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Abstract
We define a local homomorphism (𝑄, 𝑘) → (𝑅, ℓ) to be Koszul if its derived fiber 𝑅 ⊗L

𝑄
𝑘 is formal, and if

Tor𝑄 (𝑅, 𝑘) is Koszul in the classical sense. This recovers the classical definition when Q is a field, and more generally
includes all flat deformations of Koszul algebras. The non-flat case is significantly more interesting, and there is no
need for examples to be quadratic: all complete intersection and all Golod quotients are Koszul homomorphisms.
We show that the class of Koszul homomorphisms enjoys excellent homological properties, and we give many
more examples, especially various monomial and Gorenstein examples. We then study Koszul homomorphisms
from the perspective of A∞-structures on resolutions. We use this machinery to construct universal free resolutions
of R-modules by generalizing a classical construction of Priddy. The resulting (infinite) free resolution of an R-
module M is often minimal and can be described by a finite amount of data whenever M and R have finite projective
dimension over Q. Our construction simultaneously recovers the resolutions of Shamash and Eisenbud over a
complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring, and produces analogous
resolutions for various other classes of local rings.

Contents

1 Introduction 2
2 Koszul homomorphisms 5

2.8 Cohen Koszul local rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.15 Properties of Koszul homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Examples of Koszul homomorphisms 10
3.8 Rings of small codepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.13 Almost Golod Gorenstein rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.20 Monomial rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Background on A∞-algebras and coalgebras 18
5 Transfer of A∞-algebra structures 22

5.6 Cyclic A∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 Twisted tensor products 28

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2025.21 Published online by Cambridge University Press

doi:10.1017/fms.2025.21
https://orcid.org/0000-0003-0003-9493
https://orcid.org/0000-0002-5497-8296
https://orcid.org/0000-0001-6727-4821
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2025.21&domain=pdf
https://doi.org/10.1017/fms.2025.21


2 B. Briggs, J. C. Cameron, J. C. Letz and J. Pollitz

7 A∞-algebra presentations for Koszul homomorphisms 29
7.2 Strictly Koszul presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.7 The Priddy resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Examples of strictly Koszul presentations 33
8.7 Complete intersection homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.15 Almost Golod Gorenstein rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

References 42

1. Introduction

The phenomenon of Koszul duality has been observed in many forms across algebra, geometry and
topology. It provides explicit computational tools for answering homological questions and opens up
deep connections between a number of seemingly unrelated areas of mathematics. The goal of the
present work is to develop a relative theory of Koszul duality in local commutative algebra and to give
concrete applications for understanding infinite free resolutions.

For a finite homomorphism 𝜑 : 𝑄 → 𝑅 of commutative noetherian local rings, the derived fiber
𝐹 = 𝑅 ⊗L

𝑄 𝑘 , where k is the residue field of Q, is a differential graded k-algebra that encodes important
ring theoretic properties of 𝜑. We define 𝜑 to be Koszul if F is formal (see 2.3) and if its homology
H(𝐹) = Tor𝑄 (𝑅, 𝑘) is a Koszul k-algebra (see 2.1). This recovers the classical definition when the
source is a field. Through the looking glass that connects local algebra with rational homotopy theory,
the definition is directly analogous to Berglund’s notion of a Koszul space.

Flat local maps that have a Koszul fiber are natural examples of Koszul homomorphisms, but
the non-flat case is significantly more interesting: all complete intersection and all Golod quotient
homomorphisms are Koszul, and we give many other monomial and Gorenstein examples. In particular,
there is no need for the homomorphism to be quadratic in any sense.

The definition also has structural consequences connecting the homological algebra over R and Q.
Our main theorem provides an algorithmic way to transfer free resolutions over Q into free resolutions
over R. To achieve this, we introduce a slightly stronger ‘strictly Koszul property (see 7.2) that is satisfied
in our main examples. These ideas borrow from a long history, and we will discuss the context and
technology behind the construction following this summary of our main results.

Theorem A. For any strictly Koszul local homomorphism 𝜑 : 𝑄 → 𝑅, there is a non-negatively graded,
degreewise finite rank free Q-module C such that

(1) For each finitely generated R-module M with a minimal Q-free resolution 𝐺 → 𝑀 , there is a
differential 𝜕𝜏 on the graded R-module 𝑅 ⊗ 𝐶 ⊗ 𝐺 such that the resulting ‘twisted tensor product’
complex

(𝑅 ⊗ 𝐶 ⊗ 𝐺, 𝜕𝜏)
�
−−→ 𝑀

is an R-free resolution of M. If R and M have finite projective dimension over Q, then both C and the
twisted tensor product differential can be explicitly described in their entirety with a finite amount
of data.

(2) Assume that 𝜑 is small (a central case of interest is (𝑄,𝔪𝑄) regular and ker(𝜑) ⊆ 𝔪2
𝑄). The twisted

tensor product complex is minimal for the residue field k of R. More generally, the resolution is
minimal whenever M is inert with respect to 𝜑, in the sense of Lescot. In particular,∑

𝑖 rank𝑄 (𝐶𝑖)𝑡𝑖 =
P𝑅
𝑘 (𝑡)

𝑃𝑄
𝑘
(𝑡)

.

The following homomorphisms are strictly Koszul:

(a) Surjective complete intersection homomorphisms.
(b) Surjective Golod homomorphisms.
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(c) Surjective Gorenstein homomorphisms of projective dimension three or less.
(d) Cohen presentations of compressed artinian Gorenstein rings having characteristic zero, odd em-

bedding dimension, and socle degree not 3.

Part (1) of the Theorem, with an explicit description of the twisted tensor product differential, is
Theorem 7.8, while part (2) is contained in Theorem 7.11. The examples (a)–(d), and several more, are
introduced in Section 3 and treated again in Section 8, with a complete description of the corresponding
C in each case.

Universal resolutions – that is, free resolutions over a ring that are defined in a uniform way for all
finitely generated modules – have been of central interest in homological commutative algebra since
at least the 1960s, often importing tools such as Massey operations and bar resolutions from algebraic
topology.

Let 𝜑 : 𝑄 → 𝑅 be a local homomorphism. Shamash constructed universal resolutions for R-modules
when 𝜑 is a hypersurface quotient [Sha69], and these were clarified and extended to complete intersection
quotients by Eisenbud using the theory of higher homotopies [Eis80]. Burke recognized in [Bur15] that
the higher homotopies are a manifestation of certain A∞-structures (we will return to these later in the
introduction). In the presence of a Q-free differential graded algebra resolution 𝐴 → 𝑅, and a Q-free
differential graded A-module resolution G of an R-module M, Iyengar constructed a bar resolution for
M over R [Iye97]. By endowing A with an A∞-algebra structure, and G with an A∞-module structure
over A, Burke constructed a bar resolution even when associative multiplicative resolutions do not exist
[Bur15]. The resulting resolution is minimal when M is Golod with respect to 𝜑, and is otherwise
typically far from minimal. Theorem A recovers both the resolutions of Shamash and Eisenbud, when
𝜑 is a complete intersection quotient, and the bar resolutions of Iyengar and Burke, when 𝜑 is a Golod
quotient.

In parallel, the universal resolutions introduced by Priddy over Koszul algebras [Pri70] have had
far-reaching impact, not least as a computational tool. Our theory directly builds on and recovers his
construction, while providing a common framework for the universal resolutions above.

The technical foundation for our universal resolutions is in Section 6. Here, we develop a general
theory of twisted tensor products over a commutative ring Q. The data that goes into this construction
is a curved differential graded coalgebra C over Q, a quasi-isomorphism Ω𝐶 → 𝑅 from the cobar
construction of C to R, and a differential graded module structure over Ω𝐶 on G. These terms are
defined in Section 4. From this, in Theorem 6.5, we construct a canonical resolution

𝑅 ⊗𝜏 𝐶 ⊗𝜏 𝐺 = (𝑅 ⊗ 𝐶 ⊗ 𝐺, 𝜕𝜏)
�
−−→ 𝑀.

The key to proving Theorem A is to show that C can be defined in an explicit, canonical and minimal way
when 𝜑 is strictly Koszul. We will return to this at the end of the introduction, with more context in hand.

÷

We turn our attention back to the Koszul homomorphisms. The first half of this work develops
the theory of these maps; this part of the paper does not involve A∞-structures, using only ordinary
differential graded algebras.

Similar Koszul-type conditions have been considered by other authors [CDG+20, HI05, HRW98,
Mye21], and we compare our definition with theirs in Remark 2.18. We motivate our condition as well
by drawing connections with other areas, such as rational homotopy theory (Remarks 2.5 and 3.18) and
toric topology (Remark 3.27).

We pay particular attention to the case that Q is regular. In this situation, the resolutions constructed
in Theorem A essentially depend only on the ring R, and they are always finitely determined. When R
is a local ring such that every Cohen presentation 𝜑 : 𝑄 → 𝑅 is a Koszul homomorphism, we say that
R is Cohen Koszul; see Section 2.8. These rings enjoy excellent homological properties while being
surprisingly abundant; they behave in many ways like classical Koszul algebras despite not necessarily
being quadratic.
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We show that Cohen Koszul local rings have rational Poincaré series that can be computed explicitly
from their Koszul homology:

P𝑅𝑘 (𝑡) =
(1 + 𝑡)𝑒∑

𝑖,𝑤 (−1)𝑤 rank𝑘 (H𝑖 (𝐾𝑅)(𝑤) )𝑡𝑖+𝑤
;

see Proposition 2.11, where the notation is explained.
Section 3 is devoted entirely to examples, and we prove that surjective complete intersection homo-

morphisms are Koszul (Example 3.2), along with surjective Golod homomorphisms (Example 3.5), and
surjective Gorenstein homomorphisms of projective dimension three (Example 3.12). We exactly de-
termine the local rings of codepth three or less that are Cohen Koszul in terms of the classification into
the types described in [AKM88]; we find that in every type except one, the local ring is Cohen Koszul
(Theorem 3.10). Graded local rings having an almost linear resolution in the sense of [DE22] are also
Cohen Koszul (Remark 3.17). We treat monomial rings in Section 3.20, making connections with com-
binatorial commutative algebra and with the topology of moment angle complexes. Monomial rings are
classically Koszul exactly when they are quadratic [Frö75], while Cohen Koszul monomial rings need
not be, and we produce many nontrivial examples in Proposition 3.22. We further give examples that
illuminate how the Koszul condition relates with classical Koszulity, formality, being quadratic, and
various other technical conditions.

One of our main examples is a class of rings that we call almost Golod Gorenstein, treated in Section
3.13. Within the class of Gorenstein local rings, these display extremal homological behavior analogous
to Golod rings within the class of all local rings; cf. Proposition 3.19. In Theorem 3.16, we establish a
characterization in terms of the derived fiber that is similar to Avramov’s characterization of Golod rings
[Avr86], and, under some additional technical assumptions, we deduce that almost Golod Gorenstein
rings are Cohen Koszul.

∨|∨|∨|

In the second half of the paper, we study Koszul homomorphims from the perspective of A∞-structures
on resolutions. An A∞-algebra is a complex A equipped with multilinear operations 𝑚𝑛 : 𝐴⊗𝑛 → 𝐴 for
𝑛 � 2 that together satisfy certain associativity conditions generalizing the definition of a differential
graded algebra (which one recovers by assuming 𝑚𝑛 = 0 for 𝑛 � 3). These objects were introduced by
Stasheff to characterize loop spaces in algebraic topology [Sta63a].

Koszulity is well known to be connected with formality (Remark 2.5), and in turn, it has been
understood since [Kad82] that formality can be made visible through A∞-structures. In the present
context, these structures are important because they carry the information necessary to construct the
universal resolutions in Theorem A while being flexible enough that all resolutions can always be given
A∞-structures.

An introduction to A∞-algebras and A∞-modules over commutative rings is given in Section 4.
In Section 5, we prove some quite general transfer results – in particular, constructing A∞-structures
on minimal resolutions of local rings and modules. Burke was one of the first to develop and apply
the theory of A∞-algebras over a commutative ring (rather than over a field) [Bur15, Bur18], and our
treatment owes a substantial intellectual debt to his work.

We develop the theory of cyclic A∞-algebras over commutative rings in Section 5.6. These were
introduced by Kontsevich as part of his homological mirror symmetry program [Kon94]. These A∞-
algebras possess extra structure that takes advantage of the Poincaré duality on the minimal resolution
of a Gorenstein ring, and we apply this theory to almost Golod Gorenstein rings.

With this perspective in hand, we return to Koszul homomorphisms in Section 7. The next result
shows that, at the derived level, Koszul homomorphisms may be thought of as deformations of classical
Koszul algebras. A more precise and more general statement is given in Theorem 7.1. We write T(𝑉)
for the tensor algebra

⊕
𝑛�0 𝑉

⊗𝑄𝑛 on a graded Q-module V.
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Theorem B. A surjective local homomorphism 𝜑 : 𝑄 → 𝑅 is Koszul if and only if there is a positively
graded, degreewise finite rank free Q-module V, a direct summand 𝑊 ⊆ 𝑉 ⊗𝑄 𝑉 , and an A∞-structure
{𝑚𝑛} on 𝐴 = T(𝑉)/(𝑊) such that
1. the induced quotient 𝐴 → 𝑅 is an A∞-algebra quasi-isomorphism,
2. modulo the maximal ideal of Q, the A∞-structure {𝑚𝑛} on A agrees with the usual algebra structure

on T(𝑉)/(𝑊); that is,

𝑚2 ⊗𝑄 𝑘 = 𝜇 ⊗𝑄 𝑘 and 𝑚𝑛 ⊗𝑄 𝑘 = 0 for 𝑛 ≠ 2,

where 𝜇 is the usual product on the quotient of a tensor algebra,
3. the k-algebra T(𝑉 ⊗𝑄 𝑘)/(𝑊 ⊗𝑄 𝑘) is Koszul with this algebra structure.

Coming full circle, we are now able to describe the coalgebra C that appears in Theorem A. Fixing
a Koszul homomorphism 𝜑 with V and W as in Theorem B, we define

𝐶 �
⊕
𝑛

( ⋂
𝑖+2+ 𝑗=𝑛

𝑉 ⊗𝑄𝑖 ⊗𝑄 𝑊 ⊗𝑄 𝑉 ⊗𝑄 𝑗
)
.

This is modeled on the work of Priddy [Pri70]. By construction, the graded Q-dual 𝐶∨ is the quadratic
dual T(𝑉∨)/(𝑊⊥) of the algebra T(𝑉)/(𝑊). The strict Koszul condition introduced in Section 7.2
guarantees that the A∞-structure on A induces the structure of a curved differential graded coalgebra on
C; see Definition 7.3. We think of C as Koszul dual to R relative to Q, as justified by Theorem 7.6.

We conclude the paper with a reexamination of examples in Section 8. We start by showing that
certain deformations of classical Koszul algebras yield strictly Koszul homomorphisms, and we obtain
resolutions that directly deform the original resolutions of Priddy. We study surjective Golod homo-
morphisms in Example 8.2; in this case, 𝐶 = B(𝐴) is the bar construction of the A∞-algebra A, and we
recover the bar resolution of Iyengar and Burke. In Example 8.4, we show that surjective Gorenstein
homomorphisms of projective dimension three are strictly Koszul, and we describe C as the dual of
a noncommutative hypersurface. We show that surjective complete intersection homomorphisms are
strictly Koszul in Section 8.7, and we show that C is the free divided power algebra on V; our twisted
tensor products encode the theory of higher homotopies, and the resulting resolutions recover those of
Shamash and Eisenbud. We end by treating almost Golod Gorenstein rings in Section 8.15; this requires
a substantial amount of machinery, and the result is a large class of interesting Gorenstein rings over
which we have explicit, small, universal resolutions.

2. Koszul homomorphisms

In this section, we discuss the Koszul property in various settings, starting from the classical notion for
an algebra over a field and leading up to a definition of a Koszul local homomorphism. Examples have
been collected in the Section 3. While later sections exploit the machinery of A∞-algebras, this section
requires only knowledge of differential graded (dg) algebras; a suitable reference for the latter is [Avr98].

We fix a field k and work with local rings having residue field k. We also consider modules with two
Z-gradings, the weight grading and the homological grading. The weight grading is denoted 𝑀 = 𝑀(★)

and the corresponding shift 𝑀 (𝑑) is given by 𝑀 (𝑑)(𝑤) = 𝑀(𝑤+𝑑) . For the homological grading, we
write 𝑀 = 𝑀•, and the suspension Σ𝑑𝑀 is given by (Σ𝑑𝑀)𝑖 = 𝑀𝑖−𝑑 . The homological degree of an
element 𝑚 ∈ 𝑀 is denoted |𝑚 |. We assume that the two gradings are compatible in the sense that M
is bigraded by its submodules 𝑀𝑖, (𝑤) � 𝑀𝑖 ∩ 𝑀(𝑤) . If M is a complex, the differential 𝜕𝑀 should
preserve the weight grading and decrease the homological grading by one, and we equip Σ𝑀 with the
differential 𝜕Σ𝑀 � −𝜕𝑀 .
Definition 2.1. An augmented k-algebra K is Koszul (over k) if it admits an algebra grading 𝐾 =⊕

𝑤�0 𝐾 (𝑤) , known as a weight grading, such that 𝐾 (0) = 𝑘 and such that the minimal resolution of k
is linear with respect to this grading.
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Remark 2.2. Definition 2.1 is essentially the classical definition of a Koszul algebra due to Priddy
[Pri70, Section 2] (see also [Löf86, Frö99]), except that we do not consider the weight grading to be
part of the given data. We emphasize that the additional grading may be different to the given one; cf.
Remark 3.3. By [BGS96, Secton 2.3], a Koszul algebra is quadratic with respect to this new grading –
that is, generated as an associative k-algebra by elements of weight one, subject to relations of weight
two. For example, if U is a graded vector space, then the trivial extension algebra 𝐾 = 𝑘 �𝑈 is a graded
augmented algebra, and the weight grading 𝐾 (0) = 𝑘 and 𝐾 (1) = 𝑈 makes K Koszul; see Example 3.4.

Next, we define a Koszul property for dg algebras. This definition appears implicitly in the work of
Berglund [Ber14], where it is applied to Sullivan models for topological spaces; it is not the same as
the Koszul property introduced in [HW08], which is too general for our purposes.

2.3. Let A and B be dg k-algebras. Recall that A is quasi-isomorphic to B, denoted 𝐴 � 𝐵, if there exists
a zig-zag of quasi-isomorphisms of dg k-algebras connecting A and B. A dg k-algebra K is called formal
if it is quasi-isomorphic to H(𝐾).

Definition 2.4. An augmented dg k-algebra K is Koszul if it is formal and H(𝐾) is Koszul in the sense
of Definition 2.1.

Remark 2.5. It is well known that formality is closely related with the Koszul property. In fact,
an augmented k-algebra K is Koszul in the sense of Definition 2.1 if and only if the dg k-algebra
RHom𝐾 (𝑘, 𝑘) is formal; see [GM74] and also [Kel02, 2.2] and [Ber14, Theorem 2.9]. This condition
is sometimes called coformality of K. From this perspective, a dg k-algebra K is Koszul in the sense of
Definition 2.4 if and only if it is both formal and coformal.

