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§ 1. Introduction. The algebra of quantum mechanics2 is
characterized by the fact that the variables p, q obey all the laws
of ordinary algebra except that multiplication is non-commutative
and instead there exists a relation of the form

pq-qp = c (1)

where c is a real or complex scalar constant and is thus commutative
with both p and q.

It is well known that the relation (1) may be satisfied by certain
infinite matrices, in which case c is to be interpreted as a scalar
matrix. It is also satisfied by the differential operators,

p — c djclx, q = x, (2)

where £ is a real variable. We shall make use of this fact in § 5.
One of the interesting and difficult problems in this algebra is

that of expressing functions of p and q in some kind of a standard or
normal form. We shall say, for convenience, that a function is in
normal form if it is of the type, 'Lfi(q) gi(p), in which all factors
involving q occur to the left of those involving p. Of course the
other order could have been chosen just as well; and the results for
one case lead readily to corresponding results for the other.

The purpose of this note is to indicate how the use of differential
equations may aid in obtaining the normal form of a function. This
device is then used to find the normal form of certain exponential
functions, in which case the results are particularly simple. Finally
in § 7 we find by this method an expansion of [p + </> (q)]n in normal
form, a result which was previously obtained by Kermack and
McCrea in a different manner.

1 Some of the results presented here were obtained while the author was a National
Research Fellow at Princeton University.

2 For references to this algebra see a previous paper. Transactions of the American
Mathematical Society, 31 (1929), 793-806 ; also Kermack and McCrea, Proc. Edinburgh
Math. Soc. (2), 2 (1931), 220-239. Kermack and McCrea used the relation obtained
from (1) by placing c= - 1 .
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Although most of these results are formal in character they seem
to be of sufficient interest to warrant a brief account.

§ 2. Use of partial differential equations. If </> is a function of p
and q, we may define partial derivatives in the following manner1

p<f>- <f>p = c^r

a n d 6q — q<f> = c-T . (3)
dp

It follows from these relations that with the proper care in preserving
the order of factors, the usual formulae for differentiation hold. For
example,

— (p2 qps q) = 3p2 qp1 q + 2pqp3 q.
cp

These results may be established for polynomials by induction, and
are thus formally correct for infinite series. We assume their validity
for the functions to be considered below.

If f(p, i) is a given function of p and q, let fy(p, q) denote the
normal form oif(p, q). For example, iif(p, q) = (p + q)2, then

f(P, q) = IN (p, q)=p2 + 2qp + q* + c,
by relation (1).

Suppose it has been found in some way that a given function
f(p, q) satisfies one or more differential equations of the form

Then fN (p, q) will also satisfy (4) and in verifying this fact no inter-
change of order is necessary. Hence fN (y, x) satisfies

S K (x) + ft; (y) + Yv (x) «« (*/)] -^j-, = 0, (5)

where x and y are ordinary commutative variables. It is understood
that fs (y, x) is obtained from fN (p, q) by replacing q by x, and p by y.
Thus fN (y, x) is to be found among the solutions of the system (5), a
fact which often proves to be of value in finding the normal form of
a function. In particular, for the cases considered in the next two
sections, this fact alone serves to determine fN (y, x) to within a.

1 Born, Heisenberg and Jordan, ZS. f. Physik, 35 (1926), 563.
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constant factor, which is then determined by special methods. After
obtaining fN(y, x) we may clearly find fy(p, q) by writing fx(y, x) in
such a form that in each term the x-factors occur to the left of the
y-factors, and then replacing x by q, y by p.

As an example which will be needed below, suppose that our
given function f(p, q) satisfies the equations

(6)

where X, Y, Z are constants. These equations correspond to (4)
above. In this case it is readily verified that any solution of the
corresponding equations of type (5) is of the form

F (y, x) = const, x [exp (2a;2/2 + Y*V + XyV2)]-
Hence

fs (p, q) = Kez^ eT'i'P e^'2'2,

where K is a properly chosen constant and

er<tlP = 1 + Yqp + Y2q°-p2/2\ + Y3q3p3/Z\ +

The significance of the notation qx is merely that the (^-factors are to
come first, that is on the left, in each term.

§3. The function e1>+q. Let us consider first the function

ev+'i = 1 + (j, + q) + (p + qyi-2\ + .... (7)

One could of course find the normal form of (p + q)n, and from it
get the normal form of the function (7). Indeed this is the method
successfully used by Kermack and McCrea.1 However we shall now
find the normal form of the exponential function (7) in a formal
mannner without the use of the normal form of (p + q)n.

