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Abstract. Let M, be the moduli space of smooth curves of genus g > 3, and M, the Deligne-
Mumford compactification in terms of stable curves. Let MS] be an open set of Mg consisting
of stable curves of genus g with one node at most. In this paper, we determine the necessary
and sufficient condition to guarantee that a Q-divisor D on M is nef over M pa that is,
(D - C) = 0 for all irreducible curves C on M with CN M[ #+ 0.
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Introduction

Throughout this paper, we fix an algebraically closed field &k, and every algebraic
scheme is defined over k. For simplicity, we assume that the characteristic of k is zero
in this introduction.

Let X be a normal complete variety and P a certain kind of positivity of Q-line
bundles on X (e.g. ampleness, effectivity, bigness, etc). A problem to describe the
cone Cone(X; P) consisting of Q-line bundles with the positivity P is usually very
hard and interesting. In this paper, as positivity, we consider numerical effectivity
over a fixed open set. Namely, let U be a Zariski open set of X. We say a (Q-line bun-
dle L is nef over U if, for all irreducible curves C with CNU # @, (L-C) = 0. We
define the relative nef cone Nef(X; U) over U to be the cone of Q-line bundles on
X which are nef over U.

Let g and n be nonnegative integers with 2g —2 +n > 0. Let M,,n (resp. M, )
denote the moduli space of n-pointed stable curves (resp. n-pointed smooth curves)
of genus g. For a nonnegative integer ¢, an irreducible component of the closed sub-
scheme consisting of curves with at least ¢ nodes is called a t-codimensional stratum of
Mg 2. (For example, a l-codimensional stratum is a boundary component.) We
denote by S (Mg ») the set of all -codimensional strata of Mg 2. Let M[] be the open
set of Mg » obtained by subtracting all (¢ + 1)-codimensional Stl"dtd 1. e ] , 1s the
open set consisting of curves with at most ¢ nodes. (Note that M ] an-) Here we
consider the following problem:
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PROBLEM A. Describe the tower of relative nef cones

Nef(ﬁ;[g,n; Mg.n) 2 Nef(Mg,n; A;[[l] )22 Nef(Mg,n; M[;i73+n71]

g.n

) =Nef(M,,).

We say a Q-divisor on M, «n 18 F-nef if the intersection number with every one-dimen-
sional stratum is nonnegative. Let FNef(M ) denote the cone consisting of F-nef Q-
divisors. Concerning the top Nef(]\_lg,n) of the tower, it is conjectured in [4, 5, 7] that
FNef(Mg,n) = Nef(i\_dg,n). In other words, the Mori cone of A_lg,n is generated by one-
dimensional strata, which gives rise to a concrete description of Nef(Mg,n) (cf. [4, 5,
7]). Moreover, it is closely related to the relative nef cone Nef(M, ons Mg ). Actually,
it was shown in [5] that if the weaker assertion FNef(/\;[g_,,) c Nef(/\;[g_n; M,,)
holds for all g, n, then FNef(M, on) = Nef(Mg,n). Further, as discussed in [5],
/\;Ig,n admits no interesting birational morphism to a projective variety. However,
we can expect the rich birational geometry on M, o 10 terms of rational maps. In this
sense, to understand the tower of relative nef cones as above might be a step toward
this natural problem.

We assume that g >3 and n=0. Let 4 be the Hodge class on Mg, and

Oirr, O1, - . ., O[g/2) the classes of the irreducible components Ajr, Ay, ..., A of the
boundary M, \ M, as in [2]. Let u be a divisor on M, given by
lg/2]

w=(8g + 4% — g — Y _ 4i(g — i)5;.
i=1
In the paper [11], we proved that Nef(]\_lg; M,) is the convex hull spanned by
Ly Oirry 01y o v vy 5[g/2]> that is,
. [/2]
Nef(Mg: My) = Qi+ Qi + QL35
i=1
where @j = {x € Q|x = 0}. The cone Nef(]\;lg; M,) is closely related to the Zariski
closure H, of the locus H, consisting of smooth hyperelliptic curves. Indeed, a Q-
divisor D = ap + b irr + Egi/f] b;0; 1s nef over M, if and only if D|1;,g is nef over
H, and a > 0, that is, the dual cone of Nef(M,; M,) is generated by the classes of
curves in H, and the class of a complete irreducible curve in M, (cf. Remark 6.3).
The main purpose of this paper is to generalize the above results to the cone
Nef(M,; Mg ]). Namely we have the following theorem:

THEOREM B gcf. Theorem _511 and Section 6). (1) A Q-divisor au+ bi; iy
+ Zii/f] bid; on M, is nef over Mi,] if and only if the following system of inequalities
hold:

iZl,...,[g/Z]}, By=2B1 2B, > - = B,
= e >B§>BT>BS7

where By, By, Bi and Bf (i=1,...,[g/2]) are given by
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4birr and B* bi

By=4byy, Bi=—"  B—
0 07 g2g - 1) i2i+1) g-N2(g—-n+1)°

(2) We can construct irreducible complete curves

il i
Clooo Cloy2y Gl Gl €l Gl

on M with the following properties (for concrete constructions of curves, see Section 6):

2.1)C; € A and Ci N\ M) ;A(Zifor all 1 <i<[g/2].

(2.2)C] € A, €7 ALy Q< i< [5/2) and M £ 0 (<i<[g/2).
(2.3) cT C A and €/ MY # @ for all 1 < i<[g/2].

(2.4) For a Q-divisor D = au + by 0ir + Z[g/z] b;0; on M

D-C)=
(D-C7) =0 B,
=

(D-CH>0e4i(g—i)a>b

In particular, the dual cone of Nef(M, e Mg ]) is generated by the classes of the above
curves.

An interesting point is that (1) of the above theorem shows us that p is not only nef
over M, but also nef over ME]. Moreover, (1) tells us that every nef Q-divisor over
M[gu can be obtained in the following way. Namely, we first fix a nonnegative
rational number b;;, and take b; with

4g — Dbirr < by < 12bir.
8
Further, we choose b, ..., by inductively by using
—1-DREg-1)H-1 i+ 1)(2i
100 DD <y, < DD,
(e—D2g—D+1 i(2i+1)
Finally, we take a with
a> max] D [g/2]
- 4l(g z) v '

Then, a Q-divisor given by au + biy0ipr + Z[g/zl b;o; is nef over M{ ]
Besides the properties (2.1)-(2.4) of curves Ci, ..., Cg/2s Cl,.. s Gl Ci,...,

12 surprisingly we can see C;, C; C H for alli=1,...,[g/2]. Thus, a Q- d1v1sc[)r]

ct
[g— ap + by iy + Z[g/ b;0; 1s nef over M 1f and only 1f D|H is nef over H NM,
and 4i(g —i)a=b; foralli=1,...,[g/2]. Moreover as pomted out by Prof Keel
the inequalities involving B; and B* in Theorem B are formally similar to those in
[7, Lemma 4.8], which suggests to us a certain kind of connection between M
and H via M, 20+2/S2g+42-

Further, as corollaries of the above theorem, we have the following:
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COROLLARY C (cf. Corollary 5.2). For an irreducible component A of the boundary
M \ M,, let A be the normalization of A, and py: A— M the induced morphism.
Then, a @ divisor D on M is nef over ]\/[S] if and only if the following are satisfied:

(1) D is weakly positive at any points of M.
(2) For every boundary component A, pi(D) is weakly positive at any points of

o3t ()
For the definition of weak positivity, see Section 1.1.

COROLLARY D (cf. Corollary 5.3). With notation as above, lpr(D) is nef over

’1(M ) for every boundary component A, then D is nef over M[ In pamculal the
Mori cone ofM is the convex hull spanned by curves lying on the boundary M \ M,,
which gives rise to a special case of [5, Proposition 3.1].

Let us go back to the general situation. Similarly, for A € S’(Mg,”), let A be the
normalization of A, and p,: A — M, , the induced morphism. Inspired by the above
corollaries, we have the following questions:

QUESTION E. For a nonnegative integer ¢, if a Q-divisor D on Mg, is nef over
then is p} (D) weakly positive at any pomts of py! (M[ o) forall0 < /< randall

gn
Ae S (Mg n)? More strongly, if D is nef over M, , then is D weakly positive at any
points of
QUESTION F. Fix an integer ¢ with 0 <7 <3g—3+n— 1. If pi(D) is nef over

Z‘( ) for all A € S'(M,,), then is D nef over M[ )

In the case t =3g — 3 +n — 1, the above question is nothing more than asking
FNef(M, ) = Nef(M,,).

In order to get the above theorem, we need a certain kind of slope inequalities on
the moduli space of n-pointed stable curves. The Q-line bundles / and ¥, ..., on
Mg,, are defined as follows: Let 7: Mg el —> Mg,, be the universal curve of Mg ns
and s, ..., Mg n = Mg »+1 the sections of 7 arising from the n-points of My ,.
Then, /4 = det(n*(wMgn+l/M ) and y; = s} (wMgM/MW) fori=1,...,n Here we set

[l ={1,....n} (mﬁeﬂth]: 9),
Yo, ={G.D]i€Z 0<i<gandIC [n]}\{©,0),0,(1),....0, 1))
Tg,n:{{(i’])’(]v‘])}|(lvl)’(]wl)engn,l—i-‘]:g’lﬂ‘]:@,lu.]:[n]}.

Moreover, for a finite set S, we denote the number of it by |S|. The boundary
M, \ M, , has the following irreducible decomposition:

A;[g,n \ Mg, = Ay U U A{(i,l),(/'»f)}'
(D, G e,
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A general point of A;, represents an n-pointed irreducible stable curve with one
node. A general point of Ay (., represents an n-pointed stable curve consisting
of an |I]-pointed smooth curve C; of genus i and a |J|-pointed smooth curve C,
of genus j meeting transversally at one point, where |/|-points on C; (resp. |J|-points
on () arise from {s;},¢; (resp. {s1};c;). Let 6ir and 0y 1.0y be the classes of A and
Ayin,go In Pic(]\;lg,n) ® Q, respectively. For a subset L of [n], we define a Q-divisor
0, on Mg,n to be

Op =4 —1+ILDE—1)Y ¥, — 120LPA+ L0k — Y 47,(0)50,

tel vEY g,
where 7,: Y, , — Z is given by

o i LN
3 (G D, Go DY) = (det(_}. o J|) + |Lm|)><

i LN
x | det{ . —|LNJ]).
j ILNJ|
Then, we have the following, theorem:

THEOREM G (cf. Theorem 4.1). For any subset L of [n], the divisor 0 is weakly
positive at any points of My ,. In particular, it is nef over Mg .

We remark that R. Hain has already announced the above inequality in the case
where n = 1. (For details, see [6].) Theorem G is a generalization of his inequality.
Here we assume that g > 2. First note that

p=0Bg+Hi—g— > Hjdng
(DG )T g

is nef over M, ,. Thus, as a consequence of Theorem G, we can see that

@_,_M + Z @+9L + @+5irr + Z @+5u c Nef(Mg,n; Mg,n),

LC[n] e,

so that we may ask the following question:
QUESTION H. Is Nef(Mg,n; M, ,) the convex hull spanned by Q-divisors u, 0r
(YL C [n]), 6irr and 6, (Yo € Tg,n)-

Corollaries 4.2 and 4.3 are partial answers for the above question. If the above ques-
tion is true, then it gives an affirmative answer of Question E for z = 0.

