
= 0. (A2)

This simplified version of the differential equation governing the film profile has the nice
feature of only requiring the boundary condition given in (3.12a) and has an analytical
solution that yields the following approximate expression for the width of the liquid film:

e(x, t) = α

12

L2
f

t

(
1 −

(
x
Lf

)2
)
. (A3)

With this solution at hand, the constraint expressed in (A1) can be made explicit, indicating
that it remains a priori valid provided x � Lf /

√
5. In other words, the above simplified

solution is expected to be acceptable in roughly half the extension of the film behind the
triple point. For this reason, a more accurate solution is desirable.

To this purpose, an alternative approach can be proposed as follows. First, a rescaling
on f and ζ given by

ζ ∗ =
√

2t
Lf
ζ, f ∗ = t

αL2
f

f (A4a,b)

can be employed so that the differential equation (3.11) and associated boundary conditions
(3.12a) and (3.12b) respectively take the form

ζ ∗ df ∗

dζ ∗ + 6
(

df ∗

dζ ∗

)2

+ 3f ∗ d2f ∗

dζ ∗2 = 0, 0 ≤ ζ ∗ ≤ 1, (A5a)

f ∗(ζ ∗) = 0, at ζ ∗ = 1, (A5b)

df ∗

dζ ∗ = −1
6
, at ζ ∗ = 1. (A5c)

The solution to this boundary value problem was carried out numerically with an
implicit Euler method, starting from ζ ∗ = 1 down to ζ ∗ = 0. The result is represented
in figure 11, together with f ∗ corresponding to the approximate solution given in (A3).
This figure confirms that the latter remains accurate sufficiently close to the tip of the
film as anticipated above, but is about 50 % in error for ζ ∗ � 0. In addition, the numerical
solution indicates that a reasonable representation of f ∗(ζ ∗)may be sought under the form

f ∗(ζ ∗) = aζ ∗2 + bζ ∗ + c, (A6)

a, b and c being constants to be determined. The two boundary conditions f ∗ = 0
and df ∗/dζ ∗ = −1

6 at ζ ∗ = 1 yield a = c − 1
6 and b = −(a + c) = 1

6 − 2c, whereas
substitution of the quadratic form of f ∗(ζ ∗) into the differential equation (A5a)
provides the residual function R = (2aζ ∗ + b)(ζ ∗ + 6(2aζ ∗ + b))+ 6a(aζ ∗2 + bζ ∗ + c).
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Figure 11. Numerical solution of (A5a) (open symbols). Comparison to the approximated solution given by
(A3) (dashed line) and the polynomial estimate provided in (A8) (solid line).

Following Boyd (2000, chapter 1, p. 14), an accurate solution can be obtained by imposing
R = 0 at ζ ∗ = 1/2, and this yields

a =
√

6 − 4
30

� −0.0517, b = 3 − 2
√

6
30

� −0.0633, c = 1 + √
6

30
� 0.1150.

(A7a–c)
The resulting quadratic prediction of f ∗ is reported in figure 11, which shows an excellent
agreement with the numerical solution, the maximum relative error on the whole interval
of ζ ∗ being 0.8 %, taking the numerical solution as the reference.

Switching back to the variables x and t, (A6) provides an estimate for the width of the
film that takes the following form:

e(x, t) =
αL2

f

t

(
a
(

x
Lf

)2

+ b
x
Lf

+ c

)
. (A8)

This result is in full agreement with the derivation proposed by Dong & Chatzis (1995) in
a slightly different manner for imbibition in a tube having a square cross-section.

Appendix B. Volume conservation

This appendix presents an expression for the distribution of the flow rate in the channel
when flow occurs in the bulk and corner film regime, while a flow rate Q0 is imposed at
the entrance of the channel. The results are employed in § 4.3.2.

