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ALMOST CONTINUOUS FUNCTIONS 
WITH CLOSED GRAPHS 

BY 

A N D R E W J. B E R N E R 

ABSTRACT. A function / : X -> Y is almost continuous if for 
every JC e X and for each open set V c Y containing 
f(x), Cl(f~l(V)) is a neighborhood of x. Various conditions are 
given that guarantee that an almost continuous function is continu­
ous. The main theorem states that if / :X^> Y is almost continuous 
with a closed graph (closed in X x Y) and X and Y are complete 
metric spaces, then / is continuous. 

1. Introduction. In [1], Husain gave the following definition of an almost 
continuous function between topological spaces. 

DEFINITION. The function /' : X —> Y is almost continuous at x 0 e X if and 
only if for each open V<= Y containing f(x0), C!(/ -1(V)) is a neighborhood of 
x0. If / is almost continuous at each point of X, then / is called almost 
continuous. 

In a paper studying this concept [2], Lin and Lin asked the following 
question [2, pg. 185]: 

"Let / : X - ^ Y b e a mapping from a Baire space X to a second countable 
space Y. If / is almost continuous and has a closed graph; that is, the set 
{(x, f(x)) | x G X} is closed in the product space X x Y . Is / necessarily 
continuous?" 

Rose [4] has answered this question negatively, but a more general question 
is suggested: 

What hypotheses on the domain and range of a function guarantee that if it 
is almost continuous with a closed graph then it is continuous? 

Long and McGehee gave one answer to this: if enough separation axioms 
hold, local compactness of the range is enough [3, Theorem 9]. 

In this paper this question is explored further. In Section 3 we prove that if 
the domain and range are both complete metric spaces, almost continuity with 
a closed graph implies continuity. However, it is not enough for the range to be 
a Baire space. In Section 4, an example is given of an almost continuous 
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function with a closed graph from R to a Baire subspace of R which is 
nowhere continuous (this also answers Lin and Lin's question negatively). 
Along the way, various other facts about the relationship between almost 
continuous functions with closed graphs and continuous functions are proved. 

The author wishes to thank the members of the North Texas State Topology 
Seminar (W. Mahavier, M. Hagen, T. Jacob and J. Mohat) for their encourage­
ment and patience in listening to these theorems. 

2. Points of continuity. 

DEFINITION 2.1. If f:X-+Y is a function between topological spaces, let 
C(f)={xeX:f is continuous at x}. 

THEOREM 2.1. Suppose Y is a regular space and f :X—> Y is almost continu­
ous. If C(f) is dense in X, then f is continuous (i.e. C(/) = X). 

Proof. Suppose there were a point p eX-C(f). Let O be an open subset of 
Y such that f(p) e O but / _ 1 ( 0 ) is not a neighborhood of p. Let 01 and 0 2 be 
open subsets of Y such that /(p) e 0 2 and Cl(02)

c Ox and Cl(0^) a O. Since / 
is almost continuous, there is an open set L/<=X containing p such that 
U^Cl(f~\02)). There is a point qeU such that f(q)<£0, since Utf~\0). 
Then, again by the almost continuity of /, there is an open set V <= X containing 
q such that V a Cl(f~x(Y- 01(0^). Since 17 Pi V contains q, there is a point 
deUnVnC(f). Since / is continuous at d and UC\ V c [ / c Cl(f-\02)), 
f(d)eCl(02). But since deUf\V<^V^Cl(f-\Y-CKO^)), it follows that 
f(d)eCl(Y-Cl(01))^Y-01. This cannot be since C/ (0 2 )c :0 1 . Therefore, 
there cannot be a point in X—C(/), i.e. / is continuous. 

Remark. The assumption that Y is regular cannot be dropped. For example, 
let X be the reals, with the usual topology augmented to make each rational 
singleton open (this space is metrizable) and Y the reals with the topology 
generated by the sets: 

(a, b)n(QU{r}) where (a, b) is a usual open interval and re R. The identity 
map from X to Y is almost continuous, and the set of points of continuity is Q, 
which is dense in X 

It is pointed out in [3] that the restriction of an almost continuous function to 
a subset of the domain need not be almost continuous, but that the restriction 
to an open subset is almost continuous [3, Theorem 4]. Also if / :X—> Y has a 
closed graph and Z <= X then /1 Z : Z —» Y has a closed graph. These observa­
tions and Theorem 2.1 prove the following 

COROLLARY 2.1. If Y is a regular space and if for every space X and for every 
almost continuous (though not necessarily surjective) function /:X—> Y with a 
closed graph, C(f) j= 0 , then every almost continuous function f :X—> Y with a 
closed graph is continuous. 
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THEOREM 2.2. Suppose f:X->Y is almost continuous with a closed graph 
and y is an isolated point of Y. Then / - 1 ( y ) c C(/) . 