1. Notations, Conventions, Terminology and Preliminaries

Throughout this paper, we fix an algebraically closed field k, and every algebraic
scheme is defined over k.
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1.1. THE POSITIVITY OF WEIL DIVISORS

Let X be a normal variety. Let denote Z'(X) (resp. Div(X)) the group of Weil divisors
(resp. Cartier divisors) on X, and ~ the linear equivalence on Z'(X). We set
AY(X) = Z'(X)/~ and Pic(X) = Div(X)/~. Note that Pic(X) is canonically iso-
morphic to the Picard group (the group of isomorphism classes of line bundles).
Moreover, we denote by Ref(X) the set of isomorphism classes of reflexive sheaves
of rank 1 on X. For a Weil divisor D, the sheaf Ox(D) is given by

Ox(D)(U) = {¢ € Rat(X)™ | (¢) + D is effective over U} U {0}

for each Zariski open set U of X. Then, we can see Ox(D) € Ref(X). Conversely, let L
be a reflexive sheaf of rank 1 on X. For a nonzero rational section s of L, div(s) is defined
as follows: Let X, be the maximal Zariski open set of X over which L is locally free.
Note that codim(X \ Xo) > 2. Then, div(s) € Z'(X) is defined by the Zariski closure
of div(s|y,). By our definition, we can see that Ox(div(s)) ~ L. Thus, the correspon-
dence D+ Oy(D) gives rise to an isomorphism 4'(X) ~ Ref(X). Here we remark that
if x & Supp(div(s)), then L is free at x because Ox(div(s)), = Oy for x & Supp(div(s)).

An element of Z!'(X) ® Q (resp. Div(X) ® Q) is celled a Q-divisor (resp. Q-Cartier
divisor). For Q-divisors Dy and D,, we say D is Q-linearly equivalent to D,, denoted
by D; ~qg D, if there is a positive integer n such that nD;,nD, € Z'(X) and
nDy ~ nD,, i.e., D; coincides with D, in 4'(X) ® Q.

Fix a subset S of X. For D € Z'(X) ® Q, we say D is semi-ample over S if, for any
s € S, there is an effective Q-divisor £ on X with s ¢ Supp(E) and D ~g E. More-
over, D is said to be weakly positive over S if there are Q-divisors Zy,...,Z;, a
sequence {D,,}>>_, of Q-divisors, and sequences {aj m}oo ;. ... {@im}o, of rational
numbers such that

(1) [ does not depend on m,

(2) D,, is semi-ample over S for all m > 0,
(3) D~qgD,, + Zﬁ:l a;mZ; for all m > 0, and
@4 limy—ootim=0forali=1,... 1L

In the above definition, if D, D,, and Z;’s are Q-Cartier divisors, then D is said to be
weakly positive over S in terms of Cartier divisors (for short, C-weakly positive over
S). Further, if D is semi-ample over {x} for some x € X, then we say D is semi-ample
at x. Similarly, we define the weak positivity of D at x and the C-weak positivity of D
at x. We remark that weak positivity in [11] is nothing more than C-weak positivity.
Moreover, note that if a Q-divisor D is semi-ample at x, then D is a Q-Cartier divisor
around x, i.e., there is a Zariski open set U of X such that x € U and D[, is a Q-
Cartier divisor on U.

A normal variety X is said to be Q-factorial if Z'(X) ® Q = Div(X) ® Q, i.e., any
Weil divisors are (Q-Cartier divisors. It is well known that if ¥ — X is a finite
and surjective morphism of normal varieties and Y is Q-factorial, then X is also
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Q-factorial (cf. [8, Lemma 5.16]). Thus the moduli space ]\;[g,n of n-pointed stable
curves of genus g is Q-factorial because Z\;[g,n is an orbifold. If X is Q-factorial, then
the weak positivity of D over S coincides with the C-weak positivity of D over S.

We assume that X is complete and D is a Q-Cartier divisor. We say D is nef over S
if (D - C) = 0 for any complete irreducible curves C with SN C # . Moreover, for a
point x of X, we say D is nef at x if D is nef over {x}. Note that

‘D is semi-ample at x’ = ‘D is C-weakly positive at x* = ‘D is nef at x’

LEMMA 1.1.1 (char(k) = 0). Let D be a Q-divisor on X, and x, ..., x, € X. If D is
semi-ample at x; for each i, then there is an effective Q-divisor E on X such that
E ~q D and x; & Supp(E) for all i.

Proof. By our assumption, there is an effective Q-divisor E; on X such that
E; ~g D and x; € Supp(E;). Take a sufficiently large integer m such that mD,
mE, ..., mE, e Z\(X) and mD ~ mkE; for all i. Thus, there is a section s;
of H(X, Ox(mD)) with div(s;) = mE;. Here since x; & Supp(mE;) and Ox(mD) ~
Ox(mE;), we can see that Oy(mD) is free at each Xx;.

For o = (a1, ... o,) € k", we set s, = o8] + - - - + a5, € H'(X, Ox(mD)). Further,
we set Vi={a€k"|s,(x;)=0}. Then, dimV;,=n—1 for all i. Thus, since
#(k) = oo, there is o € kK" with a & V,U---UV,, ie., s4(x;)#0 for all i. Let us
consider a divisor £ = div(s,). Then, £ ~ mD and x; ¢ Supp(FE) for all i. O

PROPOSITION 1.1.2 (char(k) = 0). Let n: X — Y be a surjective, proper and gen-
erically finite morphism of normal varieties. Let D be a Q-divisor on X and S a subset
of Y such that n='(S) is finite. Then, we have the following.

(1) If D is semi-ample over n='(S), then m.(D) is semi-ample over S.
(2) If D is weakly positive over n='(S), then (D) is weakly positive over S.

Proof. (1) By Lemma 1.1.1, there is an effective divisor £ on X such that £ ~q D
and s ¢ Supp(E) for all s € n='(S). Then, m.(E) ~g m.(D) and s ¢ n(Supp(E)) =
Supp(n,(E)) for all s € S.

(2) This is a consequence of (1). OJ

PROPOSITION 1.1.3 (char(k) = 0). Let n: X — Y be a surjective, proper morphism
of normal varieties. We assume that Y is Q-factorial. Let D be a Q-divisor on Y, and S
a subset of Y. Then, we have the following.

(1) If D is semi-ample over S, then n*(D) is semi-ample over f~1(S).
(2) If D is weakly positive over S, then w*(D) is C-weakly positive over S.

Proof. (1) Let s’ be a point in 7~!(S). Then, there is an effective Q-divisor E on Y
with D ~g £ and 7(s") € Supp(E). Thus, 7n*(D) ~g n*(E) and s ¢ Supp(n*(E)).
Therefore, n*(D) is semiample over 7~ !(S).

(2) This is a consequence of (1). O
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LEMMA 1.1.4 (char(k) = 0). Let X and Y be complete varieties, and let D and E be
Q-Cartier divisors on X and Y respectively. Let p: X x Y and ¢ X x Y — Y
be the projections to the first factor and the second factor, respectively. For
(x,y) € X x Y, p*(D) + ¢*(E) is nef at (x, ) if and only if D and E are nef at x and y
respectively.

Proof. First we assume that p*(D) + ¢*(E) is nef at (x, y). Let C be a complete
irreducible curve on X with x € C. Then, C, = C x {y} is a complete curve on X x Y
with (x, y) € C,. Moreover, (p*(D) + ¢*(E) - C,) = (D - C). Thus, (D - C) = 0, which
says us that D is nef at x. In the same way, we can see that E is nef at y.

Next we assume that D and E are nef at x and y, respectively. In order to see
that p*(D) + ¢*(E) is nef at (x,y), it is sufficient to check that (p*(D)-C) =0
and (¢*(E)-C) =0 for any complete irreducible curves C on X x Y with
(x,y) € C. Here, p(C) is either {x}, or a complete irreducible curve passing through
x. Thus, by virtue of the projection formula, (p*(D)-C) = 0. In the same way,
(q"(E)- €)= 0. O

1.2. THE FIRST CHERN CLASS OF COHERENT SHEAVES

Let X be a normal variety, and F a coherent Oxy-module on X. Here we define
c1(F) € A'(X) in the following way.
Case 1. F is a torsion sheaf. In this case, we set

D= length(Fp){P}.
PeX,
depth(P)=1

where {P} is the Zariski closure of {P} in X. Then, ¢;(F) is defined by the class of D.
Case 2. Fis a torsion free sheaf. Let r be the rank of F. Then, (A" F)"" is a reflexive
sheaf of rank 1, where ¥¥ means the double dual of sheaves. Thus, we define ¢, (F) to
be the class of (A" F)"".
Case 3. Fis general. Let T be the torsion part of F. Then, ¢|(F) = ¢|(T) + ¢ (F/T).

Note that if 0 - F} — F, — F; — 0 is an exact sequence of coherent Oy-mod-
ules, then ¢(F>) = ¢;(F)) + ¢1(F3). Moreover, let L be a reflexive sheaf of rank 1
on X, and s a nonzero section of L. Then

c1(L) = ¢1(Coker(Oy = L)) = the class of div(s).

PROPOSITION 1.2.1 (char(k) = 0). Let X be a normal algebraic variety, F a
coherent Ox-module, and x a point of X. If F is generated by global sections at x and F
is free at x, then c((F) is semi-ample at x.

Proof. Let T be the torsion part of F. Then, ¢|(F) = ¢;(F/T) + ¢(T). Here since F
is free at x, ¢(7) is semi-ample at x. Moreover, it is easy to see that F/T is generated
by global sections at x. Therefore, to prove our proposition, we may assume that F'is
a torsion free sheaf.
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Let r be the rank of F and x(x) the residue field of x. Then, by our assumption,
there are sections sy, ...,s, of F such that {s;(x)} forms a basis of F® x(x). Since
we can view s; as an injection s; : Oy — F, s =51 A --- A5, gives rise to an injection
s: Ox — (N F)"", which is bijective at x. Thus, x ¢ div(s). O

1.3. THE DISCRIMINANT DIVISOR OF VECTOR BUNDLES

Let f: X — Y be a proper surjective morphism of algebraic varieties of the relative
dimension one, and let E be a locally free sheaf on X. We define the discriminant divi-
sor of E with respect to f to be

disy;v(E) = fu2rk(E)ea(E) — (tk(E) — Dei(EY).

LEMMA 1.3.1 (char(k) > 0). Let f: X — Y be a flat, surjective and projective
morphism of varieties with dim f = 1. Let E be a vector bundle of rank r on X. Then, we
have the following.

(1) disy,y(E) is a Cartier divisor.

(2) Let u:Y — Y be a morphism of varieties, and let

X <L XXYY

1 |
Yy <& Y

be the induced diagram of the fiber product. If X xy Y s integral, then
disy, vy (W™ (E)) = u*(disx, y(E)).