It is easily seen by induction on n that

Hence ep+q satisfies the partial differential equations

8q J' dp J

1 Loe. cit., 224.
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It follows from our previous discussion that

ep+i = (ep+<i)N = Kei ept

where if is a properly chosen constant.
We may calculate K directly in the following way. We have

(p + q)n+1 = (p + q)(p + ?)" = q(p + q)n +{p + q)np + cn(p + q)n~\

by (3). Thus the constant term in the normal form of (p + q)n+1

is the constant term in the normal form of (p + q)n'x multiplied by
en. But the constant term in the normal form of (p + q) is 0, in
(P + <7)2 is c- Hence

K = 1 + c/2 + (c/2)2/2! + (c/2)3/3! + . . . .
= ec/2.

We have thus the final result

e?+! = e''!e«e», (9)

which was obtained by Kermack and McCrea.1

The constant K may also be obtained by using the special
interpretation (2) of p and q, and operating on a properly chosen
function of x. Let the notation A -*/(x) mean the result of opera-
ting on/(x) with the operator A. Then

(cd/dx + x)-> e ( / -* '» = e ' ' - ' 1 * .
Hence

d d

e
cdi+ _> e(.x-z'l2)/c _ e e(.c-^/2)/c _ J£ex e

cJ.c _^ e(x-x-':2)lc _ gex e[(x+c)-(*+e)*/S]/e

from which we find K = ec/2.

§ 4. The function exp [ap2 + bqp + dq'2]. We pass now to the
determination of the normal form of the exponential function of a
general quadratic function of p and q, which is of considerably more
difficulty than that of the linear function.

We first remark that if a, b, d are real or complex constants,
then we have

ap2 + bqp + dq2 = (ap + fiq)(yp + Sq) + r)C,

where the constants a, jS, y, 8, t] are properly determined This is
clearly the case if a = 0. If o=j=0, then the relation is satisfied if
we place

a = 1, /3 = [&-(&-- 4od)4] / (2a), y = a, 8= - v = [b + (6 2 - 4ad)*] / 2.

1 This result was obtained independently by the present author by this method
prior to the publication of their paper.
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We may thus, without loss of generality, confine our attention to
the function, exp [(ap + fa) (yp + 8q)]

= 1 + t(ap + fa) (yp + 8q)] + [(ap + fa) (yp + Sq)f/2!+...., (10)

where a, /3, y, 8 are real or complex numbers. We now assume that
a, /?, y, 8 are arbitrary parameters. After we have found the normal
form of the function (10) for this case, we may find the corresponding
expression in the case of special values of these constants by a
limiting process.

Let us denote the function (10) by /. We seek first of all the
partial derivatives of /, and are led to a set of differential equations
satisfied by this function. We have immediately that

[(ap + fa)(yp + 8q)f (ap + fa) = (ap + fa)[(yp + bq)(ap + fa)]*, (11)
and thus

f(ap + fa) = (ap + fa) exp [(yp + 8q)(ap + fa)]. (12)

But it is easily found that

(yp + 8q)(ap + fa) = (ap + fa)(yp + 8q) - C (aS - )8y).

Let us write D = (a8 — fiy). Then

exp [(yp + 8q)(ap + fa)] = e-<B/,

and substituting in (12) we get

« (fp -Pf) + P (fq -qf) = (e~cD - i)(aP + fa)f.
By relations (3) this may be written in the form

= (e-«* - l)\a( fp+c¥)+ faf],

(13)

¥ p ( ) \ ( fp
cq cp L V ci

or

cp cq

If in relation (11) we interchange (ap + fa) and (yp + Sq) and
proceed as above, we find tha t / also satisfies the equation,

y i / _ S e - ^ = {l!c)(e-">-l)(yfp + 8qf). (14)

We may now solve (13) and (14) for ~- and —, getting

Z-Xfp+Tqf,

8f
| = Yfp + Zqf,
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where
ay r e-™-lX L

It follows from § 2 that

/^Ifcl^e^eW (16)

where K(c) is a constant to be determined.

§5. Calculation of K(c). If

[(ap + Pq)(yp + 8q)]* (17)

is expressed in normal form by repeated use of relation (1), the
constant term is of the form an c

n, where an does not involve c but is
a function of a, /3, y, 8. This may be verified by the following device
which often proves useful. Let us assign to both p and q the weight 1
so that, by relation (1), c is of weight 2. Our function (17) is
clearly isobaric of weight In, and each term in the normal form must
also be of this weight as the use of relation (1) makes no change in
the weights. Hence the constant term must be of the required form.

Let us now introduce the special interpretation, q = x, p = c d/dx,
and denote by A the expression

a.c — + /?# ) ( yc — +8x
ax J y ax

Then A -> 1 = S (ca + fix"),

and thus All->\ = An~ -> S (ca + fix2).

