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Banach (1, pp. 242-243) defines, for two Banach spaces X and F, a number 
(X, Y) = inf (log (||L|| | |L_ 1 | | )) , where the infimum is taken over all iso­
morphisms L of X onto F. He says that the spaces X and Y are nearly iso­
metric if (X, Y) = 0 and asks whether the concepts of near isometry and 
isometry are the same; in particular, whether the spaces c and c0, which are 
not isometric, are nearly isometric. In a recent paper (2) Michael Cambern 
shows not only that c and c0 are not nearly isometric but obtains the elegant 
result that for the class of Banach spaces of continuous functions vanishing 
at infinity on a first countable locally compact Hausdorff space, the notions 
of isometry and near isometry coincide. 

We introduce two numbers for a normed linear space X, which give some 
measure of the size of the unit sphere in X. We show that if either of these 
numbers differs for two spaces, then these spaces cannot be nearly isometric. 
The first number, the thickness of X, is related to F. Riesz's theorem: a 
normed linear space is finite dimensional if (and only if) its closed unit sphere 
is compact. The second number, the thinness of X, gives us a geometric way 
of showing that c and c0 are not nearly isometric, since one is thinner than 
the other. 

Recall that for a metric space S with distance d, an e-net for S is a set F 
of points of 5 with the property that for each 5 in 5 there is a t in F with 
d(s, t) < e and also recall that a complete metric space is compact if and 
only if it has a finite e-net for each e > 0. For a normed linear space X we 
denote the surface of the unit sphere of X by S(X) = {x in X: \\x\\ = 1}. If 
{xi, . . . , xn) is an e-net for S(X) and {a^ . . . , am) is an e'-net for the unit 
sphere {a: \a\ < 1} in the scalars (either the reals or the complexes) then 
{ai Xji 1 < j < n, 1 < i < m\ is an (e + e')-net for the unit sphere {x in X: 
\\x\\ < 1}. Consequently, for an infinite-dimensional normed linear space X 
we see from Riesz's theorem (3, Theorem IV.3.5, p. 245) that S(X) fails to 
have a finite e-net for some e > 0. (For X not complete, this follows from 
Lemma 2 below or from considering the completion of X.) The possible size 
of this e should give an indication of the size of the unit sphere in X and to 
this end we define A = {a > 0: for each e > a, S(X) has a finite e-net j . A 
simple argument shows that T(X) = inf A belongs to A. 

1. Definition. For a normed linear space X we define T(X)> the thickness 
of X, to be the number described in the above paragraph, i.e. it is the largest 
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non-negative number with the property that each €-net of S(X) must be 
infinite if 0 < e < T(X). 

2. LEMMA. Let X be a normed linear space. 
(1) If X is finite dimensional, then T(X) = 0. 
(2) If X is infinite dimensional, then 1 < T(X) < 2. 
(3) For each T in [1, 2] there is a Banach space X with T(X) = T. 

Proof. If X is finite dimensional, its unit sphere is compact (3, Corollary 
IV.3.3, p. 245), and so T(X) = 0. 

Now suppose that {xlt. . . , xn\ is an e-net for S(X) with 0 < e < 1. By 
the Hahn-Banach theorem there are continuous linear functional Xi*, . . . , xn* 
of norm one with x* (x*) = 1. For each x in S(X) and the appropriate index i, 
1 > e > \\x — xt\\ > \xt* (x) — 1|, so x** (x) 9e 0. It follows that the map L 
of X into En defined by Lx = (xx* (x), . . . , xn* (x)) is one-to-one, which 
forces X to be finite dimensional. Any single point {x} of norm one is a 2-net 
for S(X), which bounds T(X) above by 2. 

We shall show in Lemma 4 that for 1 < p < œ, T(lv) = 21/p and in Lemma 
3 that T(c) = 1, which will establish (3). 

The bound T(X) > 1, for X infinite dimensional, can be obtained alter­
natively by using Riesz's lemma (5, Theorem 3.12 E, p. 96). Note that the 
demonstration of this given in Lemma 2 yields a proof of Riesz's theorem 
which differs from the usual proofs. 