Proof. (1) We set F = End(E). Let p: P = P(F) — X be the projective bundle of F,

and Op(1) the tautological line bundle on P. Let g: P — Y be the composition of
rlx Ly Then, since

Pu(c1(Op(1) 1) = —es(F) = —(Q2rea(E) — (r — Der(E)),
we have g*(cl((’)p(l))"zﬂ) = —disy,y(E). Thus,

disy/y(E) = —c1({0p(1)" )P/ V),

where

dimg+1
(,..., J(P/Y):Pic(P) x --- x Pic(P) = Pic(Y)

is Deligne’s pairing for the flat morphism g: P — Y. Therefore, disy,y(E) is a Cartier
divisor.
(2) This follows from the compatibility of Deligne’s pairing by base changes. []
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Remark 1.3.2. In (2) of Lemma 1.3.1, X xy Y is integral if the generic fiber of
X xy Y — Y is integral by virtue of [12, Lemma 4.2].

1.4. THE MODULI SPACE OF T-POINTED STABLE CURVES OF GENUS g

Let g be a non-negative integer and 7 a finite set with 2g — 2 + |T] > 0, where |7 is
the number of 7. Recall that [#] = {1, ..., n} and [0] = @. Usually, we use [n] as 7.
Let M, 7 (resp. M, ) denote the moduli space of T-pointed stable curves (resp. 7-
pointed smooth curves) of genus g, namely, ]\;Ig,r (resp. M, 1) is the moduli space
of |T|-pointed stable curves (resp. |7T]-pointed smooth curves) of genus g, whose
marked points are labeled by the index set 7.

Roughly speaking, the @-line bundles / and {{,},c7 on M o7 are defined as follows:
Letn:C— Mg,r be the universal curve of Mg,T, and s, : Mg,T — C (t € T) the sec-
tions of 7 arising from the T-points of Mg,T. Then, /= det(n*(wc/m;)) and
¥, =si(we)y,,) for e T.

For x € M, 7, let denote C, the nodal curve corresponding to x (here we forget the
T-points). Let Sl(Mg,T) be the set of all irreducible components of the closed set

{xe Mg,T | #(Sing(Cy)) = 1}.

Then, every element of S’(]l;[g, 7) is of codimension /, so that it is called an l-codimen-
sional stratum of My 7. Note that Mg\ M 7 is a normal crossing divisor in the
sense of orbifolds. Thus the normalization of an element of S’(]\;Ig,T) is Q-factorial.
Moreover, we set

- /] -
A/[L,T = Mg1\ U A,
AeSH (M, 1)
ie.,
MY = {x € My | #(Sing(C) < 1).
Note that M?T =M. .
To describe the boundary of M, r, we set
Yor={GDlieZ 0<i<gand IS T}\({(0,MN)}U{O, {thher)
Yer=HG D, GG D, (G, J) € Yorit+j=gINT=0,1UJ =T}
Then, the boundary A = ]\_Jg,T \ M, r has the following irreducible decomposition:

A=AixU  |J Awnga
(XD

A general point of Ay, represents a T-pointed irreducible stable curve with one node.
A general point of Ay p (. represents a T-pointed stable curve consisting of an /-
pointed smooth curve of genus i and a J-pointed smooth curve of genus j meeting
transversally at one point.
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A.
irr At6,0,G.0)}

Let i and 8y p. .z be the classes of Ay, and A p. .z in Pic(M, 7) ® Q respec-
tively. Strictly speaking, i, = cl(OM“(Airr)) and

. %CI(OA;IQ_T(AU))f if v= { (13@)9 (g_l’ T) }3
" | @Oy, (A)), otherwise.

In the case where T'= ), we denote dyig) .9} DY O(iji OF Omingijt» i€,

0i = Olig—ih = Oim.e—ioy  (=1,....[g/2])
on Mg .
Let (Z; {P;},e7) be a T-pointed stable curve of genus g over k. Let Q be a node
of Z, and Zy the partial normalization of Z at Q. Then, the type of Q is defined
as follows:

The case where Zg is connected. Then, Q is of type 0.

The case where Zy is not connected. Let Z; and Z, be two connected compo-
nents of Zp. Let i (resp. j) be the arithmetic genus of Z; (resp. Z). Let
I={teT|P,eZ} and J={teT| P, € Z,}. Then, we say Q is of type
{(. D, (. N}

In the case where 7' = #, for simplicity, a node of type {(i, ¥), (j, ¥)} is said to be of
type i, where i <.

Let Y be a normal variety, and let f: X — Y be a T-pointed stable curve of genus g
over Y. Let Y be the maximal open set over which fis smooth. Assume that Y, # @.
For x € X, we define mult(X) to be lengthy, (wx;y/Qx/y). If x is the generic point
of a subvariety 7, then we denote mult,(X) by multy(X). If x is closed, Y is smooth at
f(x) and Y\ Y is smooth at f{x), then X is locally given by {xy = ™"} around x,
where ¢ is a defining equation of Y\ Y, around f{x). Thus, if Y is a curve, then the
type of singularity at x is Amuli,(x)—1-

Here, for v € Tg.T, let S(X/Y), (resp. S(X/Y),,) be the set of irreducible compo-
nents of Sing(f) such that the type of s in f~'(f(s)) for a general s € S(X/Y), (resp.
S(X/Y),,) is v (resp. 0). We set

X/ = ) mults(X)(S)

SeS(X/Y),
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and

Ou(X/Y) = Y mults(X)(S).

SeSX/Y)irr

Then, d;; and J, are normalized to guarantee the following formula:

5irr(X/Y) = (p*(éirr) and 5U(X/Y) = @*(50)

in 4'(Y) ® Q, where ¢ : Y — Z\;Ig,T is the induced morphism by X — Y.

1.5. THE CLUTCHING MAPS

Here let us consider the clutching maps and their properties.

Let 7: X — Y be a prestable curve, i.e., 7: X — Y is a flat and proper morphism
such that the geometric fibers of m are reduced curves with at most ordinary double
points. We don’t assume the connectedness of fibers. Let 51,55 : ¥ — X be two non-
crossing sections such that 7 is smooth at points s;(y) and s2(y) (Vy € Y). Then, by
virtue of [9, Theorem 3.4], we have the clutching diagram:

P

X X'

N, 7

Roughly speaking, X’ is a prestable curve over Y obtained by identifying s;(Y) with
s2(Y), and s is a section of X' — Y with p-s; =p-s, =s. For details, see [9,
Theorem 3.4].

We assume that 7': X’ — Y is a T-pointed stable curve of genus g, and s is one of
sections of n": X’ — Y arising from T-pointsof n': X’ — Y. Let¢p: Y — ]\;Ig,r be the
induced morphism. Here we set A = det(Rn.(wx/y)), A = det(Rn.(wx/v/Qx/y)) and
Y = si(wx/y) @ s5(wx/y). Then, we have the following.

PROPOSITION 1.5.1. For simplicity, the divisor di;; on Mg,r is denoted by d.

(1) ¢*() = A and ¢*(9) = =¥ + A, where § = 5o+ 3, 5 .
(2) We assume that n(Sing(n)) # Y and every geometric fiber of m has one node at
most. Let

A=M+ ) A

veYy

be the decomposition such that the node of m='(x) (x € (A)),eq) gives rise to a node
of type t in ©' "' (x). Moreover, let a be the type of s(v) in @' () (v € Y). Then,
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* _ _lP+Aa lf‘t:aa
‘P(é’)—{A, if t#a.

Proof. (1) Since det(Rn',(wy,y)) = det(Rm.(wy,y)), the first statement is obvious.
Thus, we can see that
@*(6) = det(Rn' . (wx/y/Quy/v))
= det(Rn'«(wyy)) — det(R7'«(Qyv))
=A- det(Rn/*(QXr/y)).
On the other hand, by [9, Theorem 3.5], there is an exact sequence
O — S*(IP) —> QX’/Y — p*(QX/Y) — O

Therefore, we get (1).
(2) This is a consequence of (1). OJ

As a corollary, we have the following.

COROLLARY 1.5.2. (1) Let a and b be nonnegative integers, and T and S non-empty
finite sets with TN S =@, 2a—2+|T| > 0 and 2b — 2 + |S| > 0. Let us fix s € S and
teT, andset T' = T\ {t} and S" = S\ {s}. Let a: ]\;Ia,T X /\;[;,,B — A;Iaer,Tfusr be the
clutching map, and p: Ma,T X Mb,s — ]\;Iaj and q: Maj X Mb,s — Mb,s the projec-
tion to the first factor and the projection to the second factor respectively. We set
divisors D € Pic(}\;[qub,T/USf) ®0Q, Eec Pic(]\;laj) QQ and Fe Pic(Mb,S) RQ as
follows.

D=ci+ Y dyj+emdnt+ D anGOwnG-
IeT'US’ (@D, GINEY gip r0se
E=cl—eqr)msy¥, + Z dip; + €ireOirr +
leT’
+ Z CL TG b TUS IO .17). 7. )
@ I).G'INeYy
teJ
F= C)v — e{(a,T/),(b,S/)}lps —+ Z d]lpl + eirréirr +
leS’
+ Z €I 1), +a.JOT s} O LG, 17). G )}
(G 17),G" I NeTp s
seJ’

Then o*(D) = p*(E) + q*(F).

(2) Let g be a nonnegative integer and T a finite set with |T| = 2 and 2g — 2+
|T| > 0. Let us fix two elements t,t' €T, and set T' =T\{t,t}. Let
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B Mg,T — ]\_lgH,Tr be the clutching map. We set D € Pic(]\;[gH’T/) ®Q and
E € Pic(M, 1) ® Q as follows:

D=ci+ ) d+endim+ Y. enimdno-
leT" {(ivl)v(iv’)}EYngl,T’

E=cA— €irr(l//t + l//t,) + Z dl‘p[ + CirrOirr + Z eirré{(i’,l’),(j’,j)]—‘r
leT’ {(i’,I'),(]'/,J/)}ETg_T
tel’,t'e'

+ Z Y )G+ 1IN DYOLG )G ) -

{G".1).G' T ey r
et

Then f*(D) = E.
Proof. In the following, for x € M, ., we denote by C, the corresponding nodal
curve to x.

(1) If Cyx,y) has two nodes, then we denote by ty(x, y) the type of the node differ-
ent from the node arising from the clutching map. Then,

n(x,y) =
(1), G +b. T US \ AN} if x € Arpgromy N Moy y € My and 1€ J,
7 974 .1/ 1" / : —[1 1"
(1), G" +a, T UT \ (s}, if x € Myr.y € Ao rmy 0 My and s € J'.
Thus, we get (1) by the above proposition.

(2) In the same way as above, if Cp(y) has two nodes, then we denote by 7)'(x) the
type of the node different from the node arising from the clutching map. Then,

. 1]
/ 0, if x € (Air UUerper Airgrom) N AJ;,T’
fy (X) = {(i/, I/)7 (j/ + l,J/ \ {[’ f/})}, 1fx e A{(i’,[’),(}",]')} N ]‘I[gl,]T
and 1,/ € J,

which implies (2) by the above proposition. OJ

2. A Generalization of Relative Bogomolov’s Inequality

Let f/© X — Y be a projective morphism of quasi-projective varieties of the relative
dimension one, and let £ be a locally free sheaf on X. Let us fix a point y € Y.
Assume that f is smooth over y and E|s, is strongly semistable. In the paper
[11], we proved that disy,y(E) is weakly positive at y under the assumption that ¥
is smooth. In this section, we generalize it to the case where Y is normal.