Proof. We actually prove that / - 1 (v) is both open and closed. It is closed 
since if x is a limit point of /_ 1(y) then (x, y) is a limit point of the graph of /, 
which we are assuming to be closed, Now, since {y} is open in Y, and 
C/(/_1(y)) = /_ 1(y) , / - 1 (y) is a neighborhood of each of its points, by the almost 
continuity of /, and thus is open. 

COROLLARY. If Y is regular, f : X —» Y is almost continuous with a closed 
graph and the inverse image of the set of isolated points of Y is dense in X, then f 
is continuous. 

Despite the corollary, it is not sufficient that Y have a dense set of isolated 
points (see example 3, section 4). However, the following theorem does hold. 

THEOREM 2.3. If Y has only one non-isolated point and f:X-*Y is almost 
continuous with a closed graph then f is continuous. 

Proof. Let p be the non-isolated point of Y. Because of Theorem 2.2 we 
only need show that if f(x) = p and O is an open set containing p then p is in 
the interior of / - 1 ( 0 ) . Since Y-O consists only of isolated points, the proof of 
Theorem 2.2 shows f~1(Y~0) is open, thus / _ 1 ( 0 ) is closed, so by almost 
continuity x is in the interior of / _ 1 ( 0 ) (in fact, / _ 1 ( 0 ) is open). 

3. Conditions that imply continuity. Long and McGehee [3] give several 
conditions which guarantee that an almost continuous function is continuous, 
including the following theorem. 

THEOREM 3.1. [3, Theorem 9]. Let f :X-^>Y be almost continuous where Y is 
locally compact. If Y is either regular or Hausdorff and the graph of f is closed, 
then f is continuous. 

The hypotheses of this theorem can be modified. 

THEOREM 3.2. Let f:X^Y be almost continuous where Y is locally count-
ably compact and regular, and X is a Fréchet space {i.e. if peX is a limit point 
of a set Ce X, then there is a sequence of points from C converging to p). If the 
graph of f is closed then f is continuous. 

Proof. (This proof is due to W. Mahavier). 

Suppose / were not continuous at p e X. Let O c Y be an open set contaning 
/(p) such that / _ 1 ( 0 ) is not a neighborhood of p. Let U be an open set 
containing /(p) such that Cl(U)<=^ O and Cl(U) is countably compact. By the 
almost continuity of /, there is an open set V containing p such that V<= 
C/(/ -1(L/)j. There is a point qe V s.t. f(q)£ O. There must then be a sequence 
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(qi)(ieN) of points of f~\U) converging to q. Since Cl(U) is countably 
compact, there is à point yeCl(U) such that (q, y) is a limit point of 
{(<!«/(ft)): îeN}- But, since f(q)<£Cl(U), y^f(q) violating the hypothesis that 
the graph of / is closed. 

THEOREM 3.3. Suppose X and Y are complete metric spaces and f :X^> Y is 
almost continuous with a closed graph. Then f is continuous. 

Proof. Suppose / is not continuous at a point peX. We will inductively 
define a sequence (pi)(ieN) of points of X, a sequence (Vi)(ieN) of open 
subsets of X and a sequence (Ui)(ieN) of open subsets of Y satisfying the 
following conditions. 