Following the notations proposed in figure 12, the volume conservation of the β phase
that is present in the channel at a given time after the entrance of the bulk meniscus can
be written as

Q0

2
= d

dt
(Ωb(t)+Ωf (t)+Ω ′

f (t)). (B1)

The volume, Ωb(t), downstream of the bulk meniscus can be expressed as

Ωb(t) =
∫ �

emax

h( y)

(∫ xm( y,t)

0
dx

)
dy = ε

∫ �

emax

yxm( y, t) dy, (B2)
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� �m

Lf (t)

Lf
′ (t)

emax

Figure 12. Notations used in the film and in the bulk behind the bulk meniscus. The different regions are
identified with contrasted shaded blue areas.

where xm( y, t) denotes the x coordinate of a point at the interface in the bulk meniscus
region (La(t) ≤ xm ≤ Lb(t) = La(t)+ �m). The time derivative of the above expression
yields

dΩb

dt
(t) = ε

∫ �

emax

y
∂xm( y, t)

∂t
dy. (B3)

Since the bulk meniscus moves as a rigid entity (it keeps the shape corresponding to a
static configuration), the term ∂xm( y, t)/∂t is independent of y and is equal to dLb(t)/dt,
with Lb(t) defined as in (4.14), whence

dΩb

dt
(t) = ε

2
dLb(t)

dt
(�2 − e2

max). (B4)

In the liquid film region, Ωf (t) and Ω ′
f (t) can be respectively expressed as

Ωf (t) =
∫ emax

0
h( y)

(∫ Lb(t)

0
dx

)
dy = ε

2
Lb(t)e2

max, (B5)

Ω ′
f (t) =

∫ L
′
f (t)

0
S(x′, t) dx′. (B6)

In the latter expression, S(x′, t) is the corner film cross-sectional area that is given by (3.3a)
with x′ the coordinate along the channel axis in the moving frame of reference (O′, x′, y′).
Taking the time derivative of expressions (B5) and (B6), using (B4) and combining the
result into (B1) leads to

Q0

2
= ε

2
dLb(t)

dt
�2 + Q′

f (t), (B7)

with Q′
f (t) = dΩ ′

f /dt. Equivalently, this result can be written as

Q0 = St
dLb(t)

dt
+ 2Q′

f (t), (B8)

St = �h0 = ε�2 being the total cross-sectional area of the channel.

Appendix C. Size of the bulk meniscus

The extension of the bulk meniscus, �m, in the main flow direction (x) is required to obtain
its central point (or apex) position given in (4.20). A numerical procedure to identify �m is
proposed in this appendix.
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Figure 13. Dependence of the dimensionless size of the bulk meniscus, �∗m = �m/�, upon the parameter ε/B
for Ca/εA = 9 × 10−4, 3 × 10−3 and 6 × 10−3 (case of a constant flow rate imposed at the inlet of the channel).

The starting point is to integrate (3.14b) with respect to x between e and � yielding, in
dimensionless form,(

1 +
(
∂e∗

∂x∗

)2
)−1/2

− 2B
ε

(
ln(e∗)+ 1 − e∗

e∗
max

)
= 0. (C1)

Noting that ∂e∗/∂x∗ ≤ 0, the above equation provides the expression of the slope at any
interfacial point of the bulk meniscus given by

∂e∗

∂x∗ = −
[(

2B
ε

(
ln(e∗)+ 1 − e∗

e∗
max

))−2

− 1

]1/2

. (C2a)

This equation can be integrated numerically starting from the conditions

∂e∗

∂x∗ → −∞, x∗ → 0, (C2b)

e∗ → 1, x∗ → 0. (C2c)

Integration is carried out increasing x∗ from 0 until reaching e∗ = e∗
max at which the value

of x∗ is �∗m. Alternatively, �∗m can be obtained upon numerical evaluation of the following
expression that results from integration of (C2a) between e∗

max and 1, i.e.

�∗m =
∫ 1

e∗
max

[(
2B
ε

(
ln(u)+ 1 − u

e∗
max

))−2

− 1

]−1/2

du. (C3)

C.1. Imposed flow rate
Although the approximate value of e∗

max provided in (4.9) may be acceptable in the
subsequent calculations involving this quantity and developed in the body of the text,
computation of (C2a) or (C3) with this approximate value that results from the hypothesis
∂e∗/∂x∗|e∗=e∗

max = 0 is impossible. This is due to the fact that integration diverges when e∗
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reaches e∗
max (�∗m has a logarithmic dependence on ∂e∗/∂x∗|e∗=e∗

max and, therefore, diverges
when the latter approaches zero). Consequently, the evaluation of e∗

max from the solution
of (3.14c), after substitution of (4.6c), is required prior to the numerical solution of (C2a)
or (C3).