Before introducing the Koszul property for local homomorphisms, we need to recall the notion of the
derived fiber. Let 𝜑 : 𝑄 → 𝑅 be a local homomorphism of commutative noetherian local rings having
maximal ideals 𝔪𝑄 and 𝔪𝑅, respectively, and common residue field k.

Let 𝐴 → 𝑅 be a dg algebra resolution of R over Q – that is, A is a dg algebra concentrated in non-
negative degrees, such that A is degreewise a free Q-module, and 𝐴 → 𝑅 is a morphism of dg algebras
inducing an isomorphism in homology. The derived fiber of 𝜑 is the dg k-algebra

𝑅 ⊗L
𝑄 𝑘 � 𝐴 ⊗𝑄 𝑘.

Up to a zig-zag of quasi-isomorphisms of dg k-algebras, 𝑅 ⊗L
𝑄 𝑘 is independent of the choice of A. For

more information, see [Avr86]. We remark that one can equally well use a different species of model
for the resolution A, such as simplicial algebras or A∞-algebras, and obtain an equivalent definition of
Koszul homomorphism. Indeed, we make use of A∞-models in Section 7.

Definition 2.6. Let 𝜑 : 𝑄 → 𝑅 be a finite local homomorphism. We say that 𝜑 is Koszul if 𝑅 ⊗L
𝑄 𝑘 is a

Koszul dg k-algebra; that is, 𝑅 ⊗L
𝑄 𝑘 is formal and its homology Tor𝑄 (𝑅, 𝑘) is Koszul in the sense of

Definition 2.1.

According to Definition 2.1, when 𝜑 is Koszul, the Tor algebra Tor𝑄 (𝑅, 𝑘) admits a quadratic
presentation, albeit not necessarily generated by elements in homological degree one.

Taking 𝑄 = 𝑘 to be a field, we recover the classical definition: The homomorphism 𝑘 → 𝑅 is Koszul
if and only if R is a Koszul k-algebra; cf. Definition 2.1.

The examples given in the next section show that Koszul homomorphisms are extremely common.
In particular, this class includes all flat local homomorphisms whose fibers are (classically) Koszul; all
complete intersection and all Golod homomorphisms; Cohen presentations of most local rings having
codepth at most 3, and of generic Gorenstein rings.

Remark 2.7. When the minimal Q-free resolution A of R admits a dg algebra structure, the derived
fiber 𝑅 ⊗L

𝑄 𝑘 = 𝐴 ⊗𝑅 𝑘 has zero differential and is automatically formal. This is the case for complete
intersection homomorphisms (Example 3.2) and when proj dim𝑄 (𝑅) � 3 (Theorem 3.10). When 𝜑 is
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Golod, the minimal resolution typically does not support a dg algebra structure (cf. Remark 8.3), but
nonetheless, 𝑅 ⊗L

𝑄 𝑘 is formal (Example 3.5). The monomial rings presented in Examples 3.6 and 3.24
yield non-Koszul homomorphisms; the corresponding minimal resolution does not admit a dg algebra
structure in the former example (see [Avr81, 2.2]), but it does in the latter example.

2.8. Cohen Koszul local rings

Recall that every local ring R admits a Cohen presentation – that is, a surjection 𝜑 : 𝑄 → 𝑅 from a
regular local ring Q – and one may assume that 𝜑 is minimal in the sense that ker(𝜑) ⊆ 𝔪2

𝑄.

Definition 2.9. A local ring R is Cohen Koszul if every homomorphism 𝜑 : 𝑄 → 𝑅 is Koszul, where
Q is a regular local ring and 𝜑 is surjective with ker(𝜑) ⊆ 𝔪2

𝑄. In other words, every minimal Cohen
presentation of R is Koszul.

Remark 2.10. For equicharacteristic rings, the minimal Cohen presentation 𝑄 → 𝑅 is essentially
unique. In this situation, if R is already a quotient of a regular local ring, then by Proposition 2.16, there
is no need to complete R to determine whether R is Cohen Koszul.

If we assume that R contains its residue field k, then the Koszul complex 𝐾𝑅 on the maximal ideal
of R is a dg k-algebra. It is well known that

𝐾𝑅 � 𝑅 ⊗L
𝑄 𝑘

as dg k-algebras; see, for example, [ABIM10, Theorem 8.1]. Therefore, in this situation, we can say that
R is Cohen Koszul exactly when 𝐾𝑅 is a Koszul dg k-algebra.

If R does not contain its residue field, the fact that 𝐾𝑅 is not a dg k-algebra introduces subtleties.
The distinction between formality of dg k-algebras and formality of dg rings means that it is not clear
whether Definition 2.9 is independent of the choice of Cohen presentation. In all of our examples,
however, the choice will be irrelevant.

Complete intersection rings are Cohen Koszul by Example 3.2, Golod rings are Cohen Koszul by
Example 3.5, and most rings of codepth 3 are Cohen Koszul according to Theorem 3.10.

Cohen Koszul local rings have rational Poincaré series. Recall that the Poincaré series of a finitely
generated R-module M is

P𝑅𝑀 (𝑡) =
∑
𝑛∈Z

rank𝑘 (Tor𝑅𝑛 (𝑀, 𝑘))𝑡𝑛.

Proposition 2.11. Let R be a Cohen Koszul local ring with embedding dimension e and residue field k.
Fix a weight grading making the Koszul homology H(𝐾𝑅) a Koszul k-algebra. Then

P𝑅𝑘 (𝑡) =
(1 + 𝑡)𝑒∑

𝑖,𝑤 (−1)𝑤 rank𝑘 (H𝑖 (𝐾𝑅)(𝑤) )𝑡𝑖+𝑤
.

Remark 2.12. We note that since H∗(𝐾
𝑅) is generated in weight 1, the rank of H𝑖 (𝐾

𝑅)(𝑤) is equal to
the rank of [H>0 (𝐾

𝑅)𝑤/H>0 (𝐾
𝑅)𝑤+1]𝑖 . Therefore, it is not necessary to choose a weight grading to

calculate the Poincaré series above.

Proof. Let 𝑇 = H(𝐾𝑅), bigraded by homological degree and by weight, and write

H𝑇 (𝑠, 𝑡) �
∑
𝑖,𝑤

rank𝑘 (𝑇𝑖, (𝑤) )𝑡
𝑖𝑠𝑤 and P𝑇𝑘 (𝑠, 𝑡) �

∑
𝑖,𝑤

rank𝑘 (Tor𝑇𝑤 (𝑘, 𝑘)𝑖)𝑡
𝑖𝑠𝑤 .

In Tor𝑇𝑤 (𝑘, 𝑘)𝑖 , the index w is the usual homological grading of Tor, and i is the extra grading that comes
from the homological grading on T. Since T is Koszul with respect to its weight grading, the usual
computation of the Poincaré series of a Koszul algebra shows that H𝑇 (𝑠, 𝑡) P𝑇𝑘 (−𝑠, 𝑡) = 1; see [Löf86].

https://doi.org/10.1017/fms.2025.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.21


8 B. Briggs, J. C. Cameron, J. C. Letz and J. Pollitz

Let 𝑄 → 𝑅 be a minimal Cohen presentation. Formality of 𝑅⊗L
𝑄 𝑘 implies that the spectral sequence

[Avr81, 6.2.1] is degenerate, and so from [Avr81, 6.2 (b’)], we obtain the first equality below, which
yields the desired series

P𝑅𝑘 (𝑡) = (1 + 𝑡)𝑒 P𝑇𝑘 (𝑡, 𝑡) =
(1 + 𝑡)𝑒

H𝑇 (−𝑡, 𝑡)
. �

Proposition 2.11 recovers the known Poincaré series for complete intersection rings, Golod rings and
almost Golod Gorenstein rings; see Section 3 for the latter.

There are a number of results that apply to certain subsets of Cohen Koszul rings, motivating the
study of whether such a property holds for these rings in general. We highlight a couple instances below.

Remark 2.13. Recently, Brown–Dao–Sridhar have shown that over complete intersection and Golod
rings, the ideals of minors of differentials in minimal free resolutions are eventually two-periodic
[BDS23]. It would be worthwhile, and seems plausible (in light of the structural result in Theorem 7.8),
to determine whether (strictly) Cohen Koszul rings satisfy this property more generally.

Remark 2.14. Lower bounds on the Loewy length of the homology module of perfect complexes are
of interest in both algebra and topology; see, for example, [ABIM10, AP93, Car83, IW18, Wal17]. For
Cohen Koszul rings, one can establish such bounds.

Let R be a local ring with residue field k, and let 𝑘 [𝜒1, . . . , 𝜒𝑛] denote a maximal polynomial
subalgebra of the graded k-algebra Ext𝑅 (𝑘, 𝑘), generated by elements in even degree. For example, if R
is complete intersection, then n is the codimension of R. If R is Cohen Koszul, then for any finite free
R-complex F with H(𝐹) ≠ 0, one has the inequality∑

𝑛∈Z

ℓℓ𝑅H𝑛 (𝐹) � 𝑛 + 1.

One can use similar ideas to those in [ABIM10], as well as [BGP24], to establish this bound; here,
however, formality of the derived fiber of a Cohen presentation of R is a main ingredient. Moreover,
when R is complete intersection, it agrees with the common bounds from [ABIM10, BGP24].

2.15. Properties of Koszul homomorphisms

Before moving on to examples, we establish some basic change of rings properties for Koszul homomor-
phisms. First, we note that being Koszul is invariant under certain flat base changes and, in particular,
under completion.

Proposition 2.16. Given a finite local homomorphism 𝜑 : 𝑄 → 𝑅 and a flat local homomorphism
𝜓 : 𝑄 → 𝑄 ′ inducing an isomorphism on residue fields, 𝜑 is Koszul if and only if 𝜑⊗𝑄 ′ : 𝑄 ′ → 𝑅⊗𝑄𝑄 ′

is Koszul.

Proof. The natural map 𝑅 ⊗L
𝑄 𝑘 → (𝑅 ⊗𝑄 𝑄 ′) ⊗L

𝑄′ 𝑘 is a quasi-isomorphism of dg k-algebras. Indeed,
if A is a dg algebra resolution of R over Q, then 𝐴 ⊗𝑄 𝑄 ′ is a dg algebra resolution of 𝑅 ⊗𝑄 𝑄 ′ over 𝑄 ′,
and (𝐴 ⊗𝑄 𝑄 ′) ⊗𝑄′ 𝑘 � 𝐴 ⊗𝑄 𝑘 . �

The next proposition will often be useful in reducing the dimension of Q or R.

Proposition 2.17. Let 𝜑 : 𝑄 → 𝑅 be a finite local homomorphism, and let 𝑥 ∈ 𝔪𝑄 and 𝑦 ∈ 𝔪𝑅.

(1) If x is regular on Q and y is regular on R, with 𝜑(𝑥) = 𝑦, then 𝜑 is Koszul if and only if the map of
quotients 𝑄/(𝑥) → 𝑅/(𝑦) is Koszul.

(2) If y is regular on R, then 𝜑 is Koszul if and only if the composition 𝑄 → 𝑅/(𝑦) is Koszul.
(3) If 𝜑(𝑥) = 0 and x generates a free R-module summand of ker(𝜑)/ker(𝜑)2, then 𝜑 is Koszul if and

only if the induced map 𝑄/(𝑥) → 𝑅 is Koszul.
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Proof. For part (1), let 𝐴 �
−→ 𝑅 be a dg algebra resolution of R over Q. The assumptions on x and y

imply that 𝐴 ⊗𝑄 𝑄/(𝑥) is a dg algebra resolution of 𝑅/(𝑦) over 𝑄/(𝑥). In particular, there are quasi-
isomorphisms

𝑅 ⊗L
𝑄 𝑘 � 𝐴 ⊗𝑄 𝑘 � (𝐴 ⊗𝑄 𝑄/(𝑥)) ⊗𝑄/(𝑥) 𝑘 � 𝑅/(𝑦) ⊗L

𝑄/(𝑥) 𝑘

of dg k-algebras, and the claim follows.
For part (2), if A is is a dg algebra resolution of R over Q, as above, then there is an element 𝑦̃ ∈ 𝔪𝑄𝐴0

mapping to 𝑦 ∈ 𝑅. Taking an exterior variable e of degree 1, and setting 𝜕 (𝑒) = 𝑦̃, the extension 𝐴〈𝑒〉
is then a dg algebra resolution of 𝑅/(𝑦) over Q; see [Avr98, 6.1]. We see that

𝑅/(𝑦) ⊗L
𝑄 𝑘 � 𝐴〈𝑒〉 ⊗𝑄 𝑘 � (𝐴 ⊗𝑄 𝑘) ⊗𝑘 Λ𝑘 (𝑒) � (𝑅 ⊗L

𝑄 𝑘) ⊗𝑘 Λ𝑘 (𝑒),

where Λ𝑘 (𝑒) is the exterior algebra over k on the degree 1 variable e. Hence, it remains to note that the
tensor product of dg k-algebras is formal if and only if both of its factors are formal, and hence Koszul
if and only if both of its factors are Koszul; see [Frö99, Theorem 2] for the latter.

For part (3), we invoke [Iye01, Proposition 2.1] to obtain a dg algebra resolution A of R over Q and
an isomorphism of dg k-algebras 𝐴 ⊗𝑄 𝑘 � 𝑊 ⊗𝑘 Λ𝑘 (𝑒), where W is a dg subalgebra of 𝐴 ⊗𝑄 𝑘 and
Λ𝑘 (𝑒) is the exterior algebra on a generator of degree 1 (this result is based upon André’s theory of
special cycles [And82]). Moreover, the proof in [Iye01] identifies the inclusion Λ𝑘 (𝑒) → 𝐴 ⊗𝑄 𝑘 with
the natural map 𝑄/(𝑥) ⊗L

𝑄 𝑘 → 𝑅 ⊗L
𝑄 𝑘 . It follows that

𝑅 ⊗L
𝑄/(𝑥) 𝑘 � (𝑅 ⊗L

𝑄 𝑘) ⊗L
𝑄/(𝑥) ⊗L

𝑄
𝑘
𝑘 � (𝑊 ⊗𝑘 Λ𝑘 (𝑒)) ⊗Λ𝑘 (𝑒) 𝑘 � 𝑊.

As in part (2), we may deduce that 𝑅 ⊗L
𝑄/(𝑥)

𝑘 is Koszul dg k-algebra if and only if 𝑅 ⊗L
𝑄 𝑘 �

(𝑅 ⊗L
𝑄/(𝑥)

𝑘) ⊗𝑘 Λ𝑘 (𝑒) is as well. �

Remark 2.18. Many other Koszul-like properties have appeared in the literature. Within local commu-
tative algebra, Herzog, Reiner and Welker introduced a notion of Koszul local ring in [HRW98], and
the same condition is investigated in [HI05]. The local ring 𝑘�𝑥, 𝑦�/(𝑥2 − 𝑦3) is Koszul in the sense
of these references, but it is not a Koszul k-algebra according to Definition 2.1, since it does not admit
a quadratic presentation. However, the same ring 𝑘�𝑥, 𝑦�/(𝑥2 − 𝑦3) is Koszul as a 𝑘�𝑦�-algebra by
Example 3.1, and it is Koszul as a 𝑘�𝑥, 𝑦�-algebra by Example 3.2 – in other words, it is Cohen Koszul.

Myers studied a Koszulity condition in [Mye21] that is closely related to ours. That work begins
with a standard graded k-algebra R, and its Koszul homology H(𝐾𝑅) is said to be strand Koszul if it is
Koszul with respect to the induced weight grading by strands: H(𝐾𝑅)(𝑤) =

⊕
𝑖+ 𝑗=𝑤 H𝑖 (𝐾

𝑅) 𝑗 (the total
of the homological and internal gradings). According to [Mye21, Theorem B], the Koszul complex 𝐾𝑅

is automatically quasi-formal; this is a weakening of formality defined in terms of the degeneration of a
certain Eilenberg–Moore spectral on its second page; see [Mye21, 2.3]. In contrast, R is Cohen Koszul
if 𝐾𝑅 is formal and H(𝐾𝑅) is Koszul with respect to some weight grading. In the next section, we see
that there are many natural examples for which H(𝐾𝑅) is Koszul with respect to a different grading than
the strand grading.

The authors of [CDG+20] have also investigated how the Koszul condition on a local ring affects the
algebra structure of the Koszul homology H(𝐾𝑅). While this is connected to the present work, we note
that there are many examples of local k-algebras that are Cohen Koszul but not Koszul as k-algebras.

Remark 2.19. We end this section with remarks on the generality of Definition 2.6.
We have chosen to focus on the setting of finite Q-algebras because this is necessary to meaningfully

talk about transferring homological information from Q to R. However, the notion of Koszul homo-
morphism can be extended fruitfully to all local homomorphisms, with some additional technicalities.
In particular, to accommodate non-finite algebras, Definition 2.1 should be adapted to require that the
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completion of K at its augmentation ideal is isomorphic to
∏
𝑤�0 𝐾 (𝑤) , and that k admits a linear

resolution over the corresponding graded ring
⊕

𝑤�0 𝐾 (𝑤) .
For Q non-local, one can say a Q-algebra R is Koszul at a prime 𝔭 ∈ Spec(𝑄) if 𝜅(𝔭) ⊗L

𝑄 𝑅 is a
Koszul dg algebra over 𝜅(𝔭) = 𝑄𝔭/𝔭𝑄𝔭. From this perspective, it is natural to replace R with a sheaf of
algebras on some scheme; examples related to this have appeared in the literature, such as the sheaf of
Clifford algebras constructed by Buchweitz in [BEH87, Appendix].

In this work, we focus on applications to commutative algebra. The natural generalization to non-
commutative algebras is interesting as well, using exactly the same definitions.

3. Examples of Koszul homomorphisms

This section contains examples (and counterexamples) demonstrating the ubiquity of the Koszul condi-
tion. The first class of examples generalizes the class of Koszul algebras over a field in a straightforward
manner.

Example 3.1 (Flat homomorphisms with Koszul fiber). A flat finite local homomorphism 𝜑 : 𝑄 → 𝑅
is Koszul if and only if its fiber 𝑅 ⊗𝑄 𝑘 is a Koszul k-algebra. Such examples are readily constructed
by deforming presentations of known Koszul algebras. For example, the k-algebra 𝑘 [𝑥]/(𝑥2) is Koszul,
and so the homomorphism

𝑄 → 𝑄 [𝑥]/(𝑥2 − 𝑎𝑥 − 𝑏)

is Koszul for any 𝑎, 𝑏 ∈ 𝔪𝑄.

We will see that the non-flat case is significantly more interesting, and crucially there is no need for
the map 𝜑 : 𝑄 → 𝑅 to be quadratic in any sense, as the following examples demonstrate. Nonetheless,
later we return to the idea that Koszul homomorphisms look like deformations of classical Koszul
presentations; cf. Theorem 7.1.