(i) PteVi 
(ii) fipdeU, 
(iii) ci(u1)nci(u2) = 0 
(iv) If i and j are either both even or both odd and i<j then Cl(Uj)<^Ui 
(v) If i<j then CI(V))c Vt 

(vi) d iam(Ui)<l / i 
(vu) diam(V £)<l / î 

(viii) ViCzcKrWt)) 
First let p± = p. There is an open set U c Y containing /(p) such that if V is a 
neighborhood of p then /(V)<^ U. Let Ut be an open set containing /(p) such 
that dmm(U1)<l and Cl{U^)<^ U. By the almost continuity of /, there is an 
open set V ^ X containing p such that diam(V1)<l and V ri (=C/(/"1(l/i)). 
There must be a point p 2 e V\ such that /(p2)^ t / (thus f(p2)£ CliUx)). Let (72 

be an open set containing /(p2) such that dmm(U2)<^ and C/(l/2)nC/((71) = 
0 . Again using almost continuity, let V2 be an open set containing p2 with 
diam(V2)<2% V2c: Cl(f~1(U2)) and C/(V2)c Vx. Suppose now we have defined 
V^ Ut and pt satisfying i-viii for all i < ; . Since 0 ^ V, c= V ^ c C K / ' ^ ^ - i ) ) » 
there is a point p i + 1eV, such that / ( p j + 1 ) e [ / H . Let (7i+1 be an open set 
containing /(pJ+i) such that Cl(Uj+1)<^ UH1 and diam((7J+1)<l/(7 + l). By the 
almost continuity of /, we can choose an open set Vj+1 containing p i + 1 such that 
Vi+1 c Cl(f-\Ui+1))9 diam(Vi+1)< Vj +1 and Cl(Vj+1) c V,, This completes the 
inductive definitions. 

Since X is a complete metric space, there is an x such that (pi)(ieN) 
converges to x. Also since Y is a complete metric space, there are points y and 
z such that (/(p2 i))(ieN) converges to y and (/(p2i_1))(i G iV) converges to z. 
Since y e Cl(Ui) and z e Cl(U2), y^z. But the points (x, y) and (x, z) are both 
limit points of the graph of /, contradicting the fact that the graph of / is closed. 

4. Some examples and a non-example. 

THEOREM 4.1. Suppose X is a Hausdorff space and Dx and D2 are disjoint 
dense subsets of X with D1UD2 = X. Let Y be the topological sum of the 
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subspaces D1 and D2 and let /:X—> Y be the identity map. Then f is almost 
continuous, the graph off is closed but f is nowhere continuous (i.e. C(f) = 0 ) . 

Proof. To see that / is almost continuous, let x e X and O be an open set in 
Y containing f(x). Suppose xeDt. Then there is an open set V c X containing 
x such that V n D 4 c O . Thus Cl(f'\0))^ C K f H V n D i ) ) ^ V, since Dt is 
dense in X 

To see that the graph of / is closed, suppose (p, q) is a limit point of the 
graph of / where qeDt. If p ^ q , then there are disjoint open sets U^X and 
VczX with peU and qeV. But then U rx(V rflD i) misses the graph of /. So 
p = q, i.e. (p, q) is in the graph of /. 

If x e Dt then /"1(D i) = D< is not a neighborhood of x since D2 is dense in X. 
So / is nowhere continuous. Theorem 4.1 provides some interesting examples, 
as well as suggesting some possible spaces that, as we will show later, cannot be 
constructed. 

EXAMPLE 1. Theorem 3.1 and Theorem 3.3 show that if f:U—> Y is almost 
continuous with a closed graph and if Y is either locally compact or complete 
metric, then / must be continuous. However, we can use Theorem 4.1 to get a 
Baire space Y and an almost continuous function with closed graph / : R - » 
that is nowhere continuous. We need the following fact about the reals. 

PROPOSITION. If S is a dense G8 in the reals and O is an open set, then S DO 
has cardinality c, where c is the cardinality of the reals. 

Using this we can construct, by transfinite induction, two disjoint, dense 
subspaces D1 and D2 of U each of which is a Baire space. We will identify c 
with an initial ordinal and consider it as the set of previous ordinals. 

Let <ë be the collection of all dense G8 subsets of U. The cardinality of % is 
c, so we can well-order <# as {Sa : a < c}. For each a<c, we will inductively 
define sets D(a, 1) and D(a, 2) to be countable dense subsets of Sa (and thus 
dense in U) in such a way that D(a, l )PlD(0,2) = 0 for every a, j3<c. 
Suppose we have defined D(j3,1) and D(|3,2) for every j8<a. Since the 
cardinality of U D(|3,1) U D(|3, 2)(|3 < a) is less than c, the proposition guaran­
tees we can pick D(a, 1) and D(a, 2) to be disjoint countable dense subsets of 
S « - ( U £>(£, 1)UD(|8, 2)( |3<a)). This inductively defines the sets we want. 