For a topological space Q, C(Q) is the space of bounded continuous scalar-
valued functions on Q with the supremum norm. For Q locally compact, 
Co ( 0 is the subspace of C(Q) of functions which vanish at infinity. 

3. LEMMA. Let Q be a completely regular Hausdorff space which contains an 
infinite number of points. Then T(C(Q)) = 1 if Q contains an isolated point 
and T(C(Q)) = 2 otherwise. If Q is also locally compact, then 

T(Co(Q)) = T(C(Q)). 

Proof. If Q has an isolated point 5, let / be the characteristic function of 
the set {s}. The set {/, —/} , for the case of real scalars, or the set {/, —/, if, 
—if} 7 for the case of complex scalars, is a 1-net for the surface of the unit 
sphere in C(Q). Thus, T(C(Q)) = 1. 

Suppose that Q has no isolated points and that {/i, . . . ,fn) is an e-net for 
the surface of the unit sphere in C{Q). Let e' > 0 be given. There are points 
st with \fi(Si)\ > 1 — e and neighbourhoods Ut of st with !/*($*) —ft(t)\ <e 
for / in Uf. Using the complete regularity of Q we can construct a function g 
of norm one in C(Q) so that for each i the scalars in g{Ut) form an e'-net 
for the set of scalars {a: \a\ < 1}. If this holds, then for each i there is a 
point tt in Ui with \g(tt) +fi(st)\ < er, so that 

11/* - *ll > l*('<) -Mh)\ > 2|/,(s,)l - \g(ti) +Mst)\ - IMsi) -Mtt)\ 
> 2 - 4e', 

for each i. Thus e must be at least 2 and so T(C(Q)) = 2. 
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The argument of the last paragraph works for Co(Q), since in that case 
each neighbourhood TJ% is contained in a compact set and we can thus choose 
g to have compact support. The argument of the first paragraph is the same. 

4. LEMMA. For 1 < p < « , T(lp) = 21/p. 

Proof. Suppose that {xi, . . . , xn) is an e-net for S(lp) with 

%i — \%i{*-)i # i ( 2 ) , . . . } . 

Let 1 > e > 0 be given. There is an index N with 

Ël*iO')r< (O* for Ki<n. 

The vector eN in lp has one in the iVth coordinate and zeros elsewhere. For 
this vector of norm one and some index i, 

ep > | | s , - eN\\p = £ w \Xi(j)\P + |1 - x , W | ^ > 1 - (e')p + (1 - € ' )p . 

Since e is an arbitrary number in (0, 1) we see that € > 21/p. Thus T(lp)^21/P. 
Let £i be the vector in lp which is 1 in the first coordinate and zero in the 

other coordinates. The set {eu — e\), for the case of real scalars, or the set 
{ei, —eu ieu — iei} for the case of complex scalars, is a 21/p-net for S(lv). 
Hence T(lp) < 21/p. 

5. THEOREM. Let X and Y be normed linear spaces and L: X —> Y be an 
isomorphism of X onto Y. Then T(Y) < ||L|| | | £ - 1 | | T(X). In particular, if 
X and Y are of different thickness, then they cannot be nearly isometric. 

Proof. We may assume that X and Y are infinite dimensional, for the 
inequality holds in the finite-dimensional case by Lemma 2. Let e > 0 be 
given. From the definition of the thickness of X there are points Xi, . . . , xn 

of norm one with min ||x — %i\\ < T(X) + e for each point x in S(X). Sup­
pose that z is an element in X with 0 < ||si|| < 1. For any number a in (0, 1), 

min||a(>/||z||) - xt\\ = min||a(>/IM| - xt) + (1 - a)(-Xi)\\ 

< a(T(X) + e) + (1 - a) < T(X) + e, 

since T(X) > 1. In particular, for a = ||z||, we get min ||s — x f | | < T(X) + e. 
Thus min \\x — xt\\ < T{X) + e for all x with \\x\\ < 1. 