Example 3.2 (Complete intersection homomorphisms). Let 𝜑 : 𝑄 → 𝑅 be a surjective, local, complete
intersection homomorphism of codimension c. That is, ker(𝜑) is generated by a Q-regular sequence
f = 𝑓1, . . . , 𝑓𝑐 . In this case, the Koszul complex 𝐴 = Kos𝑄 (f ) is a dg algebra resolution of R over Q.
Then

𝑅 ⊗L
𝑄 𝑘 = 𝐴 ⊗𝑄 𝑘 = Λ𝑘 (Σ𝐴1 ⊗𝑄 𝑘)

is the exterior algebra on a k-space of rank c in homological degree one, with zero differential. Thus,
the derived fiber of 𝜑 is clearly formal, and it is well known to be a Koszul k-algebra with its weight ho-
mological gradings coinciding; cf. [Pri70, Examples 2.2(2)]. In particular, a local complete intersection
ring is Cohen Koszul.

Remark 3.3. For a Cohen Koszul ring R, the homological and weight grading on H(𝐾𝑅) coincide if
and only if R is complete intersection. Indeed, the reverse implication was indicated in Example 3.2, and
the forward implication follows from a Theorem of Wiebe [Wie69]; see also [BH98, Theorem 2.3.15].

Example 3.4 (Trivial extension algebras). Given a graded ring B and a graded B-module U, let 𝐵 �𝑈
denote the trivial extension of B by U. This is the graded module 𝐵 ⊕ 𝑈 with multiplication

(𝑏, 𝑢) · (𝑏′, 𝑢′) = (𝑏𝑏′, 𝑏𝑢′ + 𝑏′𝑢),

and zero differential. The main case of interest is that B is augmented to k, and U is a graded k-space
thought of as a trivial B-module. If B is also a k-algebra, then B is a Koszul if and only if 𝐵 �𝑈 is by
[Che17].

In particular, for any k-space U, the local k-algebra 𝑘�𝑈 is Koszul. It is also Cohen Koszul, according
to Example 3.5.
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For a surjective local map 𝜑 : 𝑄 → 𝑅 and R-module M, there is the following coefficientwise
inequality of Poincaré series:

P𝑅𝑀 (𝑡) �
P𝑄𝑀 (𝑡)

1 − 𝑡 (P𝑄𝑅 (𝑡) − 1)
. (3.4.1)

This fact is due to Serre; see, for example, [Avr98, Proposition 3.3.2].

Example 3.5 (Golod homomorphisms). Let 𝜑 : 𝑄 → 𝑅 be a surjective, local, Golod homomorphism.
That is, the Serre bound (3.4.1) is an equality for the residue field 𝑀 = 𝑘 .

Avramov proved that a surjective, local homomorphism is Golod if and only if there is a quasi-
isomorphism of dg algebras

𝑅 ⊗L
𝑄 𝑘 � 𝑘 �𝑈,

where U is a positively graded vector space over k. This follows by applying [Avr86, Theorem 2.3] to a
(possibily non-minimal) dg k-algebra model for 𝑅 ⊗L

𝑄 𝑘 . The trivial extension algebra 𝑘 �𝑈 is Koszul
by [LV12, Proposition 3.4.9] – see also Example 3.4 – and hence, 𝜑 is Koszul.

The examples above provide many instances of Cohen Koszul k-algebras appearing in local com-
mutative algebra, and some of these examples are Koszul in the classical sense: for example, a local
complete intersection k-algebra is Koszul if and only if it is quadratic; see [Frö99, 3.1]. We give a small
example of a local k-algebra that is neither Koszul nor Cohen Koszul.

Example 3.6. Suppose 𝑅 = 𝑘�𝑎, 𝑏, 𝑐�/(𝑎2, 𝑏𝑐, 𝑎𝑐+𝑏2). A computation shows Λ𝑘 (𝑒1, 𝑒2, 𝑒3)/(𝑒1𝑒2𝑒3)
is an algebra retract of H(𝐾𝑅); one could, for example, use Macaulay2 [GS] for this calculation. In
particular, H(𝐾𝑅) has a relation of weight 3 in any weight grading, and so H(𝐾𝑅) cannot be a Koszul
k-algebra. Thus, R is not Cohen Koszul. Moreover, R is the completion of a quadratic algebra that is not
Koszul in the classical sense. One can see this by computing the third differential in the minimal free
resolution of k over R; alternatively, see [BF85].

In Theorem 3.10, we see that this is part of an exceptional class of non-Cohen Koszul local rings
among rings having embedding dimension at most three.

Example 3.7 (Short Gorenstein local rings). A local ring R with maximal ideal 𝔪𝑅 is called short
Gorenstein if it is Gorenstein and 𝔪3

𝑅 = 0. Equivalently, these are the local rings having Hilbert series
H𝑅 (𝑡) = 1 + 𝑛𝑡 + 𝑡2 for some n. This is an important class of local rings that occurs frequently in what
follows. If R is also a k-algebra, then R is Koszul by [Frö82] or [Sch80] (this follows as well from the
slightly earlier computations in [LA78]). Short Gorenstein rings are also Cohen Koszul by Example
3.15.

3.8. Rings of small codepth

Recall that for a local ring R with maximal ideal 𝔪𝑅 and residue field k, its codepth is

codepth(𝑅) � rank𝑘 (𝔪𝑅/𝔪
2
𝑅) − depth(𝑅).

This value is a measure of the singularity of R in the sense that codepth(𝑅) = 0 if and only if R is regular.
The next result illustrates that a local ring of small codepth is almost always Cohen Koszul. First, we
remind the reader of the structure theorem on Koszul homology for rings having codepth three.

3.9. Assume R has codepth three and fix a minimal Cohen presentation 𝜑 : 𝑄 → 𝑅. The minimal Q-free
resolution A of 𝑅 supports a dg algebra structure; see, for example, [BE77]. Hence, 𝑅 ⊗L

𝑄 𝑘 is formal,
and the algebra structure of its homology 𝑇 = Tor𝑄 (𝑅, 𝑘) = H(𝐾𝑅) has been classified as follows.
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Fix bases {𝑒1, . . . , 𝑒ℓ }, { 𝑓1, . . . , 𝑓𝑚} and {𝑔1, . . . , 𝑔𝑛} for 𝑇1, 𝑇2 and 𝑇3, respectively. By [AKM88],
there are non-negative integer parameters 𝑝, 𝑞, 𝑟 , satisfying

𝑝 � ℓ − 1, 𝑞 � 𝑚 − 𝑝, 𝑟 � min{ℓ, 𝑚},

such that T is one of the graded-commutative algebras determined below, where products between the
basis elements not listed are zero:

CI: 𝑒1𝑒2 = 𝑓3, 𝑒1𝑒3 = 𝑓2, 𝑒2𝑒3 = 𝑓1, 𝑒𝑖 𝑓𝑖 = 𝑔1 for 𝑖 = 1, 2, 3.
TE: 𝑒1𝑒2 = 𝑓3, 𝑒1𝑒3 = 𝑓2, 𝑒2𝑒3 = 𝑓1.
B: 𝑒1𝑒2 = 𝑓3, 𝑒1 𝑓1 = 𝑔1, 𝑒2 𝑓2 = 𝑔1.
G(𝑟): 𝑒𝑖 𝑓𝑖 = 𝑔1 for 𝑖 = 1, . . . , 𝑟 and 𝑟 ≥ 2
H(𝑝, 𝑞): 𝑒𝑝+1𝑒𝑖 = 𝑓𝑖 for 𝑖 = 1, . . . , 𝑝, and 𝑒𝑝+1 𝑓𝑝+𝑖 = 𝑔𝑖 for 𝑖 = 1, . . . , 𝑞.

In each case, let 𝑇 ′ denote the corresponding subalgebra on the basis elements appearing in the
multiplication table above. If U is the k-space spanned by the basis of elements of T not recorded in the
same multiplication table, then note that there is an isomorphism of graded k-algebras

𝑇 � 𝑇 ′ �𝑈. (3.9.1)

Finally, as a matter of terminology, we say a local ring R belongs to one of these classes if𝑇 = Tor𝑄 (𝑅, 𝑘)
has the corresponding algebra structure.

Theorem 3.10. A local ring of codepth two or less is Cohen Koszul. A local ring of codepth three is
Cohen Koszul if and only if it belongs to CI, B, G(𝑟) or H(𝑝, 𝑞).

Proof. Let R be a local ring of codepth c with residue field k. Fix a minimal Cohen presentation
𝜑 : 𝑄 → 𝑅 and set 𝑇 = Tor𝑄 (𝑅, 𝑘).

If 𝑐 � 2, then R must be complete intersection or Golod; that is, 𝜑 is a complete intersection or Golod
homomorphism. This follows from the Hilbert–Burch theorem (see [Bur68], as well [BH98, Theorem
1.4.17]) combined with a result of [Lev76, Theorem 2.3]; see also [Avr99, Proposition 5.3.4]. Therefore,
by Examples 3.2 and 3.5, R is Cohen Koszul in either case.

Now assume 𝑐 = 3. The simplest case is when R belongs to CI, since in this case, R is complete
intersection and so R is Cohen Koszul; cf. Example 3.2.

For the remainder of the proof, we adopt the notation from 3.9 and analyze the graded algebra
structure of T. By Example 3.4 and (3.9.1), T is Koszul if and only if 𝑇 ′ is, and so we replace T by 𝑇 ′

in what follows.
If T is H(𝑝, 𝑞), then it is the tensor product of a trivial extension algebra on 𝑒1, . . . , 𝑒𝑝 , 𝑓𝑝+1, . . . , 𝑓𝑝+𝑞

and the exterior algebra on 𝑒𝑝+1, where each of these have weight 1. Hence, T is a tensor product of
Koszul k-algebras and so it is Koszul.

If T is G(𝑟), we give {𝑒𝑖} and { 𝑓𝑖} weight one and 𝑔1 weight two. Then T is a short Gorenstein
k-algebra and hence Koszul; see Example 3.7.

If T is B, then we give T weight grading

𝑇(𝑤) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑘 𝑤 = 0
𝑘𝑒1 ⊕ 𝑘𝑒2 ⊕ 𝑘 𝑓1 ⊕ 𝑘 𝑓2 𝑤 = 1
𝑘 𝑓3 ⊕ 𝑘𝑔1 𝑤 = 2
0 𝑤 � 3.

As an algebra, T is the quotient of the exterior algebra

𝑇 � Λ𝑘 (𝑒1, 𝑒2, 𝑓1, 𝑓2)/(𝑒1 𝑓2, 𝑒2 𝑓1, 𝑓1 𝑓2, 𝑒1 𝑓1 − 𝑒2 𝑓2).
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The graded k-algebra T is Koszul since its defining ideal has a quadratic Gröbner basis, and is therefore
Koszul by [MM22].

Finally, if T is type TE, then T is not quadratic with respect to any weight grading. Indeed, the
products in 3.9 force 𝑒1, 𝑒2, 𝑒3 to all have weight one, as well as the minimal relation 𝑒1𝑒2𝑒3 = 0. Hence,
T is not Koszul. �

Remark 3.11. Theorem 3.10 deals with the ‘absolute’ case. That is to say, when a local ring is Cohen
Koszul. However, given a surjective map of local rings 𝜑 : 𝑄 → 𝑅, one has that this is always Koszul for
proj dim𝑄 (𝑅) � 2. Indeed, in this case, 𝜑 is either a complete intersection homomorphism or a Golod
homomorphism. For the case proj dim𝑄 (𝑅) = 3, the structure theorem on 𝑇 = Tor𝑄 (𝑅, 𝑘) discussed in
3.9 can be applied assuming that ker(𝜑) is a perfect ideal. In this case, 𝜑 is Koszul except in the case
that T belongs to TE.

A surjective local homomorphism 𝜑 : 𝑄 → 𝑅 of finite projective dimension is Gorenstein of projec-
tive dimension d if

Ext𝑖𝑄 (𝑅,𝑄) =

{
𝑅 𝑖 = 𝑑

0 𝑖 ≠ 𝑑.
(3.11.1)

For example, Gorenstein rings of codimension d are exactly those whose minimal Cohen presentations
are Gorenstein of projective dimension d. If 𝑑 = 3, then Tor𝑄 (𝑅, 𝑘) belongs to G(𝑟) and the dg algebra
structure on the minimal resolution of R over Q can be described explicitly; one can hence verify directly,
as is done below, that such maps are Koszul.

Example 3.12 (Gorenstein homomorphisms of projective dimension 3). Assume that 𝜑 is Gorenstein
of projective dimension 3. Buchsbaum and Eisenbud constructed the minimal free resolution of R over
Q in [BE77, Theorem 2.1 & 4.1]:

𝐴 = 0 → 𝑄 → 𝑄𝑟 𝜓
−→ 𝑄𝑟 → 𝑄 → 0,

where 𝑟 � 3 is odd and the first and third differential of A depend on Pfaffians of submatrices of the
alternating matrix 𝜓. Furthermore, A is a graded-commutative dg algebra with the following multipli-
cation: We fix bases {𝑒𝑖}

𝑟
𝑖=1, { 𝑓𝑖}𝑟𝑖=1, and {𝑔} for 𝐴1, 𝐴2 and 𝐴3, respectively. The multiplication is

determined by

𝑒𝑖𝑒 𝑗 �
𝑟∑
ℓ=1

(±1) pf(𝜓𝑖 𝑗ℓ) 𝑓ℓ for 𝑖 < 𝑗 , 𝑒𝑖 𝑓 𝑗 � 𝛿𝑖 𝑗𝑔 and 𝑓𝑖 𝑓 𝑗 = 0,

where 𝜓𝑖 𝑗ℓ is the submatrix of 𝜓 obtained by deleting the ith, jth and ℓth row and column, and 𝛿𝑖 𝑗 is the
Kronecker delta function. The exact description is not important for the sequel; see [Avr98, Example
2.1.3] for detail.

When 𝑟 = 3, it follows that A is a Koszul complex on three elements and so 𝜑 is a surjective complete
intersection map; hence, 𝜑 is Koszul by Example 3.2.

When 𝑟 � 5, we have that pf(𝜓𝑖 𝑗ℓ) ∈ 𝔪𝑄 for any i, j and ℓ. Hence, the only nonzero products in the
graded algebra 𝐴 ⊗𝑄 𝑘 are

𝑒𝑖 𝑓𝑖 = 𝑓𝑖𝑒𝑖 = 𝑔 for 1 � 𝑖 � 𝑟.
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Giving 𝐴 ⊗𝑄 𝑘 the weight grading

(𝐴 ⊗𝑄 𝑘)(𝑤) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐴0 ⊗𝑄 𝑘 𝑤 = 0
(𝐴1 ⊗𝑄 𝑘) ⊕ (𝐴2 ⊗𝑄 𝑘) 𝑤 = 1
𝐴3 ⊗𝑄 𝑘 𝑤 = 2
0 else,

it belongs to G(r) in 3.9. The fact that 𝐴 ⊗𝑄 𝑘 is a Koszul k-algebra was established in the proof of
Theorem 3.10. Thus, 𝜑 is a Koszul homomorphism.

3.13. Almost Golod Gorenstein rings

We discuss here a large class of local Gorenstein rings displaying interesting homological behavior, that
has been studied before in [RŞ14, Section 6].

Definition 3.14. We say that an artinian local ring R is almost Golod if the socle quotient 𝑅/soc(𝑅)
is Golod. A general local ring is almost Golod if it is Cohen–Macaulay and 𝑅/(x) is an almost Golod
artinian ring, where x is a maximal regular sequence that is part of a minimal generating set for 𝔪𝑅.

Example 3.15 (Almost Golod Gorenstein rings). Let R be an almost Golod local ring that is also
Gorenstein of codepth d.

Fix a minimal Cohen presentation 𝜑 : 𝑄 → 𝑅 and set 𝑇 = Tor𝑄 (𝑅, 𝑘). Since Q is regular and R
is Gorenstein, T is a Poincaré duality algebra by [AG71]. That is to say, for each 0 � 𝑖 � 𝑑, the
multiplication maps

𝑇𝑖 × 𝑇𝑑−𝑖 → 𝑇𝑑 � 𝑘

are perfect pairings. Furthermore, by [LA78, Theorem 1], the quotient𝑇/𝑇𝑑 is a subalgebra of the trivial
extension algebra Tor𝑄 (𝑅/soc(𝑅), 𝑘), and hence is itself a trivial extension algebra. It follows that T is
a short Gorenstein k-algebra. Moreover, prescribing T with the following weight grading

𝑇(0) = 𝑇0, 𝑇(1) =
⊕𝑑−1

𝑖=1 𝑇𝑖 , and 𝑇(2) = 𝑇𝑑

makes T a Koszul k-algebra, with the multiplication of T being equivalent to a perfect pairing on 𝑇(1) ;
see the proof of Theorem 3.10.

We prove that these rings are Cohen Koszul under the assumption that R contains a field of character-
istic zero and d is odd, by giving a characterization analogous to Avramov’s characterization of Golod
rings [Avr86]. We do not know whether the assumption on the characteristic or on d is necessary (but
see Remark 5.10).

Theorem 3.16. Let R be a local with a minimal Cohen presentation 𝑄 → 𝑅. If there is a quasi-
isomorphism of dg k-algebras 𝑅 ⊗L

𝑄 𝑘 � 𝑇 , where T is a short Gorenstein graded k-algebra, then R is
almost Golod Gorenstein. Assuming that R contains a field of characteristic zero, and that codepth(𝑅)
is odd, the converse holds as well. In particular, almost Golod Gorenstein rings (of characterstic zero
and odd codepth) are Cohen Koszul.

Proof. If R is almost Golod Gorenstein, we have already seen that 𝑇 = Tor𝑄 (𝑅, 𝑘) is a short Gorenstein
algebra, and in particular Koszul. The proof that 𝑅 ⊗L

𝑄 𝑘 is formal under the stated assumptions will be
given in Theorem 5.7 and Lemma 8.17.
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Conversely, assume that 𝑅 ⊗L
𝑄 𝑘 is quasi-isomorphic to a short Gorenstein algebra T, and write e for

the embedding dimension of R. By Proposition 2.11,

P𝑅𝑘 (𝑡) =
(1 + 𝑡)𝑒

1 − (H𝑇 (𝑡) − 1 − 𝑡𝑒)𝑡 + 𝑡𝑒+2 ,

and hence as a consequence of [RŞ14, Proposition 6.2], R is almost Golod. �

Remark 3.17. The prototypical example of an almost Golod Gorenstein ring is a short Gorenstein local
ring R. In this case, 𝑅/soc(𝑅) = 𝑅/𝔪2

𝑅 is Golod by [Gol78].
Among the complete intersection local rings, the almost Golod Gorenstein rings are exactly those

having codimension two or less; see Theorem 3.16. If R is a Gorenstein local ring of codimen-
sion 3 that is not complete intersection, then R is almost Golod Gorenstein by Example 3.12 and
Theorem 3.16.

By [RŞ14, Proposition 6.3], every Gorenstein compressed local ring of socle degree at least 4 is
almost Golod Gorenstein. Moreover, for fixed emdedding dimension and socle degree, the generic
Gorenstein local k-algebra is compressed by [Iar84, Theorem I]. Hence, the almost Golod Gorenstein
condition is extremely common.