PROPOSITION 2.1 (char(k) = 0). Let X and Y be algebraic varieties, andf: X — Y
a surjective and projective morphism of dim f'= d. Let L and A be line bundles on X. If
Y is normal, then there are Q-divisors Zy, ..., Zy on Y such that

fler (D gy j
RA(L®" ® A)) ~g =ttt 1N " Zin
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for all n > 0.
Proof. We set

Y =7Y\Sing(y), X'=/7'(Y") and [°=f|,,.
Then, we have
1 (REM(LE" @ A)] ) = c1(RE(LD" ® )] 1o
and
L2 Ll = e ™)
Thus, by virtue of [11, Lemma 2.3], there are Q-divisors ZJ, ..., Z% on Y? such that

Seler () ‘
Y0 d+1 i
@< 0 n++;Z?n

for all n>0. Let Z; be the Zariski closure of Z? in Y. Then, since
codim(Sing(Y)) = 2,

c1(RA(L®" ® A))| 7 Q

@™ oy NS,
cl(Rf(L®" ® A)) ~g "t —2ptl 4 zZn
‘ @+ ;

for all n > 0. ]

THEOREM 2.2. (char(k) = 0). Let X be a quasi-projective variety, Y a normal quasi-
projective variety, and f: X — Y a surjective and projective morphism of dim f= 1.
Let F be a locally free sheaf on X with f,(ci(F)) =0, and S a finite subset of Y. We
assume that fis flat over any points of S, and that, for all s € S, there are line bundles
L; and M5 on the geometric fiber X5 over s such that

H'(X5, Sym™(F5) ® Ls) = H' (X5, Sym" (F5) ® Ms) = 0

for m > 0. Then, f, (cz(F) — cl(F)z) is weakly positive over S.

Proof. The proof of this theorem is exactly the same as [11, Theorem 2.4] using
Proposition 2.1, Proposition 1.2.1 and [11, Proposition 2.2]. For reader’s con-
venience, we give the sketch of the proof of it.

Let 4 be a very ample line bundle on X such that 4; ® Ly and 4; ® Mf?’l are very
ample on X for all s € S. Then, we can see the following claim in the same way as in
[11, Claim 2.4.1]

CLAIM 2.2.1. H'(X,, Sym™ (F;) ® A®~") = H' (X, Sym" (F;) ® A;) =0 for all s € S
and m > 0.

Since X is an integral scheme of dimension greater than or equal to 2, and Xj
(s € S) is a one-dimensional scheme over x(s), there is B € [4%?| such that B is
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integral, and that B N Xj is finite for all s € S, i.e., Bis finite over any points of S. Let
n: B — Y be the morphism induced by f. Let H be an ample line bundle on Y such
that 7,.(Fp) ® H and m,.(Ap) ® H are generated by global sections at any points of S,
where Fg = Flz and Ag = A|;.
By using Proposition 2.1, there are Q-divisors Zy, ..., Z, on Y such that
D (= Dier(R(Sym™(F ® f*(H)) ® A°~' @ f*(H)))
i>0
1

o G D — e+ 7

in the same way as in the proof of [11, Theorem 2.4]. The following claim can also be
proved in the same way as in [11, Claim 2.4.2].

CLAIM 2.2.2. If m > 0, then we have the following.

(a) ci(R7(Sym™(F® [*(H)) ® A®~' ® f*(H))) = 0 for all i > 2.

(b) fu(Sym™(F® f*(H)) ® A®~' ® f*(H)) = 0.

(¢) R':(Sym"(F®f*(H)) ® A®~' ® f*(H)) is free at any points of S.
(d) RY£(Sym™(F® [*(H)) ® A ® f*(H)) = 0 around any points of S.

By (a) and (b) of Claim 2.2.2,

flex(B) = aE) aRfSym"(F@[(H) ® A% & f*(H) Z Z;

(r+ 1) @ ] 2 i

Hence, it is sufficient to show that

cl(R'f(Sym™(F® f*(H) ® A%~ @ f*(H)))

is semi-ample over S. This can be proved in the same way as in the proof of [11,
Theorem 2.4] by using [11, Proposition 2.2], Claim 2.2.2 and Proposition 1.2.1. []

Let C be a smooth projective curve and E a vector bundle on C. We say E is
strongly semistable if, for any finite morphisms ¢: C' — C of smooth projective
curves, ¢*(F) is semistable. Note that if char(k) =0 and FE is semistable, then E is
strongly semistable. As a corollary, we have the following, which can be proved in
the exactly same way as [11, Corollary 2.5].

COROLLARY 2.3 (char(k) = 0). Let X be a quasi-projective variety, Y a normal
quasi-projective variety, and f: X — Y a surjective and projective morphism of
dimf'= 1. Let E be a locally free sheaf on X and S a finite subset of Y. If, for all s € S,
[fis flat over s, the geometric fiber X5 over s is reduced and Gorenstein, and E is strongly
semistable on each connected component of the normalization of X;, then disy,y(E) is
weakly positive over S.
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Remark 2.4. (char(k) = 0). In [11], we proved that the divisor

[g/2]
(Bg +4)7 — goir — Y _ 4i(g — i)5;
i=1

on Mg is weakly positive over any finite subsets of M,. Here we give an alternative
proof of this inequality.

Fix a polynomial Py(m) = (6m — 1)(g — 1). Let H, C Hilbg‘;g,ﬁ be a subscheme of
all tricanonically embedded stable curves, Z, C H, x P*7° the universal tricanoni-
cally embedded stable curves, and f,: Z, — H, the natural projection. Then,
G =PGL (5g —5) acts on Z; and Hg, and f; is a G-morphism. Let ¢: Hy — Mg
be the natural morphism of the geometric quotient. Then, by Seshadri’s theorem
[13, Theorem 6.1], there is a finite morphism % : Y — Mg of normal varieties with
the following properties. Let W, be the normalization of Hy x i, Y, and let
n: Wy — H, and ¢': W, — Y be the induced morphisms by the projections of
Hgy %z, Y — Hg and Hy x ;3 Y — Y respectively. Then, we have the following.

(1) G acts on W,, and 7 is a G-morphism.
(2) ¢': W, — Y is a principal G-bundle.

Thus, [ : Ug = Zg xy, Wy — W, is a stable curve, G acts on U, and [ is a G-
morphism. Since ¢': W, — Y is a principal G-bundle, we can easily see that U, is
also a principal G-bundle and the geometric quotient X = U, /G gives rise to a stable
curve f: X — Y over Y. Moreover, Uy, = W, xy X. Then, we have the following
commutative diagram:

f Zg = 7! Ug
/ i
H, W, |e
¢ ¢’ X
y e
My~——Y

Let A be the minimal closed subset of H, such that f, is not smooth over a point of
A. Then, by [2, Theorem (1.6) and Corollary (1.9)], Z; and H, are quasi-projective
and smooth, and A is a divisor with only normal crossings. Let A=
Aiir UA{ U -~ UApgy be the irreducible decomposition of A such that, if
x € A; \ Sing(A) (resp. x € Ay, \ Sing(A)), thenf;l(x) is a stable curve with one node
of type i (resp. irreducible stable curve with one node).
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Form now on, we consider everything over M?l. (Recall that I\;I[gl] is the set of
stable curves with one node at most.) In the following, the superscript ‘0’ means
the objects over ]\_42].

In [10, § 3], we constructed a locally sheaf F on Zg, with the following properties.

(a) Fis invariant by the action of G.
(b) For each y € H)\ (Aj U+ U Ay,

Flyzi=Ker(H (1)) ® Oy = ),

which is semistable on f;!(y). -
(©) diszo/m(F) = (8g +4) det(m(wz0/m)) — gAY, — 2 4ilg — DA

Then, 7'*(F) is a G-invariant locally free sheaf on Ug, so that 7*(F) can be des-
cended to X° because U, — X is a principal G-bundle. Namely, there is a locally
free sheaf F’ on X° such that ¢"*(F’) = n’*(F). Therefore, by Lemma 1.3.1,
¢ (disyo,yo(F)) = n*(diszo/0(F)). On the other hand, if we set

5]
D =(8g+4))—gdi — »_4i(g — )5,

i=1
then ¢*(D°) = disz, o (F). Therefore, we get ¢ (*(D°)) = ¢ (disyo,yo (F)), which
implies that A*(D") = disyo syo(F) because Pic( Wg)G = Pic(Y). Moreover, by
Corollary 2.3, disyo,yo(F) is weakly positive over any finite subsets of h=1(M,).
Thus, A.(disy,y(F)) = deg(h)D° is weakly positive over any finite subsets of M,
by (2) of Proposition 1.1.2. Hence, D is weakly positive over any finite subsets of
M, because codim(M, \ M{;]) > 2.

3. A Certain Kind of Hyperelliptic Fibrations

We say f: X — Y is a hyperelliptic fibered surface of genus g if X is a smooth pro-
jective surface, Y is a smooth projective curve, the generic fiber of fis a smooth
hyperelliptic curve of genus g. Let Y, be the maximal open set of Y such that fis
smooth over Y;. Then, the hyperelliptic involution of the generic fiber extends to
an automorphism of Xy = f~!(Y,) over Yy. We denote this automorphism by ;.
Clearly, the order of j is 2, namely, j # idy, and /> =idy,. Let I be a section of
f: X — Yand I'j = I' N X,. By abuse of notation, we denote by j(I') the Zariski clo-
sure of j(I'g). The purpose of this section is to show the existence of a special kind of
hyperelliptic fibered surfaces as described in the following propositions.

PROPOSITION 3.1 (char(k) =0). For fixed integers g and i with g =2 and
0<i<g-—1, there is a hyperelliptic fibered surface f- X — Y of genus g, and a
section T of f such that
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(1) Sing(f) #9,jI)=T,

(2) every singular fiber of fis a reduced curve consisting of a smooth projective curve of
genus [ and a smooth projective curve of genus g — i meeting transversally at one
point, and that

(3) T intersects with the component of genus g — i on every singular fiber.

PROPOSITION 3.2 (char(k) =0). For fixed integers g and i with g>?2 and
0 < i< g, there is a hyperelliptic fibered surface f: X — Y of genus g, and a section I'
of f such that

(1) Sing(f) # 9, ;A)NT =9,

(2) every singular fiber of f'is a reduced curve consisting of a smooth projective curve of
genus i and a smooth projective curve of genus g — i meeting transversally at one
point, and that

(3) T intersects with the component of genus g — i on every singular fiber.

PROPOSITION 3.3 (char(k) =0). For fixed integers g and i with g>=2 and
0<i<g—1, there is a hyperelliptic fibered surface f: X — Y of genus g, and a
section T of f such that

(1) Sing(f) #9,jX)=T,

(2) every singular fiber of f'is a reduced curve consisting of a smooth projective curve of
genus i and a smooth projective curve of genus g — i — 1 meeting transversally at
two points, and that

(3) T intersects with the component of genus g — i — 1 on every singular fiber.

PROPOSITION 3.4 (char(k) =0). For fixed integers g and i with g =2 and
0<i<g-—1, there is a hyperelliptic fibered surface f: X — Y of genus g, and a
section I of f such that

(1) Sing(/) # 8, () NT =1,

(2) every singular fiber of fis a reduced curve consisting of a smooth projective curve of
genus i and a smooth projective curve of genus g — i — 1 meeting transversally at
two points, and that

(3) T intersects with the component of genus g — i — 1 on every singular fiber.