Let y be in 5 ( F ) . For x = Lrly, \\x\\ < | |^ - 1 | | . By what we have just 
shown, for some xt we have | |x/ | |L_ 1 | | — x^|| < T(X) + e. Applying L, we 
get \\y - \\L-i\lLxiW < \\L\\ \\L^\\ (T(X) + e) = C; we call the right-hand 
side C for convenience. Notice that || 11.Ẑ  xj | Lxt\\ > 1. Thus we have found 
points yu • • . , yn in Y with H^H > 1, which have the property that 
minll^j — y\\ < C for each point y in Y with \\y\\ = 1. 

Let y be of norm one in Y. For some index i, \\y — yt\\ < C. For any 
scalar b in (0, 1], \\y - byt\\ < b \\y - yt\\ + (1 - b) < C, since C > 1. 
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Taking b to be l/||y4 | |, \\y — yt/WytW || < C. That is to say that for all y 
of norm one, min \\y - yt/\\yt\\ || < ||L|| WL'1]] (T(X) + e). Hence, 

T(Y) < ||L|| ||L-»|| T(X). 

For example, the space m (of bounded sequences with the supremum norm) 
cannot be nearly isometric to a space C(Q) where Q is a completely regular 
Hausdorff space without isolated points; in fact we have (m, C(Q)) > log 2. 
This does not follow from the results of (2), since in representing m as C(fiN), 
where /3N is the Stone-Cech compactification of the integers, the topological 
space fiN is not first countable (4, Corollary 9.6, p. 132). 

We now consider another estimate of the size of the unit sphere. Our idea 
is that the sphere in X is rather small and cramped if for any finite set 
{xi, . . . , xn] of points in S(X) we can find another point in S(X) which is 
close to every one of the xt. To make this quantitative we introduce, for a 
normed linear space X, the set B = \b > 0: for xi, . . . , xn a finite set in 
S{X) and e > 0, there is a point x in S(X) with \\x — xt\\ < b + e for 
1 < i < n). We see that the number t(X) = inf B belongs to B. 

6. Definition. For a normed linear space X we define t(X), the thinness of 
X, to be the number which is described in the paragraph above, i.e. it is the 
smallest non-negative number with the property that for xi, . . . , xn in S(X) 
and e > 0, there is a point x in S(X) with max||x — Xi\\ < t(X) + e. 

7. LEMMA. Let X be a normed linear space. 
(1) If X is finite dimensional, then t(X) = 2. 
(2) For all X, 1 < t(X) < 2. 
(3) For each t in [1, 2] there is a Banach space X with t(X) = t. 

Proof. Suppose that X is finite dimensional and that {xi, . . . , xn) is an 
e-net for S(X). Then max||x — xt\\ > 2 — e for each x in S{X) and result (1) 
follows since it is clear that t(X) < 2. 

Choose any x in S(X) and let y be in S(X). From 

1 = Ibll < h(\\y - x\\ + \\y + x\\) < maxflly - x|l, \\y + * | | ) , 

we see that we cannot have t(X) < 1 for any X. 
We show in Lemmas 8 and 9 that t(lp) = 21/p, 1 < p < » , and that 

l(co) = 1, from which (3) follows. 

8. LEMMA. Let Qbe a completely regular Hausdorff space containing an infinite 
number of points. Then t(C(Q)) = 2. Let So be a point of Q which is not isolated. 
Then the maximal ideal I = {/in C(Q): f(s0) = 0} in C(Q) has t(I) = 1. In 
particular, if Q is locally compact but not compact, then the space C0(Q) of con-
tinuous functions which vanish at infinity has t(C0(Q)) = 1. 

Proof. Let e > 0 be given and let {ai} . . . , am} be an e-net for the scalars 
\a: \a\ = 1}. We consider the set of functions \a,\ 1, . . . , am 1} and see that 
for a n y / of norm one in C(Q), max||/ — at 1|| > 2 — e. Hence, t(C(Q)) = 2. 
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Suppose that Q contains a point s0 which is not isolated and let 

7={ / inC(<2) : / ( 5o ) = 0 } . 

Let a finite set {/i, . . . , / » } of functions of norm one in / and e > 0 be given. 
There is a neighbourhood U of s0 with \fi(s)\ < e for 5 in U and 1 < i < n. 
Since Q is completely regular, there is a g of norm one in / which vanishes on 
Q — U and for this g, max||g — ft\\ < 1 + e. Thus t(I) = 1. 