Recall that if Q is a standard graded polynomial algebra, a homogeneous quotient 𝑅 = 𝑄/𝐼 is said
to have an almost linear resolution over Q if the ideal I is generated by forms of degree e, and for
all 0 < 𝑖 < proj dim𝑄 (𝑅), we have Tor𝑄𝑖 (𝑅, 𝑘) 𝑗 = 0 unless 𝑗 − 𝑖 = 𝑒 − 1; confer [EHU06]. Graded
Gorenstein rings with almost linear resolutions are always almost Golod Gorenstein. This will be justified
later in the paper, in Example 8.19, along with the fact that such algebras with 𝑒 � 3 are also Cohen
Koszul; this is done without the assumptions on characteristic and codepth in Theorem 3.16.

Remark 3.18. In rational homotopy theory, Golod rings correspond to spaces that are (rationally)
homotopy equivalent to a wedge of spheres, while Gorenstein rings are analogous to manifolds, or more
generally Poincaré duality spaces; see the looking glass [AH86] for more information.

To be more precise, if M is a simply connected manifold and the punctured space 𝑀 \{pt} is rationally
homotopy equivalent to a wedge of spheres, then the cohomology ring H∗(𝑀;Q) is an almost Golod
Gorenstein ring. In [Sta83], Stasheff proved such spaces are formal, and therefore, they are Koszul in
the sense of Berglund [Ber14]. A well-studied class of manifolds satisfying this property are the highly
connected manifolds – that is, those M with H𝑖 (𝑀;Q) = 0 when 0 < 𝑖 < �dim(𝑀)/2�.

Since Gorenstein rings that are not regular or hypersurfaces are never Golod, the Serre bound (3.4.1)
must be strict for such rings. However, a tighter bound can be established for Gorenstein local rings, as
we show now. The case of equality below is equivalent (when 𝑑 = 0) to the formula for P𝑅𝑘 (𝑡) given in
[RŞ14, Proposition 6.2], and our proof is essentially equivalent to that of loc. cit.

Proposition 3.19. Let R be a local ring having dimension d and embedding dimension e, with residue
field k and Koszul complex 𝐾𝑅. If R is Gorenstein but not regular or a hypersurface, then there is a
coefficientwise inequality

P𝑅𝑘 (𝑡)
(1 + 𝑡)𝑑 − 𝑡2 P𝑅𝑘 (𝑡)

�
(1 + 𝑡)𝑒−𝑑

1 − 𝑡2(1 + 𝑡)𝑒−𝑑 + 𝑡𝑒−𝑑+2 −
∑𝑒−𝑑−1
𝑖=1 rank𝑘 H𝑖 (𝐾𝑅)𝑡𝑖+1

,

and equality holds if and only if R is almost Golod.

While the left-hand side is not equal to P𝑅𝑘 (𝑡), it increases monotonically with P𝑅𝑘 (𝑡), and so it directly
measures the growth of the resolution of k. Therefore, within the class of Gorenstein local rings, almost
Golod rings display extremal behavior analogous to Golod rings.

Proof. As R is Gorenstein, prime avoidance yields a regular sequence x = 𝑥1, . . . , 𝑥𝑑 that is part of a
minimal generating set for 𝔪𝑅, so that 𝑅̄ = 𝑅/(x) is artinian Gorenstein and of embedding dimension
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𝑒−𝑑. By Nagata’s theorem [Nag62, Section 27], we have P𝑅𝑘 (𝑡) = P𝑅̄𝑘 (𝑡) (1+ 𝑡)
𝑑 , and so the first equality

below holds:

P𝑅𝑘 (𝑡)
(1 + 𝑡)𝑑 − 𝑡2 P𝑅𝑘 (𝑡)

=
P𝑅̄𝑘 (𝑡)

1 − 𝑡2 P𝑅̄𝑘 (𝑡)

= P𝑅̄/soc(𝑅̄)
𝑘 (𝑡)

�
P𝑄𝑘 (𝑡)

1 − 𝑡 (P𝑄
𝑅̄/soc(𝑅̄) (𝑡) − 1)

=
P𝑄𝑘 (𝑡)

1 − 𝑡 (P𝑄
𝑅̄
(𝑡) − 𝑡𝑒−𝑑 + 𝑡 P𝑄𝑘 (𝑡) − 𝑡𝑒−𝑑+1 − 1)

.

The second equality holds using [LA78, Theorem 2], the coefficientwise inequality is the Serre bound
(3.4.1) for 𝑅̄/soc(𝑅̄), and the last equality holds using [LA78, Theorem 1]. Since P𝑄𝑘 (𝑡) = (1+ 𝑡)𝑒−𝑑 and
P𝑄
𝑅̄
(𝑡) =

∑𝑖=𝑒−𝑑
𝑖=0 rank𝑘 H𝑖 (𝐾

𝑅)𝑡𝑖 , we obtain the claimed inequality. It remains to note that R is almost
Golod if and only if 𝑅̄/soc(𝑅̄) is Golod, if and only if equality holds in the third line above. �

Later, in Section 8.15, we explicitly construct resolutions over almost Golod Gorenstein rings that
achieve the bound of Proposition 3.19.

3.20. Monomial rings

In this subsection, we consider rings of the form 𝑅 = 𝑄/𝐼, where 𝑄 = 𝑘 [𝑥1, . . . , 𝑥𝑛] and I is generated
by monomials 𝑚1, . . . , 𝑚𝑟 . By Fröberg’s theorem [Frö75], R is Koszul as a k-algebra if and only if each
𝑚𝑖 is quadratic. However, the condition that R is Cohen Koszul is more common and more subtle.
Example 3.21 (Almost linear monomial ring). As discussed in Remark 3.17, graded Gorenstein rings
having almost linear resolutions are Cohen Koszul. To give an explicit example, let I be the ideal in
𝑄 = 𝑘 [𝑥1, . . . , 𝑥8] generated by

𝑥2𝑥4𝑥5, 𝑥1𝑥3𝑥6, 𝑥2𝑥5𝑥6, 𝑥3𝑥5𝑥6, 𝑥1𝑥3𝑥7, 𝑥1𝑥4𝑥7, 𝑥2𝑥4𝑥7, 𝑥2𝑥6𝑥7,

𝑥3𝑥6𝑥7, 𝑥4𝑥6𝑥7, 𝑥1𝑥3𝑥8, 𝑥1𝑥4𝑥8, 𝑥2𝑥4𝑥8, 𝑥1𝑥5𝑥8, 𝑥2𝑥5𝑥8, 𝑥3𝑥5𝑥8.

The Betti table of 𝑅 = 𝑄/𝐼 is

0 1 2 3 4
0 1 · · · ·
1 · · · · ·
2 · 16 30 16 ·
3 · · · · ·
4 · · · · 1.

Of course, this example was found with the help of Macaulay2 [GS]; it is the Stanley–Reisner ring of
a triangulation of the 3-sphere, taken from the enumeration compiled by Lutz [Lut17].

An exact combinatorial characterization of which monomial rings are Cohen Koszul would be very
interesting; this seems possible but likely nontrivial. We describe a special case that produces a large
number of explicit examples.

Let 𝑄 = 𝑘 [𝑥1, . . . , 𝑥𝑛] be a polynomial ring over a field k. A monomial ideal I is called dominant if
it is generated by a set of monomials G such that for all 𝑚 ∈ 𝐺, there is a variable 𝑥𝑖 and an integer a
such that 𝑥𝑎𝑖 divides m and 𝑥𝑎𝑖 does not divide any monomial 𝑚′ ∈ 𝐺 \ {𝑚}; see [Ale17, Definition 4.1].
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Proposition 3.22. If 𝑄 = 𝑘 [𝑥1, . . . , 𝑥𝑛] is a polynomial ring over a field k and I is a dominant monomial
ideal in Q, then 𝑅 = 𝑄/𝐼 is Cohen Koszul.

Proof. The Taylor resolution A of R over Q has a basis {𝑒𝐼 } indexed by subsets 𝐼 ⊆ {1, . . . , 𝑛}, with 𝑒𝐼
in homological degree |𝐼 |, and the differential is defined by

𝜕 (𝑒𝐼 ) =
∑
𝑖∈𝐼

±
𝑚𝐼

𝑚𝐼\{𝑖 }
𝑒𝐼\{𝑖 },

where 𝑚𝐼 = lcm{𝑚𝑖 | 𝑖 ∈ 𝐼}; see [Tay66] for details and signs. The hypothesis of the proposition exactly
guarantees that the Taylor resolution is minimal by [Ale17, Theorem 4.4].

Gemeda [Gem76] proved that the Taylor resolution has a dg algebra structure with product

𝑒𝐼 𝑒𝐽 = ±
𝑚𝐼𝑚𝐽

𝑚𝐼∪𝐽
𝑒𝐼∪𝐽

when 𝐼∩𝐽 = ∅, and with 𝑒𝐼 𝑒𝐽 = 0 otherwise. By Remark 2.7, it follows that 𝑅⊗L
𝑄 𝑘 = 𝐴⊗𝑄 𝑘 is formal.

It remains to show that 𝐴⊗𝑄 𝑘 is a Koszul k-algebra. Let M be the graph with vertices {1, . . . , 𝑟} and
an edge connecting i and j if and only if gcd(𝑚𝑖 , 𝑚 𝑗 ) ≠ 1. From the description of A above, it follows that

𝐴 ⊗𝑄 𝑘 =
𝑘 [𝑒𝐼 | 𝐼 ⊆ 𝑀 connected]
(𝑒𝐼 𝑒𝐽 | gcd(𝑚𝐼 , 𝑚𝐽 ) ≠ 1)

,

where 𝑘 [𝑒𝐼 ] is the free graded-commutative algebra on the indicated 𝑒𝐼 ; compare this with [Ber05,
6.2]. Assigning each 𝑒𝐼 weight 1, we are done because quadratic monomial quotients of free graded-
commutative algebras are Koszul by Fröberg’s theorem [Frö75] (such rings belong to class B in [Frö75,
Section 3], and Fröberg constructs linear resolutions of the residue field for all rings of class B). �

Remark 3.23. One can readily exhibit monomial rings satisfying the hypothesis of the
proposition, and not falling into the other classes described above. For example, 𝑅 =
𝑘�𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 �/(𝑎𝑏𝑐, 𝑐𝑑, 𝑎𝑒, 𝑎𝑐 𝑓 ).

The next examples are k-algebras that fail to be Cohen Koszul; the first is a Koszul k-algebra, and
the second has H(𝐾𝑅) a Koszul k-algebra. Both examples fail to be Cohen Koszul since in each case,
𝐾𝑅 admits a nonzero triple Massey product, and hence is not formal; cf. [May69] for more details on
Massey products.
Example 3.24. The k-algebra 𝑅 = 𝑘�𝑎, 𝑏, 𝑐, 𝑑�/(𝑎2, 𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑑2) is the completion of a Koszul k-
algebra (in the classical sense) by [Frö75, Corollary 1]. However, the map 𝑘�𝑎, 𝑏, 𝑐, 𝑑� → 𝑅 is not
Koszul. Indeed, by [Avr81, Example 5.1.4], 𝐾𝑅 has a nonzero triple Massey product, and so 𝐾𝑅 is not
formal.
Example 3.25. Let 𝑄 = 𝑘�𝑎, 𝑏, 𝑐, 𝑑, 𝑒� and consider the quotient map

𝜑 : 𝑄 → 𝑅 � 𝑄/(𝑎𝑏2, 𝑐𝑑2, 𝑒3, 𝑎𝑏𝑐𝑑, 𝑑2𝑒2, 𝑏2𝑒2, 𝑎𝑐𝑒, 𝑏2𝑑2𝑒).

In [Kat17, Theorem 3.1], it is shown that H(𝐾𝑅) is a trivial extension that admits a nonzero triple
Massey product; the latter is an obstruction to the formality of 𝐾𝑅, while the former justifies that H(𝐾𝑅)
is a Koszul k-algebra.
Remark 3.26. To any monomial ideal 𝐼 ⊆ 𝑄, one may associate a square-free monomial ideal 𝐼◦ in a
larger polynomial ring 𝑄◦, known as the polarization of I. Fröberg [Frö82] proved that there is a regular
sequence of linear forms 𝑦1, . . . , 𝑦𝑡 in the quotient 𝑅◦ = 𝑄◦/𝐼◦ such that 𝑅 = 𝑅◦/(𝑦1, . . . , 𝑦𝑡 ). From
Proposition 2.17, it follows that R is Cohen Koszul if and only if 𝑅◦ is Cohen Koszul.

A simplicial complex Δ on [𝑛] = {1, . . . , 𝑛} is a nonempty family of subsets of [𝑛], closed under
taking subsets. The Stanley–Reisner ring associated to Δ , denoted 𝑘 [Δ], is the quotient of 𝑘 [𝑥1, . . . , 𝑥𝑛]
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by the ideal generated by monomials 𝑥𝑖1 · · · 𝑥𝑖𝑡 such that {𝑖1, . . . , 𝑖𝑡 } ∉ Δ . Every square free monomial
ring is the Stanley–Reisner ring of some simplical complex, and so by Remark 3.26, we may restrict to
such monomials rings.

Remark 3.27. We make some remarks about the connections to toric topology; for precise definitions
and background on this area, the reader may consult [BP15].

To a simplical complex Δ on [𝑛], one also associates the moment angle complex ZΔ , a finite CW-
complex with an action of the torus (𝑆1)𝑛. The homotopy quotient DJ Δ = ZΔ//(𝑆

1)𝑛 is known as
the Davis–Januszkiewicz space of Δ . By [DJ91, Theorem 4.8] and [NR05, Theorem 4.8], the cochain
algebra of this space is formal, and quasi-isomorphic to the Stanley–Reisner ring:

𝐶∗(DJ Δ ; 𝑘) � 𝑘 [Δ],

where the variables 𝑥𝑖 are given cohomological degree 2. From this, it follows that 𝑘 [Δ] is a Koszul
k-algebra if and only if DJ Δ is a Koszul space in the sense of [Ber14]. As remarked in [Ber14, Example
5.8], this happens exactly when 𝑘 [Δ] is a quadratic algebra, or equivalently if Δ is a flag complex – that
is, the minimal faces not belonging to Δ are all edges.

The question of when ZΔ is a Koszul space seems to be more interesting. By [BP15, Lemma 3.1],
there is a quasi-isomorphism of dg k-algebras

𝐶∗(ZΔ ; 𝑘) � 𝑘 [Δ] ⊗L
𝑄 𝑘.

Thus, 𝑘 [Δ] is Cohen Koszul if and only if ZΔ is a Koszul space, since the latter means that 𝐶∗(ZΔ ; 𝑘)
is formal with Koszul homology algebra. The related condition that ZΔ is formal has been investigated
in [DS07, Lim19].

The almost Golod condition is also connected with the minimally non-Golod condition for simplicial
complexes introduced in [BJ07]. Indeed, the proof of [Ame20, Theorem 1.1] shows that if 𝑀 = ZΔ is a
moment angle manifold, and if 𝑀 \ {pt} is rationally homotopy equivalent to a wedge of spheres, then
Δ is minimally non-Golod (over Q).

4. Background on A∞-algebras and coalgebras

Stasheff introduced A∞-algebras in topology to characterize loop spaces [Sta63a, Sta63b], and they have
since proven a powerful tool in algebra as a flexible generalization of dg algebras; for an overview, see
[Kel01]. In our context, the minimal Q-free resolution of a finite Q-algebra R can be equipped with an A∞-
algebra structure (see Section 5), and this will be leveraged to characterize Koszul homomorphisms in
terms of presentations similar to the quadratic presentations for classical Koszul algebras (see Section 7).

From now on, Q is always a local ring with maximal ideal 𝔪𝑄 and residue field k, and unadorned
tensor products and Hom sets are taken over Q.

4.1. An A∞-algebra is a graded Q-module A equipped with Q-linear maps

𝑚𝑛 : 𝐴⊗𝑛 → 𝐴 for 𝑛 � 1

of degree (𝑛 − 2) satisfying the Stasheff identities∑
𝑟+𝑠+𝑡=𝑛
𝑟 ,𝑡�0,𝑠�1

(−1)𝑟+𝑠𝑡𝑚𝑟+1+𝑡
(
id⊗𝑟 ⊗𝑚𝑠 ⊗ id⊗𝑡 ) = 0. (4.1.1)

Taking 𝑛 = 1, this says that 𝑚1 is a degree −1 square zero endomorphism of A, so we can (and
will) make A a complex with 𝜕 = 𝑚1. Taking 𝑛 = 2 yields a product satisfying the Leibniz rule
𝜕𝑚2 = 𝑚2 (𝜕 ⊗ id+ id ⊗𝜕). The next Stasheff identity, for 𝑛 = 3, can be interpreted as saying that 𝑚2 is
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associative up to a homotopy given by 𝑚3; that is,

𝑚2 (id ⊗𝑚2 − 𝑚2 ⊗ id) = 𝜕𝑚3 + 𝑚3 (𝜕 ⊗ id ⊗ id+ id ⊗𝜕 ⊗ id+ id ⊗ id ⊗𝜕).

If for some n the Stasheff identity (4.1.1) holds for every integer less than n, then the obstruction

obs𝐴𝑛 �
∑

𝑟+𝑠+𝑡=𝑛
𝑟 ,𝑡�0,𝑛>𝑠>1

(−1)𝑟+𝑠𝑡𝑚𝑟+1+𝑡
(
id⊗𝑟 ⊗𝑚𝑠 ⊗ id⊗𝑡 ) (4.1.2)

is a chain map 𝐴⊗𝑛 → 𝐴; see [LH03, Corollaire B.1.2].
A morphism of A∞-algebras 𝜑 : 𝐴 → 𝐵 consists of Q-linear maps

𝜑𝑛 : 𝐴⊗𝑛 → 𝐵 for 𝑛 � 1

of degree (𝑛 − 1) satisfying

∑
𝑟+𝑠+𝑡=𝑛
𝑟 ,𝑡�0,𝑠�1

(−1)𝑟+𝑠𝑡𝜑𝑟+1+𝑡

(
id⊗𝑟 ⊗𝑚𝐴

𝑠 ⊗ id⊗𝑡
)
=

𝑛∑
𝑝=1

∑
α∈N𝑝

|α |=𝑛

(−1)𝑣 (α)𝑚𝐵
𝑝 (𝜑𝛼1 ⊗ · · · ⊗ 𝜑𝛼𝑝 ) (4.1.3)

where α = (𝛼1, . . . , 𝛼𝑝) and |α| =
∑𝑝
𝑘=1 𝛼𝑘 , with 𝑣(α) =

∑𝑝
𝑘=1 (𝑝 − 𝑘) (𝛼𝑘 − 1).