PROPOSITION 3.5 (char(k) =0). For fixed integers g and i with g>2 and
1 <i<g-—1, there is a hyperelliptic fibered surface f: X — Y of genus g, and non-
crossing sections I'y and Ty of f such that

(1) Sing(f) # 9, [I") =T, jd2) =17,

(2) every singular fiber of f'is a reduced curve consisting of a smooth projective curve of
genus i and a smooth projective curve of genus g — i meeting transversally at one
point,
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(3) T’y and Ty gives rise to a 2-pointed stable curve (f: X — Y,I'1, 1), and that
(4) the type of x in f~1(f(x)) as 2-pointed stable curve is {(i, {1}), (g — i, {2})} for all
x € Sing(f).

Let us begin with the following lemma.

LEMMA 3.6 (char(k) = 0). For nonnegative integers a; and a,, there are a morphism
f1: X1 — Yy of smooth projective varieties, an effective divisor Dy on X, a line bundle
Ly on Xy, a line bundle M| on Y|, and noncrossing sections I'y and 'y of f1: X1 — Y}
with the following properties.

(1) dimX; =2 and dim Y, = 1.

(2) Let y be the set of all critical values of fi, i.e., P € Xy if and only if f{(P) is a
singular variety. Then, for any P € Y1\ X, f{(P) is a smooth rational curve.

(3) =i #0, and for any P € Xy, fT'(P) is a reduced curve consisting of two smooth
rational curves EY and E5 joined at one point transversally.

(4) Dy is smooth and fi |D1: Dy — Y| is etale.

(5) (EL-Dy)=a, + 1 and (E3 - Dy) = ay + 1 for any P € ;. Moreover, Dy does not
pass through EL N E%.

(6) There is a map a: £| — {1, 2} such that

D, e L§a1+az+2 R f(M)) ® Oy, (— Z(Clo—(})) + 1)5*17)(1’))

PEZ]

(7) deg(M)) is divisible by (a; + 1)(az + 1).

(3)

T e|Li®Oy|— Y Ep|| ad Tre|Li®Ox|- Y E;
PeX, PeX,
o(P)=1 o(P)=2

Moreover,

(DT = (D) T =0 and (E"p-rj):{? iz

Proof. We can prove this lemma in the exactly same way as in [11, Lemma A.1]
with a slight effort. We use the notation in [11, Lemma A.1]. Let F} and F; be curves
in [P’EX,Y) X [FD(IS’T) defined by {X = 0} and {X = Y} respectively. Note that

Fi=p ((0: 1), Fr=p'((1:1),
D' =pN(1:0), (D -F)=1D F)=1,

D'NnF ={0} and D'NF,={Qs}.
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Then, since

wi(F1) =py'((0: 1) and wi(F) =p;'((1: 1),

in [11, Claim A.1.3], we can see that each tangent of (D) at Q;; (i = 1, 2) is different
from u}(F;).

Let I; be the strict transform of uj(F;) by p: Z) — IP(IX’Y) x Y. Then,

T e 1 (P1(Op (1)) ® O, (_ ZEiﬁj)
J

Thus, if we set I'; = (v),(T;), then we get our lemma. O

In the following proofs, we use the notation in [11, Proposition A.2 and
Proposition A.3].

The proof of Proposition 3.1. We apply Lemma 3.6 to the case where a; = 2/ and
a, =2g —2i— 1. We replace D, by D, + I, and a, by a; 4+ 1. Then, (4), (5) and (6)
hold for the new D, and a,. Thus, we can construct f: X — Y in exactly same way as

in [11, Proposition A.2]. Since u;5(I"2) is the ramification locus of p3, I' = h*(45(1"2))req
is a section of f3. Thus, if we set I' = v3(I"), then we have our desired example.

The proof of Proposition 3.2. Applying Lemma 3.6 to the case where a¢; = 2i and
a, =2g—2i, we can construct f: X — Y in exactly same way as in [I1,
Proposition A.2]. Here let us consider u5(I"2). Then, u5(I",) is a section of f, such that
w3(T2) N (Dy + B) = 9, u3(T2) - Ep) = 0 and (u5(T) - E,) = 1 for all Q € =,. Here
we set I" = v3(u3(u3(I'2))). Then, since pi(u5(I'2)) does not intersect with the rami-
fication locus of u;, T" is etale over Y. Moreover, we can see (I - CIQ) =0 and
- CZQ) =2 for all Q € %,. If I" is not irreducible, then we choose I" as one of
irreducible component of I”. If T" is irreducible, then we consider X xyI' — I" and
the natural section of X xy I’ — I'. Then we get our desired example.

The proof of Proposition 3.3. We apply Lemma 3.6 to the case where a; = 2i + 1
and ay = 2g — 2i — 2. We replace D, by D, + I'; and a, by a; + 1. Then, (4), (5) and
(6) hold for the new D; and a;. Note that deg(M) is even. Thus, we can get a double
covering u: X — X in exactly same way as in [11, Proposition A.3]. Let f: X — Y
be the induced morphism, and I' = p*(I"2),.q- Then, we have our desired example.

The proof of Proposition 3.4. Applying Lemma 3.6 to the case where a; = 2i + 1
and a; = 2g — 2i — 1, we can get a double covering u: X — X in exactly same way
as in [l11, Proposition A.3]. Let f: X — Y; be the induced morphism and
I = pu*(I',). Then, I is etale over Yi. If T is not irreducible, then we choose I" as
one of irreducible component of I'. If T" is irreducible, then we consider
X xy, I' = I' and the natural section of X xy, I' = I'. Then we get our desired
example.
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The proof of Proposition 3.5. We apply Lemma 3.6 to the case where a; = 2i — 1
and ap = 2g — 2i — 1. We replace D; by Dy +T'y, D, by D, + 1’5, a; by a; + 1, and a,
by a; + 1. Then, (4), (5) and (6) hold for the new D;, D,, a; and a,. Thus, we can
construct f* X — Y in exactly same way as in [11, Proposition A.2]. Since u5(I';) and
u3(T2) are the ramification locus of uy, Ty = A*(15('1)),eq and To = h*(u5(12)),eq are
sections of f3. Thus, if we set I'j = v3(I') and I'> = v3(T'»), then we have our desired
example.

Remark 3.7. As a variant of [11, Lemma A.1], we have the following: For non-
negative integers a; and a, there are a morphism f; : X; — Y| of smooth projective
varieties, and noncrossing sections I'y, ..., 44442 of fi: X7 — Y with the fol-
lowing properties:

(1) dimX; =2 and dim Y, = 1.

(2) Let X; be the set of all critical values of f1, i.e., P € £, if and only if /{!(P) is a
singular variety. Then, for any P € Y; \ £, f{'(P) is a smooth rational curve.

(3) =i # 0, and for any P € Xy, f7!(P) is a reduced curve consisting of two smooth
rational curves EL and E% joined at one point transversally.

(4) If we set Dy =T+ + Ty iam+2, then (EL-Di)=a; +1 and (E5-D)) =
a+ 1 for any P € 4.

This can be proved by taking an etale pull-back of Y; in [11, Lemma A.1]. Prof.
Keel pointed out that the above implies the following: Let S, be the nth symmetric
group, and A;IO,,I/Sn the quotient of A_Jo,n by the natural action of S,,. Let D be a Q-
divisor on MO,H/SH. Then D is nef over M /S, if and only if D is Q-linearly equiva-
lent to an effective sum of boundary components.

Finally, let us consider the following two lemmas, which will be used in the later
section.

LEMMA 3.8 (char(k) = 0). Let X be a smooth projective surface and Y a smooth
projective curve. Let f- X — Y be a surjective morphism with connected fibers, and let
L be a line bundle on X. If L|y, gives rise to a torsion element of Pic(Xy) on the generic
fiber X, of f and deg(L|r) = 0 for every irreducible component F of fibers, then we have
(L*) =0.

Proof. Replacing L by L®" (n # 0), we may assume that | x,~ Oy,. Thus, f.(L) is
a line bundle on Y, and the natural homomorphism f*f.(L) — L is injective. Hence,
there is an effective divisor £ on X such that f*f,(L)® Ox(F)~ L. Since
f*f«(L) — L is surjective on the generic fiber, E is a vertical divisor. Moreover,
(E-F)=0 for every irreducible component F of fibers. Therefore, by Zariski’s
lemma, (E?) = 0. Hence, (L?) = (E*) = 0. O

LEMMA 3.9 (char(k) = 0). Let C be a smooth projective curve of genus g = 2. Let 3
be a line bundle on C with 9%* = wc. Let A be the diagonal of C x C, and
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p: Cx C— Candq: C x C— C the projection to the first factor and the projection
to the second factor respectively. Then, p*(3°") ® ¢*(9%") ® Ocxc((n — 1)A) is gen-
erated by global sections for all n = 3.

Proof. Since p*(3°") ® ¢*(9%") is generated by global sections, the base locus of
(9% ® ¢*(9%") ® Ocxc((n — 1)A) is contained in A. Moreover,

%) ® ¢*(9%") ® Ocwc((n — DA)| = wc.
Thus, it is sufficient to see that

H(p*(9%") ® ¢*(9°") ® Ocxc((n = 1)A))
— H'(p*(9*") ® ¢"(9%") ® Ocxcl(n — DA)|,)

is surjective.

We define L, ; to be

Lyi = p"(9%") ® ¢*(9%") ® Ocxc(ih).
Then, it suffices to check H'(L,,,_») = 0 for the above assertion. By induction on i,
we will see that H'(L,;) =0 for0 <i<n-—2.
First of all, note that H'(9%") = 0 for n > 3. Thus,
H' (p*(9%") © ¢"(9°") = H' (p(p*(9°") ® ¢*(9°"))) = H'(8°") @ H'(9°") = 0.
Moreover, let us consider the exact sequence
0— Lyi-1 = Ly — Lyi|,— 0.

Here since L, |~ &', H'(L,|,) =0 if i <n—2. Thus, by the hypothesis of
induction, we can see H'(L, ;) = 0. ]

4. Slope Inequalities on M, 7

Let g be a nonnegative integer and 7T a finite set with 2¢g — 2 + |7] > 0. Recall that

Yor=1{GD]ieZ 0<i<gand < T}\ ({(0, %)} U {0, {th}er),
Yor={G.D.G.DYGD.GJ) e Yer i+j=g INT=0,10J=T).

For a subset L of T, let us introduce a function y; : Y1 x Y, 7 — Z given by

| LN
02 D), G, ) = (det(]’. :m J||) + |Lm|)x

i LN
x | det| . —|LNJ|).
joILnJ|
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Note that y,((, 1), (7, J)) = y.((, J), (i, 1)), so that y; gives rise to a function on Tg,T.
Further, a Q-divisor 0; on M, r is defined to be

O =4 — 1+ ILDE— 1Y W, — R2ILPA+ LS — Y 4y (0)5,.

teL DEYK‘T

Then, we have the following.

THEOREM 4.1 (char(k) = 0). For any subset L of T, the divisor 0y is weakly positive
over any finite subsets of Mg r.