The term in A'1 -> 1 not containing x is exactly the constant in
the normal form of the function (17) and thus is of the form an c

n.
Let Pi (c) denote the constant in eA -> 1, that is

Pi(c)= S anc
n/nl.

n = 0

Similarly let P2 (c) be the constant in eA -> S (ca + ^ 2 ) . Then

P 2 (c )= S oB+1cB+V»!.
n = 0

Thus we have
P2 (e) = cP / (c),

where the dash denotes differentiation with respect to c. But from
relation (16) we rind P1 (c) = if (c). Also

eA -> S (ca + /fo2) = -ST (c) S (ca + c2jSa;) + terms involving x.
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Hence P2 (c) = K(c) 8 (ca + c2 /3X), and we get the result,

K'(e) = K{c) S (a + c/3Z). 1 (18)

Hence if we write X (c) for X, we find that

K(c) =exp[8ac +P§[C tX(t)dt]. (19)
J o

The constant of integration has been determined by the fact that
lim K(c) = 1. This is clear since when c = 0, p and q are commutative.
C—¥-0

We proceed to calculate the integral occurring in (19), that is

ri+ # i ,
La8 aS(/3y-aSe-2(Z))J "

(20)
8 § J o l 3 y -a8e - ^ -

By making the substitution, z = £y — a8e'2(O, we may find the value
of the integral occurring in this expression to be

Substituting back in (20) and (19) we get,

the determination of the square root being such that lim K (c) = 1.

We collect these results as follows :

THEOREM. If pq — qp — c, and a, /?, y, § are real or complex
constants, then

exp [(ap + Pq)(yp + 8q)] =

where

Z) = ( a 8 - f t , ) , Z = ^

and
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§ 6. Some special cases. Although we established this theorem
for general a, /3, y, S, we may find the corresponding result for special
values of these coefficients by a limiting process.

For example, consider e<-''+<3)\ Let us set a = /3 = y = 1, and let 8
approach 1 as a limiting value. We find in this way that

e0>+^ = (l_2c)-i exp[g7(l-2c)] exp [2^ / (1 -2c)] exp |j>2/(l-2c)] (22)

Other special cases of interest which may be obtained from our
theorem are:

(sec 2cf exp[#2 tan 2c/(2c)] expff^ p(sec 2c— l)/c] exp[p2 tan 2c/(2c)], (23)

e"«' = e x p [(era - 1) qx p/c], (24)

e*vi = eca e x p [(eca _ Y) g^j/c]. (25)

Each of these special cases may of course be obtained directly by
the method of §4 without use of any limiting process. In particular,
relation (24) may also be readily verified from a knowledge of the
normal form of (qp)n which has been given by Schwatt1 for the special
interpretation (2) of p and q.

§ 7. The function [p + (f> (q)]n. We conclude with the determina-
tion of the normal form of the function,

9n = [p + <f>(q)Y, (26)

ft (q) being a given polynomial in q, and n a positive integer. A
formula equivalent to that which we seek has been previously
obtained by Kermack and McCrea in a different manner.2

We first seek the derivatives of g,,. It is easily verified by
induction that

•i = no.,_,. (27)
cp ~ • "•' y '

By considering the cases n = 1, 2, 3, the following formula for -?2
8q

suggests itself,

^ (^j . , (28)
cq \ s / t f "

1 1 . J. Schwatt, Operations with Series (Univ. of Pennsylvania Press) (1924), chap. V.

- Loc. cit., 227.
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We shall prove this formula by induction on n. We assume it for
gn and show that it holds for gn+\. Let us write (f> for </> (q). Since
#n+i = (p + <f>) gn, we have

by relations (28) and (3). From this we find that

8q «=i

n + 1

which establishes the formula.

We now introduce the symbol Q = —, with the understanding

that it is to operate on every function on the right of it in any given
term in which it appears. We may then write the equation (28) in
the form

dq ,=i «! cqs

or, symbolically, gn satisfies the equation,

^ , (29)

where the subscript is placed on the </> merely to emphasize that all
^-factors are to be on the left in each term.

By the discussion in § 2, the normal form of the general solution
of (29) is, in operational form,

g = jexp [(1/c) £%! (q + 0 dtj\ j (p),

iji (p) being an arbitrary function of p. This suggests that

grn= jexp [(1/c) JCCf (q + t) cft]j 0B (p), (30)

if i/tn (p) is a properly chosen function of p.
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It is readily found that gy is of the form (30) with ipY (p) = p.
Suppose now gn is of this form with ifjn (p) determined. Let <j> (f) denote
the indefinite integral of <j>(t). Then we may write

gn = { exp [(1/c) ^ (q + cQ)] . exp [ - (1/c)^ (q)]} </»„ {p).

It may now be verified that p is commutative with (q + cQ) from the
fact that Qp — pQ — 1, and relation (1). We have also

by relations (3). It is now readily verified that

9n+i = (p + $) 9n = j exp [(1/c) j ' V (q + t) dtj\ p^n (p).

Hence gn+1 is of the desired form if we choose >jjn+l (p) = ptftn

Thus ipn (p) =pn and we have the desired result,

t (?)]" = { exp [(1/c) J%! (q + i) dtjlp*l

= \ exp [Mq) - + - J«M, - + - -mi _
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