If for some n the Stasheff identity (4.1.3) holds for every integer less than n, then we define

obs𝜑𝑛 �
∑

𝑟+𝑠+𝑡=𝑛
𝑟 ,𝑡�0,𝑠�2

(−1)𝑟+𝑠𝑡𝜑𝑟+1+𝑡

(
id⊗𝑟 ⊗𝑚𝐴

𝑠 ⊗ id⊗𝑡
)
−

𝑛∑
𝑝=2

∑
α∈N𝑝

|α |=𝑛

(−1)𝑣 (α)𝑚𝐵
𝑝 (𝜑𝛼1 ⊗ · · · ⊗ 𝜑𝛼𝑝 ).

Then the Stasheff identity (4.1.3) holds if and only if

obs𝜑𝑛 = 𝑚1𝜑𝑛 + (−1)𝑛𝜑𝑛 (𝑚1 ⊗ id⊗(𝑛−1) + · · · + id⊗(𝑛−1) ⊗𝑚1).

A morphism 𝜑 of A∞-algebras is a quasi-isomorphism if the chain map 𝜑1 is a quasi-isomorphism
of complexes. The morphism 𝜑 is strict if 𝜑𝑛 = 0 for 𝑛 > 1. In this case, (4.1.3) simplifies to

𝜑1𝑚
𝐴
𝑛 = 𝑚𝐵

𝑛 (𝜑1 ⊗ · · · ⊗ 𝜑1). (4.1.4)

The composition of morphisms 𝜑 : 𝐴 → 𝐵 and 𝜓 : 𝐵 → 𝐶 is defined by

(𝜓 ◦ 𝜑)𝑛 �
𝑛∑
𝑝=1

∑
α∈N𝑝

|α |=𝑛

(−1)𝑣 (α)𝜓𝑝 (𝜑𝛼1 ⊗ · · · ⊗ 𝜑𝛼𝑝 ).

4.2. An A∞-algebra A is strictly unital if there exists 1𝐴 ∈ 𝐴0 such that

𝑚2(1𝐴 ⊗ 𝑎) = 𝑎 = 𝑚2 (𝑎 ⊗ 1𝐴) for all 𝑎 ∈ 𝐴 and
𝑚𝑛 (𝑎1 ⊗ · · · ⊗ 𝑎𝑖−1 ⊗ 1𝐴 ⊗ 𝑎𝑖+1 ⊗ · · · ⊗ 𝑎𝑛) = 0 for all 1 � 𝑖 � 𝑛

(4.2.1)

for any 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 and 𝑛 > 2. A morphism of strictly unital A∞-algebras 𝜑 : 𝐴 → 𝐵 is a morphism
of A∞-algebras such that

𝜑1(1𝐴) = 1𝐵 and
𝜑𝑛 (𝑎1 ⊗ · · · ⊗ 𝑎𝑖−1 ⊗ 1𝐴 ⊗ 𝑎𝑖+1 ⊗ · · · ⊗ 𝑎𝑛) = 0 for all 1 � 𝑖 � 𝑛

(4.2.2)

for any 𝑎 𝑗 ∈ 𝐴 and 𝑛 > 1.
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4.3. An A∞-algebra is connective if it is concentrated in non-negative degrees. If 𝐴 = 𝑄 ⊕ 𝐴̄ is a graded
module and 1𝐴 a free generator of the direct summand Q, then A is an A∞-algebra with a split unit.

A split unital A∞-algebra structure on a graded module concentrated in non-negative degrees is
equivalent to the existence of Q-linear maps

𝑚̄𝑛 : 𝐴̄⊗𝑛 → 𝐴̄ for 𝑛 � 1

of degree (𝑛 − 2) and Q-linear maps

ℎ1 : 𝐴̄ → 𝑄 and ℎ2 : 𝐴̄⊗2 → 𝑄

of degrees −1 and 0, respectively, such that for 𝑛 ≠ 2, 3, the Stasheff identities (4.1.1) hold when
replacing 𝑚𝑖 by 𝑚̄𝑖 , and for 𝑛 = 2, 3,∑

𝑟+𝑠+𝑡=𝑛
𝑟 ,𝑡�0,𝑠�1

(−1)𝑟+𝑠𝑡 𝑚̄𝑟+1+𝑡 (id⊗𝑟 ⊗𝑚̄𝑠 ⊗ id⊗𝑡 ) + (ℎ𝑛−1 ⊗ id− id ⊗ℎ𝑛−1) = 0,

and additionally,

ℎ1𝑚̄1 = 0, ℎ1𝑚̄2 − ℎ2 (𝑚̄1 ⊗ id+ id ⊗𝑚̄1) = 0 and
ℎ1𝑚̄3 + ℎ2 (𝑚̄2 ⊗ id− id ⊗𝑚̄2) = 0 ;

the former replaces the second and third Stasheff identity and the latter supplements the first three
Stasheff identities. In particular, for 𝑛 > 2, the maps 𝑚̄𝑛 are the appropriate restrictions of 𝑚𝑛. For
𝑛 = 2, we obtain 𝑚2 by 𝑚̄2 + ℎ2 and additionally enforcing (4.2.1). For 𝑛 = 1, we have 𝑚1 = 𝑚̄1 + ℎ1.
This treatment is similar to [Bur15, Section 3] but is slightly more general since we allow 𝐴̄0 ≠ 0 and
hence need ℎ2 as well as ℎ1. If A were not connective, then we would also need maps ℎ𝑛 for 𝑛 � 3.
Taken together, the ℎ𝑛 will correspond to the curvature term on the bar construction of A; see 4.7.
Remark 4.4. Let A be a connective A∞-algebra with a split unit. Then the projection 𝐴 → 𝑄 onto the
free summand containing the unit need not be a morphism of strictly unital A∞-algebras. In fact, this
happens if and only if ℎ1 = 0 and ℎ2 = 0. Such A∞-algebras are called augmented.
4.5. Fix a graded coalgebra (𝐶,Δ). Recall C is counital if there exists a counit map 𝜀 : 𝐶 → 𝑄 such that

(id ⊗𝜀)Δ = id = (𝜀 ⊗ id)Δ .

We say C is a curved dg coalgebra if it is equipped with a coderivation 𝜕 of degree −1 and a curvature
term ℎ : 𝐶 → 𝑄 of degree −2 such that

𝜕2 = (ℎ ⊗ id− id ⊗ℎ)Δ and ℎ𝜕 = 0.

A curved dg coalgebra C is connected if it is non-negatively graded, counital and𝐶0 = 𝑄. In this setting,
we write 𝐶 = 𝑄 ⊕ 𝐶̄ for 𝐶̄ = ker(𝜀) and set

Δ̄ �
(
𝐶̄ → 𝐶

Δ
−→ 𝐶 ⊗ 𝐶 → 𝐶̄ ⊗ 𝐶̄

)
,

𝜕 �
(
𝐶̄ → 𝐶

𝜕
−→ 𝐶 → 𝐶̄

)
and ℎ̄ �

(
𝐶̄ → 𝐶

ℎ
−→ 𝑄

)
for the restrictions to 𝐶̄. These maps satisfy the same relations as Δ , 𝜕 and h.
4.6. The tensor algebra T𝑎 (𝑉) on a graded Q-module V has underlying graded module T(𝑉) �⊕

𝑛�0 𝑉
⊗𝑛, and the multiplication

𝜇((𝑣1 ⊗ · · · ⊗ 𝑣𝑘 ) ⊗ (𝑣′1 ⊗ · · · ⊗ 𝑣′ℓ)) � 𝑣1 ⊗ · · · ⊗ 𝑣𝑘 ⊗ 𝑣′1 ⊗ · · · ⊗ 𝑣′ℓ .

The tensor algebra is bigraded by T𝑎
(𝑛)

(𝑉)𝑖 = (𝑉 ⊗𝑛)𝑖 .
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The tensor coalgebra T𝑐 (𝑉) on a graded Q-module V has underlying graded module T(𝑉), and the
comultiplication

Δ (𝑣1 ⊗ · · · ⊗ 𝑣𝑛) �
𝑛∑
𝑖=0

(𝑣1 ⊗ · · · ⊗ 𝑣𝑖) ⊗ (𝑣𝑖+1 ⊗ · · · ⊗ 𝑣𝑛).

The tensor coalgebra is bigraded by T𝑐
(𝑛)

(𝑉)𝑖 = (𝑉 ⊗𝑛)𝑖 . The data of an A∞-algebra can equivalently be
encoded as a differential on a tensor coalgebra, as we see next.

4.7. Let A be a split unital connective A∞-algebra. Then the tensor coalgebra T𝑐 (Σ 𝐴̄) has an induced
curved dg coalgebra structure. The curvature term has components

ℎ1Σ
−1 : T𝑐(1) (Σ 𝐴̄) → 𝑄 and ℎ2 (Σ

−1)⊗2 : T𝑐(2) (Σ 𝐴̄) → 𝑄

and zero otherwise. The coderivation 𝜕 has components

(−1)
𝑘 (𝑘+1)

2
∑

𝑖+ 𝑗=𝑛−𝑘
𝑖, 𝑗�0

(id⊗𝑖 ⊗Σ𝑚̄𝑘 (Σ
−1)⊗𝑘 ⊗ id⊗ 𝑗 ) : T𝑐(𝑛) (Σ 𝐴̄) → T𝑐(𝑛−𝑘+1) (Σ 𝐴̄)

for 𝑘 � 1, and zero otherwise. The map 𝜕 is well defined since A is concentrated in non-negative
homological degree. With this structure, T𝑐 (Σ 𝐴̄) is a connected curved dg coalgebra, and we call

B(★) (𝐴)• �
(
T𝑐(★) (Σ 𝐴̄)•, ℎ, 𝜕,Δ

)
the bar construction of A. For 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴̄, we write

[𝑎1 | . . . |𝑎𝑛] � (Σ𝑎1 ⊗ · · · ⊗ Σ𝑎𝑛) ∈ B(𝑛) (𝐴).

For a split unital connective A∞-algebra, the canonical projection and inclusion induce a degree −1 map
of graded modules

B(𝐴) � Σ 𝐴̄ ↩→ Σ𝐴 → 𝐴.

Let C be a connected curved dg coalgebra. Then the algebra T𝑎 (Σ−1𝐶̄) has an induced dg algebra
structure. The differential 𝑚1 has components

−ℎ̄Σ : T𝑎(1) (Σ
−1𝐶̄) → T𝑎(0) (Σ

−1𝐶̄), −Σ
−1𝜕Σ : T𝑎(1) (Σ

−1𝐶̄) → T𝑎(1) (Σ
−1𝐶̄)

and (Σ−1)⊗2Δ̄Σ : T𝑎(1) (Σ
−1𝐶̄) → T𝑎(2) (Σ

−1𝐶̄),

and zero otherwise. With this structure, T𝑎 (Σ−1𝐶̄) is a split unital connective dg algebra, and we call

Ω(★) (𝐶)• �
(
T𝑎(★) (Σ

−1𝐶̄)•, 𝑚1, 𝑚2

)
the cobar construction of C. For 𝑐1, . . . , 𝑐𝑛 ∈ 𝐶̄, we write

〈𝑐1 | . . . |𝑐𝑛〉 � (Σ−1𝑐1 ⊗ · · · ⊗ Σ
−1𝑐𝑛) ∈ Ω(𝑛) (𝐶).

For a connected curved dg coalgebra, the canonical inclusion and projection maps induces a degree −1
map of graded modules

𝐶 → Σ−1𝐶 � Σ−1𝐶̄ ↩→ Ω(𝐶).
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Remark 4.8. The bar and cobar constructions define an adjoint pair of functors when restricted to split
unital connective dg algebras and connected curved dg coalgebras; see [Lyu13, Section 3]. It remains
an adjunction when restricted to augmented connective dg algebras and connected dg coalgebras.

4.9. A morphism 𝜑 : (𝐶,Δ , 𝜀, 𝜕, ℎ) → (𝐶 ′,Δ ′, 𝜀′, 𝜕 ′, ℎ′) of connected curved dg coalgebras consists
of Q-linear maps

𝜑0 : 𝐶 → 𝑄 and 𝜑1 : 𝐶 → 𝐶 ′

of degree −1 and 0, respectively, satisfying

𝜀 = 𝜀′𝜑1, ℎ′𝜑1 = ℎ − 𝜑0𝜕 + (𝜑0 ⊗ 𝜑0)Δ ,

𝜕 ′𝜑1 = 𝜑1𝜕 + (𝜑0 ⊗ 𝜑1 − 𝜑1 ⊗ 𝜑0)Δ and Δ ′𝜑1 = (𝜑1 ⊗ 𝜑1)Δ ;

see [Pos11, Chapter 4]. This induces a map of dg algebras Ω(𝜑) : Ω(𝐶) → Ω(𝐶 ′), and we say 𝜑 is a
weak equivalence if Ω(𝜑) is a quasi-isomorphism.

4.10. Let A be an A∞-algebra. An A∞-module over A is a graded module M equipped with maps

𝑚𝑀
𝑛 : 𝐴⊗(𝑛−1) ⊗ 𝑀 → 𝑀 for 𝑛 � 1

of degree (𝑛 − 2), satisfying∑
𝑟+𝑠+𝑡=𝑛
𝑟�0,𝑠,𝑡�1

(−1)𝑟+𝑠𝑡𝑚𝑀
𝑟+1+𝑡

(
id⊗𝑟 ⊗𝑚𝑠 ⊗ id⊗𝑡 ) + ∑

𝑟+𝑠=𝑛
𝑟�0,𝑠�1

(−1)𝑟𝑚𝑀
𝑟+1

(
id⊗𝑟 ⊗𝑚𝑀

𝑠

)
= 0.

If A is strictly unital, we say an A∞-module M over A is strictly unital if

𝑚2(1𝐴 ⊗ 𝑚) = 𝑚 for all 𝑚 ∈ 𝑀 and
𝑚𝑛 (𝑎1 ⊗ · · · ⊗ 𝑎𝑖−1 ⊗ 1𝐴 ⊗ 𝑎𝑖+1 ⊗ · · · ⊗ 𝑎𝑛−1 ⊗ 𝑚) = 0 for all 1 � 𝑖 � 𝑛 − 1

for any 𝑎1, . . . , 𝑎𝑛−1 ∈ 𝐴 and 𝑚 ∈ 𝑀 with 𝑛 ≠ 2.
If A is connective and has a split unit, then a strictly unital A∞-module structure over A on M is

equivalent to the existence of maps

𝑚̄𝑀
𝑛 : 𝐴̄⊗(𝑛−1) ⊗ 𝑀 → 𝑀 for 𝑛 � 1

of degree (𝑛 − 2) such that for 𝑛 ≠ 2, 3, the Stasheff identities hold when replacing m by 𝑚̄, and for
𝑛 = 2, 3, there is an extra curvature term ℎ𝑛−1 ⊗ id similar to 4.3.

4.11. Let A be a split unital connective A∞-algebra. The data of a strictly unital A∞-module structure
over A is equivalent to that of a strictly unital dg module structure over Ω(B(𝐴)). Explicitly, if {𝑚̄𝑀

𝑛 }
is a strictly unital A∞-module structure on a graded module M, then the dg module structure on M is
given by the same differential 𝑚𝑀

1 , and the multiplication Ω(B(𝐴)) ⊗ 𝑀 → 𝑀 induced by

−(−1)
𝑛(𝑛−1)

2 𝑚𝑀
𝑛+1 ((Σ

−1)⊗𝑛Σ ⊗ id𝑀 ) : Σ−1B̄(𝑛) (𝐴) ⊗ 𝑀 → 𝑀.

Moreover, this construction is natural in A and M, and any quasi-isomorphism of A∞-modules over A
yields a quasi-isomorphism of dg modules over Ω(B(𝐴)).

5. Transfer of A∞-algebra structures

In this section, as above, Q is a local ring with maximal ideal 𝔪𝑄 and residue field k. Let R be an A∞-
algebra over Q, and let 𝐴 → 𝑅 be a quasi-isomorphism of complexes over Q. We would like to know
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whether the A∞-algebra structure on R induces an A∞-algebra structure on A. This is well understood
in the case that Q is field, so that 𝐴 → 𝑅 is a homotopy equivalence; the first result is due to Kadeishvili
[Kad82] when 𝐴 = H(𝑅). For general homotopy equivalences, this was studied, for example, in [Mar06].
Burke has shown that if R is a quotient of Q and A is a Q-free resolution of R, then the product on R lifts
to an A∞-structure on A [Bur18, Proposition 3.6]. We give a proof in a more general situation.

Proposition 5.1. Let R be a strictly unital connective A∞-algebra and 𝜀 : 𝐴 → 𝑅 a surjective quasi-
isomorphism of complexes over Q, with A degree-wise free and concentrated in non-negative degrees.
Then there exists an A∞-algebra structure with a split unit on A such that 𝜀 is a strict quasi-isomorphism
of A∞-algebras.

Proof. Since 𝜀 is surjective, we may choose a splitting 𝐴 = 𝐴̄ ⊕ 𝑄 such that 𝜀 maps the free generator
of Q to the unit of R. We inductively construct higher multiplication maps 𝑚𝑛 on A satisfying the nth
Stasheff identity. To begin with, we set 𝑚1 � 𝜕 where 𝜕 is the differential of A.

For 𝑛 = 2, we consider the commutative diagram

𝐴 ⊗ 𝑄 +𝑄 ⊗ 𝐴 𝐴

𝐴⊗2 𝑅⊗2 𝑅.

�𝜀

𝜀⊗2

𝑚𝐴
2

𝑚𝑅
2

The morphism of complexes 𝑚𝐴
2 : 𝐴⊗2 → 𝐴 exists because 𝜀 is a surjective quasi-isomorphism, the left

vertical arrow is injective in each degree and the cokernel in each degree is projective; see, for example,
[DS95, Section 7]. The morphism 𝑚𝐴

2 satisfies the desired properties by construction.
For 𝑛 > 2, the obstruction obs𝐴𝑛 from (4.1.2) is a chain map. We have a short exact sequence of

complexes

0 →
∑

𝑖+ 𝑗=𝑛−1
𝐴⊗𝑖 ⊗ 𝑄 ⊗ 𝐴⊗ 𝑗 𝜂𝑛

−−→ 𝐴⊗𝑛 → 𝐴̄⊗𝑛 → 0.

By direct computation, we obtain obs𝐴𝑛 𝜂𝑛 = 0. So the obstruction obs𝐴𝑛 factors through 𝐴̄⊗𝑛. We
consider the diagram

𝐴̄⊗𝑛

Σ−1 cone(𝜀) 𝐴 𝑅.

obs𝐴𝑛
0𝛼

𝜋
�
𝜀

Since 𝐴̄⊗𝑛 is, as graded modules, a direct summand of 𝐴⊗𝑛, and the higher multiplications 𝑚𝐴
𝑖 for 𝑖 < 𝑛

commute with 𝜀, the right triangle commutes up to the homotopy 𝑚𝑅
𝑛 𝜀

⊗𝑛. Then there exists a chain
map 𝛼 such that the left triangle commutes up to a homotopy 𝜎. Since 𝜀 is surjective, we may assume
𝑚𝑅
𝑛 𝜀

⊗𝑛 = 𝜀𝜎 by [Avr98, Proposition 1.3.1]. That is,

𝑚𝐴
𝑛 �

(
𝐴⊗𝑛 → 𝐴̄⊗𝑛 𝜎

−→ 𝐴
)

satisfies the nth Stasheff identity (4.1.4). �

5.2. In the setup of Proposition 5.1, we can also transfer A∞-module structures: If M is a strictly unital
A∞-module over R and with semifree resolution 𝛾 : 𝐺 → 𝑀 over Q, in the sense discussed later in
6.2, then there exists a strictly unital A∞-module structure on G over A and 𝛾 is a strict morphism of
A∞-modules; compare with [Bur18]. When the homology of M is bounded below (for example, if M is
an honest module), one can take G to be a bounded below complex of free Q-modules.
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Proposition 5.3. Let 𝜀 : 𝑅 → 𝑆 be a surjective strict quasi-isomorphism of strictly unital A∞-algebras
over Q. Further, let A be a split unital, connective, degree-wise free A∞-algebra and 𝜑 : 𝐴 → 𝑆 a
morphism of strictly unital A∞-algebras. Then there exists a morphism of strictly unital A∞-algebras
𝜓 : 𝐴 → 𝑅 such that 𝜑 = 𝜀𝜓.