Proof. Clearly, we may assume 7 = [n] for some nonnegative integer n. Let us take
an n-pointed stable curve /: X — Y such that the induced morphism 4: ¥ — Mg,[”]
is a finite and surjective morphism of normal varieties. Let Y, be the maximal Zariski
open set of Y over which fis smooth. Let Y\ Yy = B; U---U By be the irreducible
decomposition of Y\ Y. By using [3, Lemma 3.2], we can take a Zariski open set Y
with the following properties.

(1) codim(Y\ Y;)>2and Y, C V).

(2) Y, is smooth at any points of Y; N (Y \ Yp).

(3) f:Sing(f)Nf'(Y1) — fiSing(f)) N Y; is an isomorphism, so that for all y € Y7,
the number of nodes of f~!(y) is one at most.

(4) There is a projective birational morphism ¢: Z; — X; = f~'(Y}) such that if we
set fi =f- ¢, then Z; is smooth at any points of Sing(f;) N7 (Y \ Yy) and
fi: Z) — Yj is an n-pointed semi-stable curve. Moreover, ¢ is an isomorphism
over X \ Sing(f).

(5) Foreach/=1,...,s, there is a t; such that mult,(X) = #;+ 1 for all x € Sing(f)
with f(x) € BiN Y.

Let K, be a subset of {I,..., s} such that /~!(x) is irreducible for all x € B; N Y},
and let Ky ={1,...,s}\ Ko. For each / € Kj, there is a (g, 1), (h;, J1) € Y[ such
that the type of x is {(gs, I;), (l;, J;)} for all x € Sing(f) with f{x) € B;N Y;. From
now on, by abuse of notation, we denote B;N Y, by B;. For / € K|, ffl(B/) has
two essential components T ,1 and le, and the components of (—2)-curves
Ey, ..., E, such that T} — B; is an Iipointed smooth curve of genus g; and
le — By is a J-pointed smooth curve of genus /;. Moreover, the numbering of
Ey, ..., E, is arranged as the following figure:

LetI'y, ..., I, be the sections of the n-pointed stable curve of /: X — Y. By abuse
of notation, the lifting of I', to Z; is also denoted by I',. Here we consider a line

https://doi.org/10.1023/A:1015820111515 Published online by Cambridge University Press


https://doi.org/10.1023/A:1015820111515

NEF DIVISORS IN CODIMENSION ONE 215

bundle L on Z; given by

L=o2H, 0y (—(2g —2)> Tu+ Y (ILIR2g—1)— (g - 2)ILN m)f}>,

ael leK;
where

~ t[
Ty =+ DT} + ) (4+1-a)k,.
a=1
We set £ = Oy, @ L. Then, disy,;y,(E) = —(fl)*(cl(L)z). Here, we know the follow-
ing formulae:

flew@zv) - TH) = (4 + 1)2g1 — 1By,

e [0, ifI#£L,
f*(T1 ' T[/) = . ,
—(t+1)B;, ifl=1

fe (Z T, f}) =+ DILN B,

aclL

filei(wz,yy,) - Tw) = =fi(L'y - Ty) (adjunction formula),

E
12det(fu(wz,/v,)) — Z(lz + DB = fi(ci(wz,/v,)") (Noether’s formula).
=1

Thus, we can see that

disz, /v, (E)=4(g—1+ILN(g—Dfs <C1(le/Y1)‘ZFa) — 12|L1* det(fu(@z,/v,))+

acl

+ Y ILP+DBi= Y 4+ Dy (. 1), (. J)D B
leKy leK;
On the other hand, for y € Yy, let ¢ : C' — f~'(») be a finite morphism of smooth
projective curves. Then, ¢*(E|-1()) = Oc @ ¢*(L|41(,)) and

deg(¢™(Lls1(y))) = deg(¢p)deg(Lly1(,) = 0.

Therefore, ¢*(E|1;)) is semistable, which means that E|~,, is strongly semistable
for all y € Yy. Thus, by Corollary 2.3, disz,,y,(E) is weakly positive over any finite
subsets of Y, as a divisor on Y;. Therefore, if we set

0, =4(g—1+|LI)(g — . (Cl(wzl/n) : Zra) — 12|LP det(fu(z,/r,)+

aelL

+ D LR+ DB = Y4+ Dy (e, 1), (s I B

leKy lek,

on Y, then 0} is weakly positive over any finite subsets of Y, as a divisor on Y. Here
h*(01) = 07, so that h.(0;) = deg(h)0,. by the projection formula. Hence, we have
our theorem by (2) of Proposition 1.1.2. O
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Let us apply Theorem 4.1 to the cases ]\;Ig,l and Mg,z.

COROLLARY 4.2 (char(k) =0). Let ]\;[g,I = ]l;[g,{l} be the moduli space of one-
pointed stable curves of genus g = 1. We set 6;, u, 01 € Pic(M, 1) @ Q as follows:

0i = O(im iy (I <i<g-—1),

g—1
p=(8g+4)i—gd— Y _4i(g— i),
i=1
g—1
01 = 4g(g — D, — 124+ Sir — Y _ 4ii — 1)3;.

i=1

Then, we have the following.

1 and 0y are weakly positive over any finite subsets of M, 1. In particular,
u yp y g p

g1 B
@Jr,u + @+91 + @+5irr + Z @+5i c Nef(Mg,l; Mg,l)a
i=1
where Qy = {x € Q| x> 0}. (Notethatu=0,=0ifg=1,andu=0ifg=2.)
(2) We assume g = 1. Then, au + b0y + i 0irc is nef over M 1 if and only if c;yx = 0.
(3) We assume g = 2. If a Q-divisor

g—1
D = ap+b01 + cinediee + ) 0

i=1

is nef over My 1, then b, cir, c1, . .., cq—1 are nonnegative.

Proof. (1) u is weakly positive over any finite subsets of M, ; by [11, Theorem B]
or Remark 2.4, and (2) of Proposition 1.1.3. Moreover, 0; is weakly positive over
any finite subsets of M, by virtue of the case T'= L = {1} in Theorem 4.1.

(2) This is obvious because u = 0; = 0.

(3) We assume that D is nef over M, ;. Let C be a smooth curve of genus g, and A
the diagonal of C x C. Let p: C x C — C be the projection to the first factor. Then,
A gives rise to a section of p. Hence, we get a morphism ¢,: C — Mg,l with
@,(C) € M, 1. By our assumption, deg(¢7(D)) = 0. On the other hand,

deg(pi(w) = deg(](dir)) = deg(((01)) = - - = deg(¢](Jg-1)) = 0
and deg(¢*(0,)) = 8g(g — 1)>. Thus, b > 0.

Let f5: X, — Y, be a hyperelliptic fibered surface and I', a section as in
Proposition 3.3 for i=0. Let ¢,: Y» - M,; be the induced morphism. Then,
Pp(Y2) N Mg,y # 0,

deg(p3(w) = deg(@3(01)) = - - - = deg(¢3(dg—1)) = 0
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and deg(¢3(dirr)) = deg(dirr(X2/Y2)) > 0. On the generic fiber, I'; is a ramification
point of the hyperelliptic covering. Thus,

Ly = wx,/v, ® Ox,(—(2g — 2)I'»)

satisfies the conditions of Lemma 3.8. Thus, (L3) =0, which says us that
deg(93(01)) = 0. Therefore, we get cjr = 0.

Finally we fix i with 1 <i< g— 1. Let f3: X3 — Y3 be a hyperelliptic fibered sur-
face and I'; a section as in Proposition 3.1. Let ¢@3: Y3 — Mg,l be the induced
morphism. Then, 3(¥3) N M1 # 0, deg(@i(w) = 0, deg(@i(3)) =0 (I# i) and
deg(93(6,)) = deg(d:(X3/Y3)) > 0. Let X3 be the set of critical values of f3. For each
P € %3, let Ep be the component of genus i in f5!(P). On the generic fiber, I'; is a
ramification point of the hyperelliptic covering. Thus,

Ly =wy,y, ® Oy, (—(2g = 2)I3 + 2(21' - I)EP>

P€23

satisfies the conditions of Lemma 3.8. Therefore, (L%):O, which says us that
deg(93(01)) = 0. Hence, we get ¢; > 0. O

COROLLARY 4.3 (char(k) = 0). Let Mgy = M 1.5 be the moduli space of two-
pointed stable curves of genus g = 2. We set 6;, 6;, it, 012 € Pic(My ) ® Q as follows:
0 = O e—in2y (1 <I<Q),

0 = OG-y (1 <i<g—1),

g—1 g
p=(8g+4)i— goir — Y _4i(g — )or — Y _ 4i(g — i)5;,
i=1 i=1

L L

O12=(g— D+ DWW, +¥,) — 124+ 0irr—
g1 g
=Y Qi—g—1DQi—g+ o — Y _4i(i — ).
=1 i=1
Then, we have the following.

1 and 01 5 are weakly positive over any finite subsets of M, ». In particular,
M , YD y g p

g1 g _
Qe+ Q015+ Qi + Z Qo+ Z Q490; S Nef(Mg,; M, ).
P

i=1

(2) If a Q-divisor

g—1 g
D = ap+b01 5+ ciSine + Y _ cioi + Y didi

i=1 i=1
on My, is nef over M, », then

b=0, cn=0, =0Mi=1,...,6—1), d=0i=1,...,9).
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(3) Here we set o, u' and 0/1’2 as follows:

g—1
o = Oirr + E g,
i=1

g
W=(8g+4)i—go— ) 4ilg— i,
i=1

15

g
0),=(g— D+ DW, +¥) — 124+ 07— 4i(i — 1)é;.

i=1

Then, we have

g -
@Jr,u/ + ®+0/l,2 + @+O‘ + Z @+5,‘ - Nef(Mg’z; ngz).

i=1

Moreover, if a Q-divisor ay’ + b0 5 + co + 35 | did; on Mg,Z is nef over Mg, then
b, c, di,...,d, are nonnegative.

Proof. (1) By [11, Theorem B] or Remark 2.4, and (2) of Proposition 1.1.3, u is
weakly positive over any finite subsets of M, ,. Further, 0, » is weakly positive over
any finite subsets of Mg, by the case 7= L = {1, 2} in Theorem 4.1.

(2) We assume that D is nef over M, ». Let C be a smooth curve of genus g, and A
the diagonal of C x C. Let p: C x C — C and ¢: C x C — C be the projection to
the first factor and the second factor respectively. Moreover, let 3 be a line bundle
on C with 9%% = w¢ and L, = p*(9®") ® ¢*(9%") @ Ocxc((n — 1)A). For n = 3, let
T, be a general member of |L,|. Then, since (L,21) > 0, by Lemma 3.9, T}, is smooth
and irreducible. Moreover, T, meets A transversally. Then, we have two morphisms
pn:T,— Cand ¢q,: T, - C given by T,~>C x C 2, € and T,—~CxC A
respectively. Let I',, and I';, be the graph of p, and ¢, in C x T, respectively. Then,
it is easy to see that I, and I',, meet transversally, and (I',, -I,,)=
(T,-A)=2g—2. Let X — C x T, be the blowing-ups at points in I',, NIy, and
let T, and T, be the strict transform of T, and T, respectively. Then, T, and
T, give rise to two noncrossing sections of X — T,,. Moreover,

(wx/1, - Tp,) = (@cxry1, - Tp) = 2(g — Ddeg(T, — C) =2(g — 1)(ng — 1).