For the sequence spaces c and c0, t(c) = 2 and t(co) = 1. The only maximal 
ideal in c whose thinness differs from that of c is c0. 

9. LEMMA. For 1 < p < » , U/p) = 21/2?. 

Proof. Let {xi, . . . , x„} be an e-net for S(lp) and let e' > 0 be given. As 
in the proof of Lemma 4, \\xt — eN\\p < 1 + (1 + e')p for large enough N, 
and have *(?) < 21/p. 

Let ^i be the vector which has 1 in the first coordinate and zero elsewhere 
and let {ai, . . . , am} be an e-net for the set {a: \a\ = 1} of scalars. We con­
sider the set of functions {aid, . . . , amei}. Let x have norm one in lp, 
x = {x(l), x(2), . . .}. If x( l ) = 0, then \\x - ax ei\\ = 2 1" . If x( l ) ^ 0, let 
a = x( l ) / |x ( l ) l . Then 

||x + aei\\* = II + k(l) l lp + E < - 2 l*(*)|p > 1 + l*U)|p + E <-2 |x(*)|p = 2. 

There is some a* with |a + at\ < e and for this scalar, 

\\x — at ei\\ > \\x + aei\\ — \\aei + at ei\\ > 21/p — e. 

So t(lp) > 21/p and, from the first paragraph, t(lp) = 21/p. 

10. THEOREM. Let X and Y be nortned linear spaces with L: X —» F an wo-
morphism of X onto Y. Then t(Y) < ||L|| ||I>-1|| t(X). In particular, if X and 
Y have different thinness, then they cannot be nearly isometric. 

Proof. Let yi, . . . , yn be points of norm one in Y and let e > 0 be given. 
Let xt = Lrlyt and note that ||x*|| < | | £ - 1 | | . Consider the set 

{*i/H*i||» - * i / I H I , • • • > aw/IWI, -xn/\\xn\\} 

in S(X). From the definition of t(X), there is a point x in S(X) with 

max||dbaV||x*|| — x|| < t(X) + e. 

Any real number b in [—1, 1] can be written in the form a{ — 1) + (1 — a) (1) 
for some a in [0, 1]. Then 

||fo</IMI - x || < a Wxt/WxiW + x || + (1 - a) ||x*/||x,|| - x|| < t{X) + e. 

For the choices b = ^WxiW/WL-% \\±xt - ||L~i ||x|| < \\L~'\\ (t(X) + e). 
Then it follows that max||=b;y, - y\\ < \\L\\ {{L^W (t(X) + e) = C, where 
y = HL-^ILx has ||y|| > 1. 
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Once more we write any b in [ — 1 , 1] as b = a( l ) + (1 — a)( — 1) for some 
a in [0,1]. And then \\yt - by\\ < a\\yt - y\\ + (1 - a) \\yt +y\\ < C. 
Choosing b = 1/|M|, max||y< - y/ | |y| | || < C. Hence 1{Y) < ||L|| | |L-i | | t(X) 
and the proof is complete. 

If Q is a completely regular Hausdorff space containing an infinite number 
of points, then its Stone-Cech compactification $Q contains a point which 
is not isolated and so from Lemma 8 we see that C(Q) = C(J3Q) contains a 
maximal ideal I which is not nearly isometric to C(Q)\ in fact any isomor­
phism L of C(Q) onto I must have ||L|| | |L_1 | | > 2. For an isomorphism L 
of c onto Co we obtain the same lower bound for Banach's constant (c, c0) as 
was obtained in (2): (c, c0) > log 2. 

Added December 28, 1966. The example given after Theorem 5 will follow 
from D. Amir's paper, On isomorphisms of continuous function spaces, Israel 
J. Math., 3 (1965), 205-210, which extends Cambern's result to arbitrary 
compact spaces. In connection with Riesz's theorem, we mention an interesting 
proof due to A. Wilansky: If Dh . . . , Dn are closed disks of radius less than 
one and UD^ contains the surface of the unit sphere of Xy then VJDt is weakly 
closed and does not contain 0 and from Problem 11 on page 245 of Wilansky, 
Functional Analysis (Blaisdell, 1964), it follows that X is finite dimensional. 
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