Proof. The unit 𝑄 → 𝑆 factors through 𝜀 and 𝜑1, so by [DS95, Section 7], there is a chain map
𝜓1 : 𝐴 → 𝑅 such that 𝜑1 = 𝜀𝜓1 and 𝜓1 (1𝐴) = 1𝑅.

Let 𝑛 � 2 and assume that for 𝑖 < 𝑛, the chain maps 𝜓𝑖 : 𝐴⊗𝑖 → 𝑅 exist, the ith Stasheff identities
(4.1.3) and (4.2.2) hold, and 𝜀𝜓𝑖 = 𝜑𝑖 . A computation shows that obs𝜓𝑛 and obs𝜑𝑛 vanish when any
of its inputs is 1𝐴. Hence, we can view obs𝜓𝑛 and obs𝜑𝑛 as maps on 𝐴̄⊗𝑛. Taking homology classes in
Hom ( 𝐴̄⊗𝑛, 𝑆), we have

𝜀[obs𝜓𝑛 ] = [obs𝜑𝑛 ] = 0,

since 𝜀 obs𝜓𝑛 = obs𝜑𝑛 and 𝜑 is a morphism of strictly unital A∞-algebras; cf. 4.1. Since 𝜀 is a surjective
quasi-isomorphism, and using the assumptions on A, the induced map Hom( 𝐴̄⊗𝑛, 𝑅) → Hom ( 𝐴̄⊗𝑛, 𝑆)
is a quasi-isomorphism, and hence, obs𝜓𝑛 is a boundary in Hom ( 𝐴̄⊗𝑛, 𝑅). That is, there is 𝜓̄𝑛 : 𝐴̄⊗𝑛 → 𝑅
such that

obs𝜓𝑛 = 𝑚𝑅
1 𝜓̄𝑛 + (−1)𝑛𝜓̄𝑛 (𝑚̄𝐴

1 ⊗ id⊗𝑛 + · · · + id⊗𝑛 ⊗𝑚̄𝐴
1 ).

Setting 𝜓𝑛 � (𝐴⊗𝑛 → 𝐴̄⊗𝑛 𝜓̄𝑛
−−→ 𝑅), we now have 𝜓1, . . . , 𝜓𝑛 satisfying the required identities (4.1.3)

and (4.2.2), completing the induction. �

It is well known that A∞-algebras can be used to characterize formality of dg algebras over fields
[Kad82]. We record the following generalization in local algebra.

Proposition 5.4. Let 𝜑 : 𝑄 → 𝑅 be a finite local homomorphism and let 𝜀 : 𝐴 → 𝑅 be the minimal
Q-free resolution, equipped with an A∞-structure making 𝜀 a strict quasi-isomorphism of A∞-algebras.
The A∞-algebra 𝐴 ⊗𝑄 𝑘 is quasi-isomorphic, as an A∞-algebra, to the derived fiber 𝑅 ⊗L

𝑄 𝑘 defined as
a dg k-algebra in Section 2. Moreover, 𝑅 ⊗L

𝑄 𝑘 is formal as a dg k-algebra if and only if A admits an
A∞-structure {𝑚𝑛} as above that also satisfies 𝑚𝑛 ⊗𝑄 𝑘 = 0 for 𝑛 � 3.

Proof. Suppose that the minimal Q-free resolution A of R has an A∞-structure {𝑚𝑛} with the stated
property. If 𝐴′ is a Q-free dg algebra resolution of R, then A and 𝐴′ are quasi-isomorphic as A∞-
algebras over Q by Proposition 5.3. Therefore, 𝐴 ⊗𝑄 𝑘 and 𝑅 ⊗L

𝑄 𝑘 = 𝐴′ ⊗𝑄 𝑘 are quasi-isomorphic as
A∞-algebras over k.

If 𝑚𝑛 ⊗𝑄 𝑘 = 0 for 𝑛 � 3, then 𝐴 ⊗𝑄 𝑘 is a graded algebra, canonically isomorphic to Tor𝑄 (𝑅, 𝑘).
Two dg k-algebras are quasi-isomorphic as dg algebras if and only if they are quasi-isomorphic as
A∞-algebras [Kad82], and we can conclude that 𝑅 ⊗L

𝑄 𝑘 is formal.
Suppose conversely that 𝑅 ⊗L

𝑄 𝑘 is formal. By Proposition 5.1, the minimal Q-free resolution A of R
admits an A∞-structure {𝑚′

𝑛}. Using the same reasoning as above, since 𝑅 ⊗L
𝑄 𝑘 is formal 𝐴 ⊗𝑄 𝑘 and

Tor𝑄 (𝑅, 𝑘) are quasi-isomorphic as A∞-algebras over k. By the uniqueness of minimal models (that is,
A∞-algebras over a field having zero differential; see [Kad82]), there is an isomorphism of A∞-algebras

𝜓 : (Tor𝑄 (𝑅, 𝑘), 0, 𝜇, 0, . . .) �−→ (𝐴 ⊗𝑄 𝑘, 0, 𝑚′
2 ⊗ 𝑘, 𝑚′

3 ⊗ 𝑘, . . .),

where 𝜇 is the ordinary product on Tor𝑄 (𝑅, 𝑘). We may make the identification 𝐴 ⊗𝑄 𝑘 = Tor𝑄 (𝑅, 𝑘)
and choose lifts Ψ𝑖 : 𝐴⊗𝑖 → 𝐴 with Ψ𝑖 ⊗𝑄 𝑘 = 𝜓𝑖 . By Nakayama’s lemma, Ψ1 is an isomorphism and
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we can inductively define operations 𝑚𝑛 : 𝐴⊗𝑛 → 𝐴 by the formula 𝑚𝑛 �

Ψ−1
1

(
−

∑
𝑟+𝑠+𝑡=𝑛
𝑟 ,𝑡�0,𝑠�1

(−1)𝑟+𝑠𝑡Ψ𝑟+1+𝑡
(
id⊗𝑟 ⊗𝑚𝑠 ⊗ id⊗𝑡 ) + ∑

𝑝,α∈N𝑝

|α |=𝑛

(−1)𝑣 (α)𝑚′
𝑝𝚿

⊗α
)
.

By construction, the map Ψ : (𝐴, {𝑚′
𝑛}) → (𝐴, {𝑚𝑛}) now satisfies the Stasheff morphism identities

(4.1.3), and it follows that (𝐴, {𝑚𝑛}) is an A∞-algebra, isomorphic to (𝐴, {𝑚′
𝑛}). Finally, from Ψ⊗𝑄 𝑘 =

𝜓, it follows that 𝑚2 ⊗𝑄 𝑘 = 𝜇 and 𝑚𝑛 ⊗𝑄 𝑘 = 0 for 𝑛 � 3, as stated in the proposition. �

The following technical lemma will be used later to help generate examples, by showing that certain
A∞-operations are minimal.

Lemma 5.5. Let 𝜑 : 𝐴 → 𝑇 be a map of connective split unital A∞-algebras, where T is a trivial
algebra. If for some N the map (𝜑1)<𝑁 : 𝐴<𝑁 → 𝑇<𝑁 is injective, then the A∞-structure of A vanishes
in degrees less than N, in the sense that (𝑚̄𝑛 ( 𝐴̄

⊗𝑛))𝑖 = 0 for all 𝑛 � 1 and 𝑖 < 𝑁 .

Proof. We prove this by induction on n. It is clear for 𝑛 = 1 since 𝜑1 is a chain map. For 𝑛 � 2, since
𝑚̄𝑇𝑠 = 0 for all s, we can rearrange the Stasheff morphism identities (4.1.3):

𝜑̄1𝑚̄𝑛 = −
∑

𝑟+𝑠+𝑡=𝑛
𝑟 ,𝑡�0,𝑠�1

(−1)𝑟+𝑠𝑡 𝜑̄𝑟+1+𝑡
(
id⊗𝑟 ⊗𝑚̄𝑠 ⊗ id⊗𝑡 ) .

We can assume by induction that (𝑚̄𝑠 ( 𝐴̄
⊗𝑠))<𝑁 = 0 for 𝑠 < 𝑛. Since each 𝜑𝑟 increases degree by 𝑟 − 1,

this implies that the right-hand side above is zero in degrees 𝑖 < 𝑁 . Since (𝜑̄1)<𝑁 is injective, it follows
that (𝑚̄𝑛 ( 𝐴̄

⊗𝑛))<𝑁 = 0. �

5.6. Cyclic A∞-algebras

For Gorenstein algebras, the minimal resolution satisfies a Poincaré duality property that allows us, in
favorable situations, to construct A∞-resolutions with additional duality properties.

A cyclic A∞-algebra of degree d over Q is a complex A of finitely generated free Q-modules with a
perfect, Q-bilinear pairing

〈−,−〉 : 𝐴 ⊗ 𝐴 → Σ𝑑𝑄,

and an A∞-structure {𝑚𝑛} on A such that for each n,

〈𝑚𝑛 (𝑎1, . . . , 𝑎𝑛), 𝑎𝑛+1〉 = (−1)𝑛+|𝑎1 | ( |𝑎2 |+·· ·+ |𝑎𝑛+1 |) 〈𝑚𝑛 (𝑎2, . . . , 𝑎𝑛+1), 𝑎1〉 ;

see [Kon94].
There is for each n an isomorphism of complexes

cyc : Hom (𝐴⊗𝑛, 𝐴)
�
−→ Hom (𝐴⊗(𝑛+1) , Σ𝑑𝑄), cyc( 𝑓 ) = 〈 𝑓 (−),−〉.

We give 𝐴⊗(𝑛+1) the action of the cyclic group𝐶𝑛+1 = 〈𝑐〉 with generator acting by 𝑐 · (𝑎1 ⊗ · · · ⊗𝑎𝑛+1) =
(−1) |𝑎1 | ( |𝑎2 |+·· ·+ |𝑎𝑛+1 |) (𝑎2 ⊗ · · · ⊗ 𝑎𝑛+1 ⊗ 𝑎1). From this perspective, an A∞-structure {𝑚𝑛} is cyclic if
and only if

cyc(𝑚𝑛) · 𝑐 = (−1)𝑛 cyc(𝑚𝑛) for all 𝑛.

Let 𝜑 : 𝑄 → 𝑅 be a surjective local Gorenstein homomorphism of projective dimension d, and let A
be the minimal resolution of R over Q. Let 𝜇 : 𝐴⊗2 → 𝐴 be a chain map lifting the product on R; we can
assume that 𝜇 is unital and graded-commutative by [BH98, 3.4.3]. The Gorenstein condition (3.11.1)
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guarantees that 𝐴⊗𝑄 𝑘 = Tor𝑄 (𝑅, 𝑘) is a Poincaré duality algebra with the product induced from 𝜇; see
[AG71, Theorem]. It follows from Nakayama’s lemma that 𝐴𝑑 � 𝑄, and we obtain a perfect pairing

〈−,−〉 : 𝐴 ⊗ 𝐴
𝜇
−→ 𝐴 � Σ𝑑𝐴𝑑 = Σ𝑑𝑄. (5.6.1)

Theorem 5.7. Let 𝑄 → 𝑅 be a surjective local Gorenstein homomorphism of odd projective dimension
d. Assume that Q contains a field of characteristic zero. The minimal resolution A of R over Q admits the
structure of a split unital, cyclic A∞-algebra of degree d, making the map 𝐴 → 𝑅 a strict A∞-algebra
quasi-isomorphism.

We first need a lemma about projective resolutions.

Lemma 5.8. Let M be a finitely generated Q-module of projective dimension 𝑑 > 0, with a projective
resolution 𝐴 → 𝑀 , and set 𝑉 = 𝐴<𝑑/𝐴0. Then for any n, we have H𝑖 (𝑉

⊗𝑛+1) = 0 whenever 𝑖 >
𝑛(𝑑 − 1) + 1 and 𝑖 ≠ (𝑛 + 1) (𝑑 − 1).

Proof. We show this by inducing on n. Since A is a projective resolution of R, the homology of V is
concentrated in degrees 1 and 𝑑 − 1, and there is an exact triangle

Σ𝑑−1𝑄𝑠 −→ 𝑉 −→ Σ𝑁,

of complexes of Q-modules, where 𝑁 = ker(𝐴0 → 𝑀) and 𝐴𝑑 = 𝑄⊕𝑠 . This justifies the case 𝑛 = 0,
and for each 𝑛 � 1 yields another exact triangle

Σ𝑑−1(𝑉 ⊗𝑛)⊕𝑠 −→ 𝑉 ⊗𝑛+1 −→ Σ𝑉 ⊗𝑛 ⊗ 𝑁.

Clearly, H𝑖 (Σ𝑉 ⊗𝑛 ⊗ 𝑁) = 0 for 𝑖 > 𝑛(𝑑 − 1) + 1, so by the long exact sequence in homology, the
map H𝑖 (Σ𝑑−1𝑉 ⊗(𝑛−1) ) ⊕𝑠 → H𝑖 (𝑉

⊗𝑛) is surjective for 𝑖 > 𝑛(𝑑 − 1) + 1. By the induction hypothesis,
H𝑖 (Σ𝑑−1𝑉 ⊗(𝑛−1) ) = 0 if 𝑖 ≠ 𝑛(𝑑 − 1) and 𝑖 > (𝑛− 1) (𝑑 − 1) + 1. From this, we conclude that the lemma
holds for n. �

Proof of Theorem 5.7. Recall from (5.6.1) that the pairing on A was defined from a unital and graded-
commutative product 𝜇 : 𝐴⊗2 → 𝐴. This restricts to a perfect pairing on 𝑉 = 𝐴<𝑑/𝐴0, and we start by
constructing operations 𝑚𝑉

𝑛 : 𝑉 ⊗𝑛 → 𝑉 .
If |𝑎 | + |𝑏 | = 𝑑 + 1, then 𝜇(𝑎 ⊗ 𝑏) = 0 in A, so

𝜇(𝜕 (𝑎) ⊗ 𝑏) + (−1) |𝑎 |𝜇(𝑎 ⊗ 𝜕 (𝑏)) = 𝜕 (𝜇(𝑎 ⊗ 𝑏)) = 0.

Using graded-commutativity of 𝜇, this is equivalent to the cyclic identity

〈𝑚𝑉
1 (𝑎), 𝑏〉 = (−1)1+|𝑎 | |𝑏 | 〈𝑚𝑉

1 (𝑏), 𝑎〉,

where 𝑚𝑉
1 � 𝜕.

Next, we truncate 𝜇 to obtain 𝜇𝑉 : 𝑉 ⊗2 → 𝑉 , and we define 𝑚𝑉
2 by symmetrizing 𝜇𝑉 with respect

to the 𝐶3-action:

cyc(𝑚𝑉
2 ) � cyc(𝜇𝑉 ) ·

1
3
(1 + 𝑐 + 𝑐2).

The obtained 𝑚𝑉
2 satisfies the required cyclic property by construction. However, the Stasheff identity

(4.1.1) does not hold for 𝑛 = 2, and instead,

𝜕 (𝑚𝑉
2 (𝑎, 𝑏)) − 𝑚𝑉

2 (𝜕 (𝑎), 𝑏) − (−1) |𝑎 |𝑚𝑉
2 (𝑎, 𝜕 (𝑏)) = 〈𝑎, 𝑏〉𝜕 (𝜔), (5.8.1)

where 𝜔 ∈ 𝐴𝑑 is the generator with 〈𝜔, 1〉 = 1. Nonetheless, since 〈−,−〉 is a chain map, the same com-
putation as in (4.1.2) shows that the obstruction obs𝑉3 is a chain map – that is, a cycle in Hom (𝑉 ⊗3, 𝑉).
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We proceed to construct 𝑚𝑉
𝑛 for 𝑛 � 3 by induction, satisfying the Stasheff identities (4.1.1) for 𝑛 � 3,

and all satisfying cyc(𝑚𝑉
𝑛 ) · 𝑐 = (−1)𝑛 cyc(𝑚𝑉

𝑛 ). The argument is similar to the proof of Proposition
5.1. If 𝑚𝑉

𝑖 have been constructed for 𝑖 < 𝑛 with required cyclic symmetry, a computation shows that the
obstruction obs𝑉𝑛 from (4.1.2) is cyclic as well:

cyc(obs𝑉𝑛 ) = (−1)𝑛 cyc(obs𝑉𝑛 ) · 𝑐.

Since Hom (𝑉 ⊗𝑛, 𝑉) � Σ−𝑛𝑑𝑉 ⊗(𝑛+1) , we can use Lemma 5.8 with 𝑀 = 𝑅 to conclude that

H𝑖
(
Hom(𝑉 ⊗𝑛, 𝑉)

)
= 0 for 𝑖 > 1 − 𝑛 and 𝑖 ≠ 𝑑 − 𝑛 − 1.

Since d is odd, it is impossible to have | obs𝑉𝑛 | = 𝑛 − 3 = 𝑑 − 𝑛 − 1; hence, the complex Hom (𝑉 ⊗𝑛, 𝑉)
is acyclic in degree 𝑛 − 3, and the class [obs𝑉𝑛 ] vanishes. This shows that there is an operation 𝑚̃𝑉

𝑛 in
Hom (𝑉 ⊗𝑛, 𝑉)𝑛−2 such that 𝜕 (𝑚̃𝑉

𝑛 ) = obs𝑉𝑛 , and we symmetrize this to define 𝑚𝑛:

cyc(𝑚𝑉
𝑛 ) � cyc(𝑚̃𝑉

𝑛 ) ·
𝑛∑
𝑖=0

(−1)𝑖𝑛𝑐𝑖
𝑛+1 .

By construction, 𝑚𝑉
𝑛 has the required cyclic symmetry. We note that

𝜕 (cyc(𝑚𝑉
𝑛 )) = cyc(obs𝑉𝑛 ) ·

𝑛∑
𝑖=0

(−1)𝑖𝑛𝑐𝑖
𝑛+1 = cyc(obs𝑉𝑛 ).

Therefore, 𝜕 (𝑚𝑉
𝑛 ) = obs𝑉𝑛 , and the operations {𝑚𝑉

𝑛 } satisfy the nth Stasheff identity. This concludes
the induction.