In the same way, (wy/r, - T,,) = 2(g¢ — 1)(ng — 1). Let n,,: T, — Mg,z be the induced
morphism. Then, we can see that

deg(n) (1)) = deg(n;(0;)) = deg(n;(6;)) =0, foralli=1,...,g—1.
Moreover,

deg(m, (¥ + ) =4 — D(ng—1) and deg(m,(d) = 2(g — 1).
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Thus,

deg(n(D)) = 4(g + 1)(g — 1)*(ng — 1)b — 8g(g — 1)*dy = 0
for all n > 3. Therefore, we get b > 0.

Let f>: Xo — Y, be a hyperelliptic fibered surface and I', a section as in
Proposition for i =0. Then, I'; and j(I;) gives two points of X, over Y. Let
@y Yo — A;[g,z be the induced morphism. Then, ¢,(Y2) N Mg> # @, deg(@3(w) =0,
deg(p3(0;)) =0 for all i=1,...,g— 1, and deg(3(d;)) =0 for all i=1,...,g.
Moreover, deg(p,(dirr)) > 0. On the generic fiber, two points arising from I', and
j(I'y) are invariant under the action of the hyperelliptic involution. Thus,

Ly = wy,y, ® Ox,(—(g — D2 + j(I"2))

satisfies the conditions of Lemma 3.8. Thus, (L3) =0, which says us that
deg(¢3(012)) = 0. Thus, we get ¢y = 0.

We fix iwith 1 < i< g. Let f3: X3 — Y3 be a hyperelliptic fibered surface and I'; a
section as in Proposition 3.2. Let ¢;: Y3 — Mg,z be the induced morphism arising
from the 2-pointed curve {f3: X3 — Y3;13,/(I'3)}. Then, ¢;(Y3)N Mo #0,
deg(g3() =0, deg(@3(e,)) =0 (Vs=1,...,g— 1), deg(@i(3,)) =0 (Vs#i) and
deg(¢3(9;)) = deg(d:(X3/Y3)) > 0. Let X3 be the set of critical values of /3. For each
P € X3, let Ep be the component of genus 7 in f5!(P). On the generic fiber, two points
arising from I'; and j(I';) are invariant under the action of the hyperelliptic involu-
tion. Thus,

L3y = oy, /v, ® O, (-(g — DT +jT)) + Y Qi- I)EP)

PGZ}

satisfies the conditions of Lemma 3.8. Therefore, (L) =0, which says us that
deg(93(01,2)) = 0. Hence, we get d; > 0.

Finally we fix i with 1 <i< g— 1. Let f4: X4y — Y4 be a hyperelliptic fibered sur-
face and I'y4, FQ sections as in Proposition 3.5. Let ¢, : Y4 — ]\;[gyz be the induced
morphism.  Then, ¢,(Ya) N Mgy #0,  deg(@i() =0, deg(@3(3) =0 (¥s).
deg(pj(os)) =0 (Vs # 1), and deg(¢pj(c,)) > 0. Let X4 be the set of critical values of
f1. For each P € Z4, let Ep be the component of genus i in f;!(P). On the generic
fiber, I’y and T"j are a ramification point of the hyperelliptic covering. Thus,

Ly = wx,y, ® Oy, (—(g — DT +T)+ Y (i) —(g— 1))EP)

P€E4

satisfies the conditions of Lemma 3.8. Therefore, (L) =0, which says us that
deg(¢}(012)) = 0. Hence, we get ¢; = 0.
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(3) There are nonnegative integers ¢; and f; (1 < i< g— 1) with
g—1 g—1
Wo=pu+ Ze,-oi and 0, =012+ Zf,-o,-.
i=1 i=1
Thus, (3) is a consequence of (1) and (2). O

5. The Proof of the Main Result

Throughout this section, we fix an integer g > 3. The purpose of this section is to
prove the following theorem.

THEOREM 5.1 (char(k) =0). A Q-divisor ap + b0y + ZEg/IZ bid; on M, is nef
over M (] if and only if the following system of inequalities hold:

b
oz max| = 1),

By =By =By > -+ = By,
B*[g/2 "‘ZB;>BT>BS5

where By, By, Bi and B} (i=1,...,[g/2]) are given by

4birr B — bi and bi
g2g—1)" Qi+ 1) T @) —h+1)

Proof. In the following proof, we denote 6; by 6y g—;. Moreover, we set

BO = 4birra Ba =

v, =i} 11<ij<g i+j=g}

For a Q-divisor D = au + by dipr + Z 0(ij1. let us consider the following

{i,j}ev, l/}
inequalities:
T (5.1.1)
4st ’ &
b{s t} b{s t} 4'birr — .
> i > > <
4byy = S@s+1) @+l g1 (V{s, t} € vy with s < 1), (5.1.2)
bur o b bsn o bux
121+1)7 sQ2s+ 1) tQt+1) " kQk+1)
(V{s, 1}, {, k} e v, with [ < 5 <t < k), (5.1.3)
az0, byr=20, byy=0 (Vs 1} evy). (5.1.4)

Let f: Mg 12— M and oy, : My x M, — M ({s, 1} € v,) be the clutching maps.
First, we claim the following:
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(1) p*(D) is nef over M,_;, and o (D) is nef over M, x M, for all {s, 1} € v,

) (5.1.1), (5.1.2), (5.1.3) and (5.1.4) hold.

On A_dg_m, we define g and §; (i=1,...,g — 1) as in Corollary 4.3. Moreover, we

set

g—1

W=0Bg—Hi—(g—Do— ) 4ilg—1-10d,

i=1
g—1
0' = (g — g0 + ) — 124+ 0 = Y _4i(i — 1)5;.
i=1
Then, by using (2) of Corollary 1.5.2, we can see

(&= (g —=2)Q¢ = Da = 3bixr a8 = birr

PO = -1 " Tee-2

(g — D2g+ Dby, & ( 4i2i + 1)
+ o+ b ig—i} — A <~ Dirr
2\ bz g2g— 1)

g2g -1
Thus, by Corollary 4.3, if *(D) is nef over Mg,l,z, then
ag = birr = 0,

4iQ2i+ 1),
g(zg _ 1) 1Ty

Here we set i) = 0, =0 on M, and

b{,',g_,'}Z (l:l,,g—l)

/ 1 ) e—1
o=y ((Se + A — edin — ; 4l(e — 1)51>,

) 1 e—1
0,=—— <4e(e — Dy — 122+ Siee — Y4l — 1)5/>

=1

(5.1.a)
)5,.

(5.1.6)

(5.1.7)

on M, (e > 2), where d;’s are defined as in Corollary 4.2. Let us fix {s, t} € v,. Then,

by using (1) of Corollary 1.5.2, we can see
o (D) = p*(Ds) + " (D),

where p: My x M,; — M, and q: My x M,; — M, are the projections, and

D, € Pic(Ms,l) ® @ and D, € Pic(i\_l,,l) ® @ are given by

4(g — 1)S(2S + Da — 3[){5,1} 4 4sta — b{ly,[}

D, = .
s 4s(2s T Hs 4s

0

N 121+ 1)
A il
+ (blrr 4s (2 + 1)>51rr + Z( {Lg—1l} — S(2S + l)b
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and

Mg — D12t + Da—3bgy n 4sta — by,
- 420+ 1) e 41

4 by \s o 21+ 1)
+<b“r 4z(2t+1))5'"+; Dite= =gy Dl JOr

Thus, by using Corollary 4.2 and Lemma 1.1.4, if of (D) is nef over M, x M, 1, then

D, Lo, (5.1.0)

4sta = b{s’,}, (5.1.8)
bis.n bis.
> i > u N
bire = 4s2s + 1)’ bire = 412t + 1)’ (5.1.9)
121+ 1)
s ATy =1, s—1), 1.1
b{l»g 1} s(25+ 1) {s.1} (l S ) (5 0)
121+ 1)

(g1} = m (5.1} (I=1,...,t—1). (5.1.11)

Therefore, (1) implies (5.1.6)—(5.1.11). Conversely, we assume (5.1.6)—(5.1.11).
Then by using (5.1.6) and (5.1.7), we can see (5.1.4). Thus, we have

ag — biw 2 0= (g — 1)(g — 2)(2¢ — Da — 3bixr 2 0
dsta = by = 4(g — 1)s(2s + 1)a = 3by,y and 4(g — D12t + D)a = 3by, 4.

Therefore, by Corollary 4.2, Corollary 4.3 and Lemma 1.1.4, we can see that f*(D) is
nef over M, 5 and of (D) is nef over M x M, for all {s, 1} € v;. Hence it is suffi-
cient to see that the system of inequalities (5.1.6)—(5.1.11) is equivalent to (5.1.1)—
(5.1.3) under the assumption (5.1.4).

The case s=1, t=g—1 in (5.1.8) and the case i=g—1 in (5.1.7) produce
inequalities

4g—1
4(g - l)a > b{l,gfl} and b{l,gfl} 2 (g )

birr

respectively, which gives rise to (5.1.6). Moreover, it is easy to see that (5.1.7) and
(5.1.9) are equivalent to (5.1.2), so that it is sufficient to see that (5.1.10) and
(5.1.11) are equivalent to (5.1.3).

From now on, we assume s < ¢. Since s(2s + 1) < 12t + 1), (5.1.10) and (5.1.11)
are equivalent to saying that

bun o b
1214+1)7 sQ2s+1)

bur o by
121+1)7 t2t+1)

(1<l<y) (5.1.12)

(s<l<1), (5.1.13)
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where k =g — 1 In (5.1.12), t <k < g — 1, Thus, (5.1.12) is nothing more than

buw _  bisa
1214+1) 7 s@2s+1)

I<l<s<t<k<g-1).

Moreover, in (5.1.13), s < k < t. Thus, (5.1.13) is nothing more than

by bis,n
kQQk+1) = 12t +1)

I<s<i<k<t<g-1).

Therefore, replacing {s, ¢t} and {/, k}, we have

by o bun
12t+1) 7 kQk+1)

I<l<s<t<k<g-1).

Thus, we get Claim 5.1.5.

By Claim 5.1.5, it is sufficient to show the following claim to complete the proof of
Theorem 5.1.

CLAIM 5.1.14. (1) D is nef over ML” if and only if D is nef over M,, (D) is nef
over My, and o (D) is nef over My x M, for all {s,} € v;.

(2) D is nef over My if and only if (5.1.4) holds.

(3) (5.1.1), (5.1.2) and (5.1.3) imply (5.1.4)

(1) is obvious because

A;[g] = Mg U ﬁg(Mg—],2) ) U as,l(Ms,l X Ml,l)'

{s,1}€D,

(2) is a consequence of [11, Theorem C]. For (3), let us consider the case s = 1,
t =g—11n (5.1.2). Then, we have

4g—1)

12birr 2 b1 g—1y and by g1y = birr,

which imply b;; > 0. Thus, we can see (5.1.4) using (5.1.1) and (5.1.2). O

COROLLARY 5.2 (char(k) = 0). Let Ay and A; (i=1,....[g/2]) be the normal-
izations of the boundary components Ay, and A; on M and Dir - Alrr — M and

A — M the induced morphisms. Then, a Q-divisor D on M is nef over M zf and
only if the following are satisfied.:

(1) D is weakly positive at any points of M.
(2) p},(D) is weakly positive at any points of pml(M[
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(3) pi(D) is weakly positive at any points of pi’l(Mi,l])for all i.