An illustration of the dependence of the dimensionless size of the bulk meniscus, �∗m, on
the parameter ε/B is reported in figure 13, considering three values of Ca/εA. This figure
shows that �∗m increases with ε/B and becomes exceedingly small when this parameter
approaches zero. Moreover, �∗m increases when Ca/εA decreases.

C.2. Imposed pressure
In the case of an imposed pressure at the channel inlet, the estimate of e∗

max resulting
from (4.9) remains a reasonable one (provided ∂e∗/∂x∗|e∗=e∗

max � 1 is satisfied). However,
since the bulk meniscus is supposed to instantaneously penetrate the channel and keep its
static shape when P0 ≥ P0max, no estimate of the slope ∂e∗/∂x∗|e∗=e∗

max is available that is
compatible with this hypothesis.

REFERENCES

AMYOT, O. 2004 Contribution l’étude des écoulements diphasiques travers un contact rugueux. PhD thesis,
Université de Poitiers.

BOYD, J.P. 2000 Chebyshev and Fourier Spectral Methods. Dover.
CAI, J., CHEN, Y., LIU, Y., LI, S. & SUN, C. 2022 Capillary imbibition and flow of wetting liquid in irregular

capillaries: a 100-year review. Adv. Colloid Interface Sci. 304, 102654.
CHENG, C.L., PERFECT, E., DONNELLY, B., BILHEUX, H.Z., TREMSIN, A.S., MCKAY, L.D.,

DISTEFANO, V.H., CAI, J.C. & SANTODONATO, L.J. 2015 Rapid imbibition of water in fractures within
unsaturated sedimentary rock. Adv. Water Resour. 77, 82–89.

CLANET, C. & QUÉRÉ, D. 2002 Onset of menisci. J. Fluid Mech. 460, 131–149.
CONCUS, P. & FINN, R. 1969 On the behavior of a capillary surface in a wedge. Proc. Natl Acad. Sci. USA

63 (2), 292–299.
CONCUS, P. & FINN, R. 1974 On capillary free surfaces in the absence of gravity. Acta Mathematica 132,

177–198.
CORLESS, R.M., GONNET, G.H., HARE, D.E.G., JEFFREY, D.J. & KNUTH, D.E. 1996 On the Lambert W

function. Adv. Comput. Maths 5 (1), 329–359.
DONG, M. & CHATZIS, I. 1995 The imbibition and flow of a wetting liquid along the corners of a square

capillary tube. J. Colloid Interface Sci. 172, 278–288.
GEOFFROY, S., PLOURABOUÉ, F., PRAT, M. & AMYOT, O. 2006 Quasi-static liquid–air drainage in narrow

channels with variations in the gap. J. Colloid Interface Sci. 294 (1), 165–175.
GILMAN, A. 1996 Non-equilibrium imbibition of a porous block. Eur. J. Appl. Maths 7 (1), 43–52.
GU, Q., LIU, H. & WU, L. 2021 Preferential imbibition in a dual-permeability pore network. J. Fluid Mech.

915, A138.
HIGUERA, F.J., MEDINA, A. & LIÑÁN, A. 2008 Capillary rise of a liquid between two vertical plates making

a small angle. Phys. Fluids 20 (10), 102102.
KANTZAS, A., CHATZIS, I. & DULLIEN, F.A.L. 1988 Mechanisms of capillary displacement of residual oil

by gravity-assisted inert gas injection. In Paper Presented at the SPE Rocky Mountain Regional Meeting,
pp. SPE–17506–MS.

LANGBEIN, D. 2002 Capillary Surfaces, Springer Tracts in Modern Physics, vol. 178. Springer.
LASSEUX, D. 1995 Drainage in a capillary: a complete approximated description of the interface. C. R. l’Acad.

Sci. Paris t. 321 (Série II), 125–131.
LASSEUX, D. & QUINTARD, M. 1991 Film thickness behind a receding meniscus. C. R. l’Acad. Sci. Paris t.

313 (Série II), 1375–1381.
LENORMAND, R., TOUBOUL, E. & ZARCONE, C. 1988 Numerical models and experiments on immiscible

displacements in porous media. J. Fluid Mech. 189, 165–187.
LENORMAND, R. & ZARCONE, C. 1984 Role of Roughness and Edges During Imbibition in Square

Capillaries, pp. SPE–13264–MS. SPE.
LUCAS, R. 1918 Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Z. 23 (1), 15–22.