To finish the proof, we define the following operations on A:

𝑚2 (𝑎1, 𝑎2) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑉

2 (𝑎1, 𝑎2) if |𝑎1 |, |𝑎2 | > 0 and |𝑎1 | + |𝑎2 | < 𝑑,

〈𝑎1, 𝑎2〉𝜔 if |𝑎1 | + |𝑎2 | = 𝑑,

𝑎1𝑎2 if |𝑎1 | = 0 or |𝑎2 | = 0,

and for 𝑛 � 3,

𝑚𝑛 (𝑎1, . . . , 𝑎𝑛) �

{
𝑚𝑉
𝑛 (𝑎1, . . . , 𝑎𝑛) if all |𝑎𝑖 | > 0 and |𝑎1 | + · · · + |𝑎2 | < 𝑑,

0 if |𝑎1 | + · · · + |𝑎2 | = 𝑑 or any |𝑎𝑖 | = 0.

The 𝑛 = 2 Stasheff identity for A is equivalent to the identity (5.8.1) above.
To verify the nth Stasheff identity, with 𝑛 � 3, we need to divide into cases depending on the inputs:

when any of the inputs have degree zero; when the output has degree less than d; and when the output
has degree d. The first two of these cases follow easily from the Stasheff identities for {𝑚𝑉

𝑛 }. To check
the third case, we suppose that |𝑎1 | + · · · + |𝑎𝑛 | + 𝑛 − 3 = 𝑑, and we compute∑

𝑟+𝑠+𝑡=𝑛

(−1)𝑟+𝑠𝑡𝑚𝑟+1+𝑡
(
id⊗𝑟 ⊗𝑚𝑠 ⊗ id⊗𝑡 ) (𝑎1, . . . , 𝑎𝑛) =

(−1) |𝑎1 | (𝑛−1)+1〈𝑎1, 𝑚
𝑉
𝑛−1 (𝑎2, . . . , 𝑎𝑛)〉 + (−1)𝑛−1〈𝑚𝑉

𝑛−1 (𝑎1, . . . , 𝑎𝑛−1), 𝑎𝑛〉 ;

and this vanishes by the cyclic symmetry condition for 𝑚𝑉
𝑛−1.

It follows that A is an A∞-algebra with the operations {𝑚𝑛}. Finally, the cyclic symmetry condition
on {𝑚𝑉

𝑛 } implies A is a cyclic A∞-algebra. �

Remark 5.9. The construction in the proof yields a bijection between unital cyclic A∞-algebra structures
on A and nonunital cyclic A∞-algebra structures on V, but with a modified version of the second Stasheff
identity in the latter case. The cyclic condition is necessary to make this correspondence work.
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Remark 5.10. In work to appear, Alexander Berglund constructs cyclic A∞-algebra structures in sig-
nificantly more generality than Theorem 5.7. In particular, his argument shows that the restriction to
odd d is unnecessary. We note the case 𝑑 ≡ 2 modulo 4 can obtained by a more careful analysis of the
proof of Theorem 5.7, but the general case seems to require more machinery.

6. Twisted tensor products

Twisted tensor products are an important tool in homological algebra, especially in the construction
of resolutions. In this section, we develop their theory over a commutative ring, producing universal
resolutions via the resolution of the diagonal that will be applied to Koszul homomorphisms in later
sections. However, our method of construction is new even when the base ring Q is a field. Similar
results have been obtained using different methods in unpublished work of Burke [Bur]. We do not
explicitly use the language of twisting cochains, but these objects are present implicitly; and the reader
may consult [LV12, Section 2.1] for more information on twisted tensor products and twisting cochains.

Let C be a connected curved differential graded (dg) coalgebra over Q that is free as a graded module.
For a right dg module M and a left dg module N over Ω(𝐶), we construct a complex 𝑀 ⊗𝜏 𝐶 ⊗𝜏 𝑁 , with
a ‘twisted’ differential; we call this complex a twisted tensor product. First, we define a dg bimodule
Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 Ω(𝐶) over Ω(𝐶).
Construction 6.1. Ignoring differentials for now, there is a well-known exact sequence of graded Ω(𝐶)-
bimodules

0 → Ω(𝐶) ⊗ Σ−1𝐶̄ ⊗ Ω(𝐶)
𝜄
−→ Ω(𝐶) ⊗ 𝑄 ⊗ Ω(𝐶)

𝜇
−→ Ω(𝐶) → 0, (6.1.1)

where 𝜄(𝑥 ⊗ 〈𝑐〉 ⊗ 𝑦) = 𝜇(𝑥, 〈𝑐〉) ⊗ 1 ⊗ 𝑦 − 𝑥 ⊗ 1 ⊗ 𝜇(〈𝑐〉, 𝑦) for 𝑐 ∈ 𝐶̄ and 𝑥, 𝑦 ∈ Ω(𝐶), and 𝜇 the
multiplication map.

We give Ω(𝐶) ⊗ Σ−1𝐶̄ ⊗ Ω(𝐶) the unique differential 𝜕 𝜄 making 𝜄 a chain map, and we set

Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 Ω(𝐶) � cone(Ω(𝐶) ⊗ Σ−1𝐶̄ ⊗ Ω(𝐶)
𝜄
−→ Ω(𝐶) ⊗ 𝑄 ⊗ Ω(𝐶)).

We write 𝜕𝜏 for the differential on Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 Ω(𝐶); this is a dg Ω(𝐶)-bimodule whose underlying
graded bimodule is Ω(𝐶) ⊗ 𝐶 ⊗ Ω(𝐶), using the evident multiplication by Ω(𝐶) on either side.

For a right dg Ω(𝐶)-module F and a left dg Ω(𝐶)-module G, we define

𝐹 ⊗𝜏 𝐶 ⊗𝜏 𝐺 � 𝐹 ⊗Ω(𝐶) Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 Ω(𝐶) ⊗Ω(𝐶) 𝐺.

Explicitly, its underlying graded module is 𝐹 ⊗ 𝐶 ⊗ 𝐺 and the differential is

𝜕𝜏 = 𝜕𝐹 ⊗ id𝐶 ⊗ id𝐺 + id𝐹 ⊗𝜕𝐶 ⊗ id𝐺 + id𝐹 ⊗ id𝐶 ⊗𝜕𝐺

+
(
𝜇(id𝐹 ⊗Σ

−1𝑝) ⊗ id𝐶 ⊗ id𝐺 − id𝐹 ⊗ id𝐶 ⊗𝜇(Σ−1𝑝 ⊗ id𝐺)
)
(id𝐹 ⊗Δ ⊗ id𝐺),

where 𝑝 : 𝐶 → 𝐶̄ is the natural projection and we use 𝜇 for the right action of Ω(𝐶) on F and the left
action of Ω(𝐶) on G.
6.2. Given a dg algebra A, recall that a dg A-module F is semifree if it admits an exhaustive filtration

0 = 𝐹 (−1) ⊆ 𝐹 (0) ⊆ 𝐹 (1) ⊆ . . . ⊆ 𝐹,

where each subquotient 𝐹 (𝑖)/𝐹 (𝑖 − 1) is a sum of shifts of A. As a matter of terminology, a semifree dg
A-bimodule is a semifree dg module over 𝐴 ⊗ 𝐴op.

Every dg A-module M admits a semifree resolution in the sense that there exists a surjective quasi-
isomorphism 𝐹

�
−→ 𝑀 , with F a semifree dg A-module. Such resolutions are unique up to homotopy;

see [FHT01, Chapter 6] for this fact, as well as other details regarding semifree dg modules.
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Lemma 6.3. The map Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 Ω(𝐶) −→ Ω(𝐶) induced from (6.1.1) is a semifree resolution of
Ω(𝐶) as a dg Ω(𝐶)-bimodule.

Proof. By construction, (6.1.1) is a short exact sequence of dg Ω(𝐶)-bimodules, and so it induces an
exact triangle in the derived category of dg Ω(𝐶)-bimodules. We obtain the quasi-isomorphism by
comparing this triangle to the triangle associated to the cone construction for Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 Ω(𝐶).

The dg module Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 Ω(𝐶) is semifree as a dg Ω(𝐶)-bimodule since C is free as a module
over Q and non-negatively graded. �

6.4. Let 𝜑 : 𝑄 → 𝑅 be a finite local homomorphism with 𝐴 → 𝑅 a free resolution of R over Q. Fix
an R-complex M and a semifree resolution 𝛾 : 𝐺 → 𝑀 over Q. By Proposition 5.1, there exists a split
unital A∞-algebra structure {𝑚𝑛} on A and a strictly unital A∞-module structure {𝑚𝐺

𝑛 } over A on G.
Then by 4.11, this induces a dg module structure over Ω(B(𝐴)) on G.

Suppose further that C is a connected curved dg coalgebra with counit 𝜀 : 𝐶 → 𝑄, equipped with a
weak equivalence of connected curved dg coalgebras 𝐶 → B(𝐴); cf. 4.9. Then R and G each have an
induced dg module structure over Ω(𝐶).

Theorem 6.5. In the setting of 6.4, the map

𝑅 ⊗𝜏 𝐶 ⊗𝜏 𝐺 −→ 𝑀 given by 𝑟 ⊗ 𝑐 ⊗ 𝑔 ↦→ 𝑟𝜀(𝑐)𝛾(𝑔)

is a semifree resolution of M over R.

Proof. The map 𝐺 → 𝑀 is a quasi-isomorphism of A∞-modules over A, and by 4.11, it is a quasi-
isomorphism of dg modules over Ω(B(𝐴)), and thus over Ω(𝐶). From Lemma 6.3, we obtain the
quasi-isomorphism of (left) dg Ω(𝐶)-modules

𝛽 : Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 𝐺 = Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 Ω(𝐶) ⊗Ω(𝐶) 𝐺
�
−→ Ω(𝐶) ⊗Ω(𝐶) 𝐺 � 𝐺.

Since G is semifree over Q, it follows that Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 𝐺 is semifree as a left dg module over Ω(𝐶).
The claimed quasi-isomorphism fits into the commutative diagram below

Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 𝐺

𝑅 ⊗𝜏 𝐶 ⊗𝜏 𝐺 𝑀,

𝛼 𝛾𝛽

where 𝛼 is the map induced by the quasi-isomorphism of dg algebras

Ω(𝐶)
�
−→ Ω(B(𝐴))

�
−→ 𝐴

�
−→ 𝑅 ; (6.5.1)

where the fact that the second map is a quasi-isomorphism follows from the derived version of
Nakayama’s lemma since, upon applying−⊗𝑄 𝑘 , the map becomes a quasi-isomorphism [LH03, Section
2.2.1].

As the composition in (6.5.1) is a quasi-isomorphism and Ω(𝐶) ⊗𝜏 𝐶 ⊗𝜏 𝐺 is a semifree resolution
of M over Ω(𝐶), it follows that 𝛼 is a quasi-isomorphism. We have already justified that 𝛽 and 𝛾 are
quasi-isomorphisms, accounting for the downward arrow on the right. As both legs of the triangle in the
diagram above are quasi-isomorphisms, the horizontal map is a quasi-isomorphism, as claimed. �

7. A∞-algebra presentations for Koszul homomorphisms

We now have the machinery to show that Koszul homomorphisms admit presentations analogous to
those of classical Koszul k-algebras. The next result lifts these classical quadratic presentations to local
algebra and explains how one may think of Koszul homomorphisms as A∞-deformations of Koszul
algebras over fields.
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Theorem 7.1. A finite local homomorphism 𝜑 : 𝑄 → 𝑅 is Koszul if and only if there is
(1) a non-negatively graded, degreewise finite rank free Q-module V, and a direct summand𝑊 ⊆ 𝑉 ⊗𝑉 ,
(2) an A∞-structure {𝑚𝑛} on the Q-module T(𝑉)/(𝑊) with grading induced from the grading of V, and
(3) a Q-linear map 𝑉0 → 𝑅,
such that

(i) the k-algebra T𝑎 (𝑉 ⊗ 𝑘)/(𝑊 ⊗ 𝑘) is Koszul with respect to the tensor algebra weight grading,
(ii) {𝑚𝑛} agrees with the algebra structure on T𝑎 (𝑉)/(𝑊) modulo 𝔪𝑄; that is,

𝑚2 ⊗ 𝑘 = 𝜇 ⊗ 𝑘 and 𝑚𝑛 ⊗ 𝑘 = 0 for 𝑛 ≠ 2,

where 𝜇 is the usual product on the quotient of a tensor algebra, and
(iii) with the structure {𝑚𝑛}, the induced map T(𝑉)/(𝑊) → 𝑅 is a strict A∞-algebra quasi-

isomorphism.
Moreover, V can be taken to be finite rank whenever R has finite projective dimension over Q.
Proof. If the stated conditions hold, then 𝑅 ⊗L

𝑄 𝑘 is formal by Proposition 5.4, and Tor𝑄 (𝑅, 𝑘) �
T𝑎 (𝑉 ⊗ 𝑘)/(𝑊 ⊗ 𝑘) is Koszul; therefore, 𝜑 is Koszul by definition.

Assume, conversely, that 𝜑 is Koszul. Since Tor𝑄 (𝑅, 𝑘) is Koszul, it admits a compatible weight
grading making it quadratic. That is, we have an isomorphism

Tor𝑄𝑖 (𝑅, 𝑘) (𝑤) �
(
T𝑎(𝑤) (𝑉̄)/(𝑊̄)

)
𝑖

identifying the product on Tor with the product on the quotient of the tensor algebra, where 𝑉̄ =
Tor𝑄 (𝑅, 𝑘)(1) and 𝑊̄ ⊆ 𝑉̄ ⊗𝑘 𝑉̄ is a graded subspace.

Let V be a free graded Q-module such that 𝑉 ⊗ 𝑘 = 𝑉̄ , and choose a direct summand 𝑊 ⊆ 𝑉 ⊗ 𝑉
such that 𝑊 ⊗ 𝑘 = 𝑊̄ . If we define 𝐴 � T(𝑉)/(𝑊), then A is a free, bigraded Q-module and

𝐴 ⊗𝑄 𝑘 = T(𝑉)/(𝑊) ⊗ 𝑘 = T(𝑉̄)/(𝑊̄) � Tor𝑄 (𝑅, 𝑘).

Therefore, we may equip A with a differential making it the minimal Q-resolution of R. We have
constructed (1) and (3) satisfying condition (i). Since 𝑅 ⊗L

𝑄 𝑘 is formal, by Proposition 5.4, there is an
A∞-structure on A as required for (2), inducing the algebra structure on Tor𝑄 (𝑅, 𝑘) and satisfying the
conditions (ii) and (iii). �

In Section 8, we illustrate Theorem 7.1 in detail using the examples in Section 3.

7.2. Strictly Koszul presentations

For a local homomorphism 𝜑 : 𝑄 → 𝑅, Theorem 6.5 allowed us to obtain free resolutions over R
starting from free resolutions over Q. The main input to this theorem was a curved dg coalgebra C
over Q with quasi-isomorphism Ω(𝐶) → 𝑅. Our philosophy is that when 𝜑 is Koszul, C should have a
simple description. In this section, we introduce additional technical assumptions that will allow us to
explicitly construct C, mimicking a classical construction of Priddy.
Definition 7.3. Let 𝜑 : 𝑄 → 𝑅 be Koszul. Recall from Theorem 7.1 that R admits an A∞-algebra
resolution A over Q with a quadratic presentation 𝐴 � T(𝑉)/(𝑊) satisfying the conditions (i)–(iii). The
data (𝐴,𝑉,𝑊) is called a strictly Koszul presentation for 𝜑 if, in addition to these conditions,

𝑚̄1(𝑉) ⊆ 𝑉 and 𝑚̄𝑛
( ⋂
𝑖+2+ 𝑗=𝑛

𝑉 ⊗𝑖 ⊗𝑊 ⊗ 𝑉 ⊗ 𝑗 ) ⊆ 𝑉 for 𝑛 � 2, (7.3.1)

where we have used the inclusion
⋂
𝑖+2+ 𝑗=𝑛 𝑉

⊗𝑖 ⊗𝑊 ⊗ 𝑉 ⊗ 𝑗 ⊆ 𝑉 ⊗𝑛 ⊆ 𝐴̄⊗𝑛 to apply the A∞-operations
𝑚̄𝑛 of 𝐴̄. If the homomorphism 𝜑 admits a strictly Koszul presentation, then 𝜑 is called strictly Koszul.

https://doi.org/10.1017/fms.2025.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.21


Forum of Mathematics, Sigma 31

In this setting, we define

C(𝑛) (𝑉,𝑊) �
⋂

𝑖+2+ 𝑗=𝑛
(Σ𝑉)⊗𝑖 ⊗ Σ2𝑊 ⊗ (Σ𝑉)⊗ 𝑗 ⊆ B(𝑛) (𝐴).

By definition, the curvature term, the coderivation and the comultiplication on B(𝐴) restrict to maps on
C(𝑉,𝑊), and hence, C(𝑉,𝑊) is a counital curved dg coalgebra. We call C(𝑉,𝑊) the Priddy coalgebra
associated to (𝐴,𝑉,𝑊). If the presentation is clear from the context, we say it is the Priddy coalgebra
of 𝜑, and we write

C(𝜑) � C(𝑉,𝑊).

7.4. Let 𝜑 have a strictly Koszul presentation (𝐴,𝑉,𝑊), and let (−)∨ denote graded Q-linear duality.
In this setting, one can directly compute from the definition of the Priddy coalgebra of 𝜑 that

C(𝜑)∨ = T𝑎 (Σ−1𝑉∨)/(Σ−2𝑊⊥), (7.4.1)

where 𝑊⊥ = { 𝑓 ∈ (𝑉 ⊗ 𝑉)∨ | 𝑓 (𝑊) = 0}; this uses that V is free and 𝑊 ⊆ 𝑉 ⊗ 𝑉 is a summand.

What we call the Priddy coalgebra first appeared, for algebras over a field, in the work of Priddy
[Pri70, Section 3], where it is called the Koszul complex. See also [BGS96, Section 2.6] and [LV12,
Chapter 3] (where our notation is taken from).

In Section 8, we show that complete intersection and Golod homomorphisms are strictly Koszul, as
well as Cohen presentations of almost Golod Gorenstein local rings. In fact, we are not able to construct
surjective Koszul homomorphisms that are not strictly Koszul; therefore, we ask the following:

Question 7.5. For a surjective Koszul homomorphism 𝜑 : 𝑄 → 𝑅, is it always possible to construct a
strictly Koszul presentation (𝐴,𝑉,𝑊) as in Definition 7.3?

We think of R and C(𝜑)∨ as being Koszul dual to each other relative to Q. The next result justifies
this, and in particular, it says that this specializes, at the maximal ideal of Q, to classical Koszul duality
over k.

Theorem 7.6. Let 𝜑 : 𝑄 → 𝑅 be a strictly Koszul homomorphism. Then C(𝜑) is minimal in the sense
that 𝜕 (C(𝜑)) ⊆ 𝔪𝑄C(𝜑), and the inclusion C(𝜑) → B(𝐴) is a weak equivalence of connected curved
dg coalgebras. Moreover, both 𝑇 = Tor𝑄 (𝑅, 𝑘) and 𝐸 = Hom(C(𝜑), 𝑘) are Koszul k-algebras and there
k-algebra isomorphisms

Ext𝑇 (𝑘, 𝑘) � 𝐸 and Ext𝐸 (𝑘, 𝑘) � 𝑇.