Proof. Let f: M,_1 7 — M be the clutching map. Then, there is a ﬁmte and
surjective morphism f’ : Mg 12— Am with f = p,,, - B'. Further, for 1 <i < [g/2],
let oo ,:M,1 X Mg i = M be the clutching map. Then, there is a ﬁnrte and
sur]ectwe morphism oclg i M, 1 X Mg i Z with o, = p; - ,g ;- In particular,
Alrr and A s are (O-factorial. Therefore, if D satisfies (1), (2) and (3), then D is nef
over

Conversely, we assume that D is nef over M[ (1) is nothing more than [11,
Theorem C]. As in Theorem 5.1, we set D = au + birrOier + Zgg/lz b;d; on M If we
trace-back the proof of Theorem 5.1, we can see that

ﬁ*(D) S @JJ/ =+ @+0/ =+ @+J + Z ®+5i~

Here y/ and 0’ are weakly positive at any points of M,_;, by (1) of Corollary 4.3.
Thus, so is *(D) = ﬁ’*(p;r(D)). Therefore, by virtue of (2) of Proposition 1.1.2,
BL.(B*(D)) = deg()pi (D) is weakly positive at any points of p; (M[ ) Finally, let
us consider (3) As in the proof of Theorem 5.1, there are D; € P1C(Ml 1) ® Q and
D, € Plc(_ ~)®Q  with o, (D) =p*(D;) + q*(Dg—i), where p: M| x
My i1 — M;yand q: M; x Mq_;1 — M,_;; are the projections to the first factor
and the second factor respectively. In the same way as for f*(D), we can see that
D; (resp. D,y_;) is weakly positive at any points of M;; (resp. Mg_;;) by virtue of
(1) of Corollary 4.2. Thus, by using (2) of Proposition 1.1.3, &7, (D) is weakly posi-
tive at any points of M;; x My_;;. Therefore, we get (3) by (2) of
Proposition 1.1.2. ]

COROLLARY 5.3 (char(k) = 0). With notation as in Corollary 5.2, lf[)m(D) is nef’
over pml(]\/[m) and p¥(D) is nef over p; (M[ ) for all i, then D is nef over U
particular, the Mori cone of M is the convex hull spanned by curves lying on the
boundary M \ My, whzch gives rise to a special case of [5, Proposition 3.1].
Proof. Let ff': Mgy, — Alrr and oclg i MM X Mg_m — K,- be the same as in
Corollary 5. 2 By our assumption, B*(D)= B (p:.(D)) is nef over M, ;, and
%, (D) = o ig—ipi(D)) is mef over M;; x My_; for eyelry i. Therefore, by
Claim 5.1.5 in Theorem 5.1, we can see that D is nef over
Let Nefy (M ¢) be the dual cone of the convex hull spanned by curves on the bound-
ary A = M, \ M,. In order to see the last assertion of this corollary, it is sufficient to
check NefA(Mg) = Nef(Mg), which is a consequence of the first assertion. O

EXAMPLE 5.4. For example, the area of (bg,b 1) (resp. (bo, by, by)) with
A —body — b1d; (resp. L — bydyg — b101 — by9;) nef over M i (resp. M 1]) is the inside
of the following triangle (resp. polyhedron):
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114
11 (5.3:9)
(5.3)
(©,0,2)
(0,0,0) <
(0,0) (15.0) (5,0,0)
The area of (bg, b1) with The area of (bg, b1, b2) with
A — bodo — b161 nef over 1\7[5[,‘1] A — bgdp — b161 — badg nef over ]\7[&1]

6. The Dual Cone of Nef(Mg; [\74,1])

Throughout this section, we assume that the characterist}c of the base field k is zero.
We would like to describe the dual cone of Nef(M; Mé]). First of all, let us intro-
duce the following complete irreducible curves

t i
CroooCgppe oo Gy €l

on Mg (Note that we denote by j the hyperelliptic involution in the following con-
texts):

Cy: Let f1: X1 — Y be a nonisotrivial elliptic surface, and I'; a section of f such
that (1) j(I'y) = I';, and that (2) every singular fiber of f| is an irreducible rational
curve with one node. Let ¢, : Y; — M, | be the induced morphism by the one-poin-
ted stable curve (X7 — Y1,1'1), and oy o1 : MH X ]\;[g,lql — ]\;Ig the clutching map.
We choose x; € /\;Ig_Ll such that the corresponding curve is a smooth hyperelliptic
curve and the marked point is a ramification point of the hyperelliptic curve. Then,
Cy is defined to be oy o—1(@;(Y1) X {x1}).

C; (2 <i<[g/2]): As we constructed in Proposition 3.6, let f;: X; — Y; be a non-
isotrivial hyperelliptic fibered surface of genus 7, and I'; a section of f; such that (1)
J(T) =Ty (2) every singular fiber of f; is a stable curve consisting of a smooth
projective curve of genus i — 1 and an elliptic curve meeting transversally at one
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point, and that (3) I'; intersects with the elliptic curve on every singular fiber. Let
Q; Y — ]\;I,;l be the induced morphism by the one-pointed stable curve
(X;— Y, I), and o ]\_4,»,1 X ]l;[g_,»,l — Mg the clutching map. We choose
X; € Mg,,-,l such that the corresponding curve is a smooth hyperelliptic curve and
the marked point is a ramification point of the hyperelliptic curve. Then, C; is defined
to be o i(@(Yi) x {xi}).

Ci: As we constructed in Proposition 3.2, let f;*: X7 — Y7 be a nonisotrivial
hyperelliptic fibered surface of genus g — 1, and I'] a section of f;* such that (1)
JINTIT =0, (2) every singular fiber of fi* is a stable curve consisting of a smooth
projective curve of genus g — 2 and an elliptic curve meeting transversally at one
point, and that (3) I'] intersects with the elliptic curve on every singular fiber. Let
oY — Mg—ll be the induced morphism by the two-pointed stable curve
(X7 — 17, 17,jI7)), and B: ]\;Ig_lyz — Mg the clutching map. Then, C7 is defined
to be B(@}(¥7).

Cr (2<i<[g/2]): As we constructed in Proposition 3.6, let f*: X7 — Y7 be a
nonisotrivial hyperelliptic fibered surface of genus g — i+ 1, and I'} a section of f*
such that (1) j(I'7) = I'}, (2) every singular fiber of f* is a stable curve consisting
of a smooth projective curve of genus g — i and an elliptic curve meeting transver-
sally at one point, and that (3) I'} intersects with the elliptic curve on every singular
fiber. Let ¢@f: Y* — Mg ;111 be the induced morphism by the one-pointed stable
curve (X7 — Y7, I7), and ag i1 Mg_,'_;,_]’] X ]\;I,'_l,l — Mg the clutching map.
We choose x* € M, such that the corresponding curve is a smooth hyperelliptic
curve and the marked point is a ramification point of the hyperelliptic curve. Then,
Ct is defined to be ag_j1,i01(@F(Y7) x {x}}).

C,T (1 <i<[g/2]): Let T; be a smooth projective curve of genus g — i, A; the diag-
onal of T;x T;, and p;: T; x T; — T; the projection to the first factor. Then,
(pi: T; x T; — T;, A;) gives rise to a one-pointed stable curve of genus g — i over
T;. Let y;: T; — A;Ig_,-,l be the induced morphism by the one-pointed stable curve
(Tix Ty — T;, Aj), and ay_;;: Mg,i,l X M,-,l — A_dg the clutching map. We choose
y; € M i1 such that the corresponding curve is a smooth curve. Then, Cj is defined
to be o (Y (T) x {yi}).

PROPOSITION 6.1.

(1) C S A and Cin M, # 0 for all 1 < i <[g/2].
(D) Cf S Aiw, CF S Ay (2<i<[g/2]) and C; N My # 0 (1 <i<[g/2]).
(3) Cl S A and CiN M + 0 for all 1 <i <[g/2].
(4) For a Q-divisor D = ap + b 0ir + ZE‘ZIZ] b;d; on A_dg,
(D-C;) >0 B,_| > B
(D-C*) >0 B, <B
>

(D-C) = 0 4i(g — i)a > b,
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(5) Let I-_Ig be the Za_riski closure of the locus of hyperelliptic curves of genus g in Mg.
Then, C;, Cf C H, foralli=1,...,[g/2].

Proof. (1), (2) and (3) are obvious by our construction. Using calculations in the
proof of Corollary 4.2 and Corollary 4.3 together with formulae (5.1.a), (5.1.b) and
(5.1.c) in the proof of Theorem 5.1, we can see (4). (5) is a consequence of the fol-
lowing well-known facts (actually they can be shown by the similar ways as in [11,
Lemma A.l, Proposition A.2 and Proposition A.3]):

(1) Let C" and C” be a smooth hyperelliptic curves of genus i and g — i respectively.
Let P € C' and P’ € C” be ramification points of the double covers C' — P!
and C” — P'. Let C be a stable curve by gluing €’ and C” at P’ and P”. Then,
the class of C in M, lies in H,.

(i) Let C’ be a smooth hyperelliptic curves of genus g — 1 and j: C' — C’ the hyper-
elliptic involution. For P € C’" with j(P) # P, let C be an irreducible stable curve
by gluing C’ at P and j(P). Then, the class of C in M, lies in H,. O

COROLLARY 6.2. The dual cone QfNef(Mg; Mi,l]) is generated by the classes of the

curves
i il
Ci,o.o s Cgpy, C,enn Eg/2]’ Choeos le/2)
that is,
l¢/2) [e/2) le/2]

Yo QA=) 0]+ Y QLT+ Y]],
i=1 i

CeCurve(MS]) i=1 i=1

where Curve(]\;lg]) is the set of all complete irreducible curve on M ¢« with CN 1\_42,1] #* 0.
Moreover, a Q-divisor D = au + by 0irr + ZE&;/%] b;o; is nef over Mi,l] if and only g’fD|,g,g
is nef over Hg N A;Ii,l] and 4i(g — i)a = b; for all i=1,...,[g/2]. ‘

Proof. This is a corollary of Theorem 5.1 and Proposition 6.1. O

Remark 6.3. The dual cone of Nef(, ¢ M) is generated by the following complete
irreducible curves £, £y, £1, ..., £g2 on M.

¢: £ is a complete irreducible curve in M,.
£y: Let fo: Xo — Y, be a nonisotrivial hyperelliptic fibered surface of genus g such

that every singular fiber of fy is an irreducible stable curve with one node. Let
@y Yo — Mg be the induced morphism by the stable curve Xy — Yj. Then, ¢ is
defined to be ¢y(Y)o).

£; (1 <i<[g/2]): Letf;: X; — Y, be anonisotrivial hyperelliptic fibered surface of
genus g such that every singular fiber of f; is a stable curve consisting of a smooth
projective curve of genus i and a smooth projective curve of genus g — i meeting
transversally at one point. Let ¢;: ¥; — M, be the induced morphism by the stable
curve X; — Y;. Then, ¢; is defined to be ¢,(Y)).
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In particular, D = au + b dirr + Zf‘i/f] b;d; is nef over M, if and only ifD|,;,g is nef
over Hy and a > 0.
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