Now let D1 = \jD(a,l)(a<c) and let D2 = U-D1 (thus D(a, 2)c=D2 for 
every a<c). Notice that DL and D2 are dense in U. 

Suppose (OiXieiV) is a sequence of dense open subsets of Dx. Then, for 
each i, there is a dense open subset Vt of U such that Oi = ViDD1. Thus 
C[Oi(ieN) = r\Vi(ieN)nD1. For some a <c, fl Vf(îGN) = Sa. For that 
a, D(a, l)<=n Oi(ieN), so f| Ot(ieN) is dense in D l 5 showing that Dx is a 
Baire space. Likewise, D2 is a Baire space. The sets D1 and D2 fit the 
conditions of Theorem 4.1, where X = U, and the space Y thus constructed is a 
Baire space. 
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EXAMPLE 2. The idea behind Theorem 4.1 can be modified to get an almost 
continuous function with a closed graph that is not continuous, but where the 
range has a dense set of isolated points (see the corollary to Theorem 2.2). Let 
X be the plane, with the usual topology expanded to include the set {(x, y)} 
whenever y^O and Rx{0}. Let YX be Q x R with the usual topology expanded 
to include {(JC, y)} whenever y ^ 0 and let Y2 be (R-Q) xR, again with the usual 
topology expanded to include {(JC, y)} whenever y =£ 0. If Y is the topological 
sum of Yx and Y2, the identity map from X to Y has the desired properties. 

NON-EXAMPLE 1. We cannot use Theorem 4.1 and have both Dx and D2 be 
complete metric spaces. 

Proof. Suppose X is Hausforff and we thought we had disjoint dense 
subspaces D1 and D2 , each of which was a complete metric space (note: there 
is no assumption about X being metric). Let dx be a complete metric on Dx 

and d2 be a complete metric on D2. At the risk of ambiguity, we will use this 
notation: for x e Dh B(x, e) = {ye Dt : dj(x, y )< e}. Also, if S c Dt, the closure 
of S in Dt will be denoted Clt(S). 

Pick pi G Dx and let Ox be an open subset of X such that 01DD1 = B(pl91). 
Since D2 is dense in X we can choose p2e01C\D2, and let 0 2 be an open 
subset of X such that 02c= Ol9 and 02nD2aB(p2,2

:). Suppose now that for 
each i < 2 n we have defined an open set Ot and a point pt e Ot such that 

(i) if i<j<2n then OiaOi 

(ii) if i is odd then Ot H D 1 c B ( p i , I/O 
(iii) if i is even then O; H D 2 <=!*(#, 1/0 
(iv) if i and / are both odd and i < / < 2 n then ChiOjHDj^Oi DD1 

(v) if i and / are both even and i < / < 2 n then C ^ O , nD2)<= Oj HD2 

Pick p 2 n + i ^ 0 2 n n D 1 . Let 0 2 n + 1 be an open set such that 0 2 M + 1 < = 

O i , 0 2 n + 1 n D 1 c f î ( p 2 n + 1 , l / ( 2 n + l)) and C ^ O ^ n D ^ O ^ n D ! . Simi­
larly pick p 2 n + 2 and 0 2 n + 2 . 

Since Dx and D 2 are complete metric spaces, there is a point peD1 such that 
{p} = fl (0* H Di)(i odd) and a point q G D 2 such that {q} = fl (Oi H D2)(i even). 
Let 1/ and V be disjoint open subsets of X containing p and q respectively. It 
is evident from the construction that qeOt for every i e N, thus, for each 
i , O i n V n D 1 ^ 0 . Also since Ot D VDD^ Ot nD1c:JB(p i, 1/0 be i odd, 
H CZi(Oi H Vr)Di)(i odd) cannot be empty. But (taking all intersections over 
odd values of i), fl Cl^Oifl V n D 1 ) c C I 1 ( O l n D 1 ) - l / = n Q n D 1 - l / = 
{p}—U= 0 . So Dx and D 2 cannot both be complete metric spaces. 
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