1001 A4-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
38

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1038


Imbibition dynamics in a flattened triangular channel

MARIE, C. & LASSEUX, D. 2007 Experimental leak-rate measurement through a static metal seal. J. Fluids
Engng 129 (6), 799–805.

MAYER, F.J., MCGRATH, J.F. & STEELE, J.W. 1983 A class of similarity solutions for the nonlinear thermal
conduction problem. J. Phys. A: Math. Gen. 16 (14), 3393–3400.

MORROW, N. & MASON, G. 2001 Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface
Sci. 6 (4), 82–89.

PONOMARENKO, A., QUÉRÉ, D. & CLANET, C. 2011 A universal law for capillary rise in corners. J. Fluid
Mech. 666, 146–154.

QUÉRÉ, D. 1997 Inertial capillarity. Europhys. Lett. 39, 533–538.
REYNOLDS, O. 1886 On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments,

including an experimental determination of the viscosity of olive oil. Phil. Trans. R. Soc. Lond. A 117,
157–235.

ROSSEN, W.R. 2000 Snap-off in constricted tubes and porous media. Colloids Surf. A 166 (1), 101–107.
SLATTERY, J.C. 1999 Advanced Transport Phenomena. Cambridge University Press.
VALLET, C., LASSEUX, D., SAINSOT, P. & ZAHOUANI, H. 2009 Real versus synthesized fractal surfaces:

contact mechanics and transport properties. Tribol. Intl 42 (2), 250–259.
WASHBURN, E.W. 1921 The dynamics of capillary flow. Phys. Rev. 17, 273–283.
WEISLOGEL, M.M. 2012 Compound capillary rise. J. Fluid Mech. 709, 622–647.
WEISLOGEL, M.M., BAKER, J.A. & JENSON, R.M. 2011 Quasi-steady capillarity-driven flows in slender

containers with interior edges. J. Fluid Mech. 685, 271–305.
WEISLOGEL, M.M. & LICHTER, S. 1998 Capillary flow in an interior corner. J. Fluid Mech. 373, 349–378.
WU, K., DUPRAT, C. & STONE, H.A. 2024 Capillary rise in sharp corners: not quite universal. J. Fluid Mech.

978, A26.
YU, T., ZHOU, J. & DOI, M. 2018 Capillary imbibition in a square tube. Soft Matt. 14, 9263–9270.
ZAOUTER, T., LASSEUX, D. & PRAT, M. 2018 Gas slip flow in a fracture: local Reynolds equation and

upscaled macroscopic model. J. Fluid Mech. 837, 413–442.
ZHANG, C., OOSTROM, M., WIETSMA, T.W., GRATE, J.W. & WARNER, M.G. 2011 Influence of viscous

and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet
micromodel demonstrating viscous and capillary fingering. Energy Fuels 25 (8), 3493–3505.

ZHENG, Z., RONGY, L. & STONE, H.A. 2015 Viscous fluid injection into a confined channel. Phys. Fluids
27 (6), 062105.

ZHOU, J. & DOI, M. 2020 Universality of capillary rising in corners. J. Fluid Mech. 900, A29.

1001 A4-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
38

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1038

	1 Introduction
	2 Imbibition flow model: the lubrication approximation
	3 Corner liquid film
	3.1 Liquid film width
	3.2 Bulk meniscus entrance: the maximum film width

	4 Imbibition dynamics at imposed flow rate
	4.1 Liquid film regime: triple point position
	4.2 Maximum film width
	4.3 Bulk and corner film flow regime
	4.3.1 Dynamics in the liquid film
	4.3.2 Dynamics of the bulk meniscus and triple point

	4.4 Results and discussion
	4.4.1 Validation of the model
	4.4.2 Analysis of the model


	5 Imbibition dynamics at imposed pressure
	5.1 Liquid film regime
	5.2 Bulk and corner film flow regime
	5.3 Results and discussion
	5.3.1 Comparison of the model predictions with experimental data
	5.3.2 Analysis of the model


	6 Conclusion
	Appendix A. Solution for the film width profile
	Appendix B. Volume conservation
	Appendix C. Size of the bulk meniscus
	C.1 Imposed flow rate
	C.2 Imposed pressure

	References