Proof. We fix a strictly Koszul presentation, so that C(𝜑) = C(𝑉,𝑊).
By Theorem 7.1, the A∞-structure on A satisfies𝑚𝑛⊗𝑘 = 0 for 𝑛 ≠ 2, and 𝐴⊗𝑘 = T𝑎 (𝑉 ⊗ 𝑘)/(𝑊⊗𝑘)

is a quadratic algebra. It then follows from [LV12, Proposition 3.3.2] that the differential of C(𝑉,𝑊)⊗𝑘 =
C(𝑉 ⊗ 𝑘,𝑊 ⊗ 𝑘) ⊆ B(𝐴 ⊗ 𝑘) is zero. Therefore, C(𝑉,𝑊) is minimal.

Since 𝑇 = 𝐴 ⊗ 𝑘 is Koszul by assumption, C(𝑉 ⊗ 𝑘,𝑊 ⊗ 𝑘) → B(𝐴 ⊗ 𝑘) is a weak equivalence
by [LV12, Theorem 3.4.6]. Since V is free and 𝑊 ⊆ 𝑉 ⊗ 𝑉 is a summand, Ω(C(𝑉 ⊗ 𝑘,𝑊 ⊗ 𝑘)) =
Ω(C(𝑉,𝑊)) ⊗ 𝑘 and Ω(B(𝐴 ⊗ 𝑘)) = Ω(B(𝐴)) ⊗ 𝑘 , so it follows from the the derived version of
Nakayama’s lemma that C(𝑉,𝑊) → B(𝐴) is a weak equivalence as well.

Since C(𝜑) is minimal, the coproduct induces the structure of a graded k-algebra on Hom(C(𝜑), 𝑘),
with zero differential. Using 7.4, it follows that

𝐸 = C(𝜑)∨ ⊗ 𝑘 = T𝑎 (Σ−1𝑉∨ ⊗ 𝑘)/(Σ−2𝑊⊥ ⊗ 𝑘).

Therefore, E is the quadratic dual of 𝑇 = T𝑎 (𝑉 ⊗ 𝑘)/(𝑊 ⊗ 𝑘), and the final statement follows from
[BGS96, 2.10]. �
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7.7. The Priddy resolution

We have arrived at one of the main applications of our techniques. The next result provides explicit
‘universal resolutions’ for modules over the target of a strictly Koszul homomorphism. It recovers the
Shamash resolution in the case of complete intersection homomorphisms, and the bar resolution of
Iyengar and Burke in the case of Golod homomorphisms. We present these and other examples in the
next section.
Theorem 7.8. Let 𝜑 : 𝑄 → 𝑅 be a Koszul homomorphism with a strictly Koszul presentation (𝐴,𝑉,𝑊).
Assume that M is an R-complex with a semifree resolution 𝐺 → 𝑀 over Q and that G has a strictly
unital A∞-module structure over A. Then

𝑅 ⊗𝜏 C(𝑉,𝑊) ⊗𝜏 𝐺 −→ 𝑀

is a semifree resolution over R, with differential given by

𝜕𝜏 =
∑

𝑟+𝑠+𝑡=𝑛
𝑟 ,𝑡�0,𝑠�1

(−1)
𝑠 (𝑠+1)

2 id𝑅 ⊗(id⊗𝑟 ⊗Σ𝑚̄𝑠 (Σ
−1)⊗𝑠 ⊗ id⊗𝑡 ) ⊗ id𝐺

+
∑

𝑖+ 𝑗=𝑛+1
𝑖�0, 𝑗�1

(−1)
( 𝑗−1) ( 𝑗−2)

2 id𝑅 ⊗ id⊗𝑖 ⊗𝑚̄𝐺
𝑗 ((Σ

−1)⊗( 𝑗−1) ⊗ id𝐺).

Proof. By Theorem 7.6, we can apply Theorem 6.5 to obtain the result. �

We call 𝑅 ⊗𝜏 C(𝑉,𝑊) ⊗𝜏 𝐺 the Priddy resolution of M associated to the strictly Koszul presentation
(𝐴,𝑉,𝑊). We emphasize that (as long as M and R have finite projective dimension over Q) there is
only a finite amount of data needed to construct the Priddy resolution. Therefore, it would be especially
interesting to give an effectively computable answer to Question 7.5.
7.9. For any surjective map 𝜑 : 𝑄 → 𝑅 of local rings with common residue field k, and any finitely
generated R-module M, Lescot [Les90] established the coefficientwise inequality

P𝑅𝑀 (𝑡) · P𝑄𝑘 (𝑡) � P𝑄𝑀 (𝑡) · P𝑅𝑘 (𝑡).

If equality holds, M is said to be inert by 𝜑.
7.10. A surjective map 𝜑 : 𝑄 → 𝑅 of local rings with common residue field k is called small if
the induced map Tor𝑄 (𝑘, 𝑘) → Tor𝑅 (𝑘, 𝑘) is injective [Avr78]. For example, any minimal Cohen

presentation is small. When 𝜑 is small, there is an equality P𝑄𝑘 (𝑡) · P
𝑅⊗L

𝑄𝑘

𝑘 (𝑡) = P𝑅𝑘 (𝑡) by [Avr78,
Corollary 5.3].

The next result addresses the (non-)minimality of the Priddy resolution.
Theorem 7.11. Let 𝜑 : 𝑄 → 𝑅 be a surjective map of local rings with common residue field k. If 𝜑 is
small and strictly Koszul with Priddy coalgebra C(𝜑), then

∑
𝑖

rank𝑄 (C(𝜑)𝑖)𝑡
𝑖 =

P𝑅𝑘 (𝑡)

𝑃𝑄𝑘 (𝑡)
.

Moreover, for any finitely generated R-module M, there is a coefficientwise inequality

P𝑅𝑀 (𝑡) �
P𝑄𝑀 (𝑡) · P𝑅𝑘 (𝑡)

𝑃𝑄𝑘 (𝑡)
.

Equality holds if and only if M is inert by 𝜑, if and only if its Priddy resolution with respect to 𝜑 is a
minimal resolution. In particular, the Priddy resolution of the residue field k is minimal.
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Proof. We may compute HC (𝑡) �
∑
𝑖 rank𝑄 (C(𝜑)𝑖)𝑡

𝑖 as follows:

HC (𝑡) =
∑
𝑖

rank𝑘 (Hom(C(𝜑)𝑖 , 𝑘))𝑡
𝑖 = PTor𝑄 (𝑅,𝑘)

𝑘 (𝑡) = P
𝑅⊗L

𝑄𝑘

𝑘 (𝑡) =
P𝑅𝑘 (𝑡)

𝑃𝑄𝑘 (𝑡)
;

the second equality follows from that last statement in Theorem 7.6; the third uses formality of 𝑅 ⊗L
𝑄 𝑘;

and the last uses the small hypothesis, explained in 7.10.
Theorem 7.8 directly yields the inequality

P𝑅𝑀 (𝑡) � P𝑄𝑀 (𝑡) · HC(𝑡), (7.11.1)

with equality if and only if the Priddy resolution is minimal. At the same time, the computation of
HC (𝑡) above transforms (7.11.1) into the inequality stated in the theorem, and equality holds there by
definition when M is inert; see 7.9. �

Remark 7.12. Theorem 7.11 recovers Lescot’s bound in 7.9 for the homomorphisms considered. One
cannot directly recover the former from the latter using manipulations of formal power series as the
coefficients of P𝑄𝑘 (𝑡)

−1 can be negative.

8. Examples of strictly Koszul presentations

In this final section, we will apply the theory developed above in a series of examples, obtaining explicit
resolutions for modules over various classes of rings. We also survey how these constructions relate to
known resolutions in the literature.

We fix a local ring Q with residue field k.

Example 8.1 (Flat Koszul homomorphisms). We begin with a presentation for a commutative Koszul
k-algebra:

𝐾 = 𝑘 [𝑥1, . . . , 𝑥𝑛]/( 𝑓1, . . . , 𝑓𝑚),

where 𝑓1, . . . , 𝑓𝑚 are quadratic polynomials. To deform this presentation, we consider the Q-algebra
𝑄 [𝑥1, . . . , 𝑥𝑛], weight graded by polynomial degree. We choose elements 𝐹1, . . . , 𝐹𝑚 such that for each
i,

𝐹𝑖 = 𝐹𝑖, (2) + 𝐹𝑖, (1) + 𝐹𝑖, (0) with 𝐹𝑖, (𝑤) ∈ 𝑄 [𝑥1, . . . , 𝑥𝑛](𝑤) ,

and such that modulo 𝔪𝑄, in 𝑘 [𝑥1, . . . , 𝑥𝑛], we have

𝐹𝑖, (2) = 𝑓𝑖 and 𝐹𝑖, (1) = 𝐹𝑖, (0) = 0.

By construction, the homomorphism

𝜑 : 𝑄 −→ 𝑅 �
𝑄 [𝑥1, . . . , 𝑥𝑛]

(𝐹1, . . . , 𝐹𝑚)

is flat, and its fiber 𝐾 = 𝑅 ⊗𝑄 𝑘 is Koszul. Therefore, 𝜑 is a Koszul homomorphism, as in Example 3.1.
To show that 𝜑 is strictly Koszul, we take 𝑉 = 𝑄 [𝑥1, . . . , 𝑥𝑛](1) and

𝑊 =
〈
{𝑥𝑖 ⊗ 𝑥 𝑗 − 𝑥 𝑗 ⊗ 𝑥𝑖}𝑖 𝑗 , 𝐹1, (2) , . . . , 𝐹𝑚, (2)

〉
⊆ 𝑉 ⊗ 𝑉,
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𝐴0 𝐴1 𝐴2
𝐴(0) 𝑄 0 0
𝐴(1) 𝑉 0 0
𝐴(2) 𝑉2 0 0

(a) Flat Koszul map, cf. Exam-
ples 3.1 and 8.1

𝐴0 𝐴1 𝐴2
𝐴(0) 𝑄 0 0
𝐴(1) 0 𝑉 0
𝐴(2) 0 0

∧2 𝑉

(b) Complete intersection map,
cf. Example 3.2 and Section 8.7

𝐴0 𝐴1 𝐴2
𝐴(0) 𝑄 0 0
𝐴(1) 0 𝑉1 𝑉2
𝐴(2) 0 0 0

(c) Golod map, cf. Examples 3.5
and 8.2

Figure 1. Illustration of the weight and homological gradings of the A∞-resolution A for various
examples.

where 𝐹𝑖, (2) are preimages of 𝐹𝑖, (2) in𝑉 ⊗𝑉 . Then T𝑎 (𝑉)/(𝑊) ⊗ 𝑘 � 𝐾 , so we may choose a compatible
isomorphism of Q-modules

𝑅 � T𝑎 (𝑉)/(𝑊)

that restricts to the identity of V.
We obtain a presentation satisfying the conditions of Theorem 7.1, using 𝐴 = 𝑅 with only 𝑚2

nonzero. To show that the presentation is strict, we note that since R is commutative

𝑚2(𝑥𝑖 ⊗ 𝑥 𝑗 − 𝑥 𝑗 ⊗ 𝑥𝑖) = 0,

and we note that since 𝐹𝑖 = 0 in R,

𝑚2(𝐹𝑖, (2) ) + 𝐹𝑖, (1) + 𝐹𝑖, (0) = 𝑚2 (𝐹𝑖, (2) + 𝐹𝑖, (1) ⊗ 1 + 𝐹𝑖, (0) ⊗ 1) = 0.

This shows that

𝑚̄2 (𝑊) ⊆
〈
𝐹1, (1) , . . . , 𝐹𝑚, (1)

〉
⊆ 𝑉.

We can conclude that (𝑅,𝑉,𝑊) is a strictly Koszul presentation for 𝜑. In Figure 1a, we illustrate the
grading of A.

Example 8.2 (Golod homomorphisms). This is the primary example treated by Burke in [Bur15], at least
when Q is regular. Continuing Example 3.5, let 𝜑 : 𝑄 → 𝑅 be a surjective local Golod homomorphism,
with a minimal resolution A of R over Q. By [Bur15, Theorem 6.13], for every A∞-algebra structure
{𝑚𝑛} on A, one has 𝑚𝑛 ⊗𝑄 𝑘 = 0 for 𝑛 ≠ 2. Then

𝑅 ⊗L
𝑄 𝑘 = 𝐴 ⊗𝑄 𝑘 = 𝑘 �𝑈 = T𝑎 (𝑈)/(𝑈 ⊗ 𝑈),

where U is the graded k-vector space 𝐴�1 ⊗ 𝑘 . In particular, lifting this isomorphism to Q, we obtain
𝐴 � T𝑎 (𝑉)/(𝑊) with 𝑉 = 𝐴�1 and 𝑊 = 𝑉 ⊗ 𝑉 . This presentation satisfies the conditions of Theorem
7.1. Further, the data (𝐴,𝑉,𝑊) is a strictly Koszul presentation, and the Priddy coalgebra of 𝜑 is the
bar construction C(𝑉,𝑊) = B(𝐴). In this case, the Priddy resolution of a module M recovers the bar
resolution 𝑅 ⊗𝜏 B(𝐴) ⊗𝜏 𝐺 from [Bur15, Theorem 3.13]. Comparing 7.9 with (3.4.1), the resolution is
minimal if and only if M is inert with respect to 𝜑, if and only if M is a 𝜑-Golod module (i.e., the Serre
bound (3.4.1) is an equality), by Theorem 7.11.

Remark 8.3. There are many examples of Golod (in particular, Koszul) homomorphisms 𝜑 : 𝑄 → 𝑅
such that the minimal resolution A of R over Q does not admit a dg Q-algebra structure. In fact, this
behavior seems to be typical. One way to construct them is as follows.

Let I be an ideal in a local ring P, and consider the map 𝜑 : 𝑄 → 𝑅 with

𝑄 = 𝑃[𝑥](𝔪𝑃 ,𝑥) and 𝑅 = 𝑄/(𝑥𝐼).
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By [Lev76, Theorem 2.4], see also [Sha69], 𝜑 is Golod. If B is the minimal resolution of 𝑃/𝐼 over P,
then the minimal resolution A of R over Q can be described as

𝐴𝑖 = 𝐵𝑖 ⊗𝑃 𝑄, with 𝜕𝐴1 = 𝑥 · 𝜕𝐵1 ⊗𝑃 𝑄 and 𝜕𝐴�2 = 𝜕𝐵�2 ⊗𝑃 𝑄.

If A were to admit a dg Q-algebra structure, then localizing would produce a dg 𝑃(𝑥)-algebra structure on

𝐴 ⊗𝑄 𝑄 (𝔪𝑃 [𝑥 ]) � 𝐵 ⊗𝑃 𝑃(𝑥),

and this is a minimal resolution of 𝑃(𝑥)/𝐼 (𝑥) over 𝑃(𝑥).
However, we can start with examples of P and I such that this is impossible. To be concrete,

Example 3.24 (replacing k with 𝑘 (𝑥)) shows that there is no such dg algebra structure when 𝑃(𝑥) =
𝑘 (𝑥)�𝑎, 𝑏, 𝑐, 𝑑� and 𝐼 (𝑥) = (𝑎2, 𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑑2). It follows that the homomorphism

𝜑 : 𝑘�𝑎, 𝑏, 𝑐, 𝑑, 𝑥� −→
𝑘�𝑎, 𝑏, 𝑐, 𝑑, 𝑥�

(𝑎2𝑥, 𝑎𝑏𝑥, 𝑏𝑐𝑥, 𝑐𝑑𝑥, 𝑑2𝑥)

is Golod and there is no dg algebra structure on the minimal resolution of the target over the source.

Example 8.4 (Gorenstein homomorphisms of projective dimension 3). Assume that 𝜑 : 𝑄 → 𝑅 is a
surjective local Gorenstein map of proj dim𝑄 (𝑅) = 3. In Example 3.12, the dg algebra resolution A of R
is described, with bases {𝑒𝑖}, { 𝑓𝑖} and {𝑔} for 𝐴1, 𝐴2 and 𝐴3, respectively. The multiplication induces
a perfect pairing

〈−,−〉 : 𝐴 ⊗ 𝐴 −→ Σ3𝐴3 � Σ3𝑄

that makes A a cyclic A∞-algebra. We take 𝑉 = 𝐴1 ⊕ 𝐴2 and 𝑊 = ker(〈−,−〉|𝑉 ⊗𝑉 ); alternatively, W is
freely spanned as a graded Q-module by

{𝑒𝑖 ⊗ 𝑒 𝑗 , 𝑓𝑖 ⊗ 𝑓 𝑗 , 𝑒𝑖 ⊗ 𝑓𝑖 − 𝑓 𝑗 ⊗ 𝑒 𝑗 }𝑖, 𝑗 ∪ {𝑒𝑖 ⊗ 𝑓 𝑗 , 𝑓𝑖 ⊗ 𝑒 𝑗 }𝑖≠ 𝑗 .

The short Gorenstein description of 𝐴 ⊗𝑄 𝑘 lifts to an isomorphism of graded Q-modules 𝐴 �
T(𝑉)/(𝑊) satisfying the conditions of Theorem 7.1.

Using the explicit description in Example 3.12,

𝑚̄1(𝑉) ⊆ 𝐴1 ⊆ 𝑉, 𝑚̄2 (𝑊) ⊆ 𝐴2 ⊆ 𝑉 and 𝑚̄𝑛 = 0 for 𝑛 � 3.

Therefore, the homomorphism 𝜑 is strictly Koszul, using the presentation (𝐴,𝑉,𝑊). The corresponding
Priddy coalgebra is given by

C(𝑛) (𝑉,𝑊) =
{∑

𝑣1 ⊗ · · · ⊗ 𝑣𝑛

��� ∑𝑣1 ⊗ · · · ⊗ 〈𝑣𝑖 , 𝑣𝑖+1〉𝑣𝑖+2 ⊗ · · · ⊗ 𝑣𝑛 = 0, 1 � 𝑖 < 𝑛
}
.

Alternatively, C(𝑉,𝑊) can be described explicitly using the basis of W above. We also note that the
Priddy coalgebra is dual to the non-commutative hypersurface

C(𝑉,𝑊)∨ � T𝑎 (𝑉∨)/(𝜌),

where 𝜌 = 𝑒∨1 ⊗ 𝑓 ∨1 + 𝑓 ∨1 ⊗ 𝑒∨1 + · · · + 𝑒∨𝑟 ⊗ 𝑓 ∨𝑟 + 𝑓 ∨𝑟 ⊗ 𝑒∨𝑟 .

Remark 8.5. In [Bur15, Example 3.10], Burke examines the specific Gorenstein ring 𝑅 = 𝑄/𝐼, of
codimension three, where

𝑄 = 𝑘�𝑥, 𝑦, 𝑧� and 𝐼 = (𝑥2, 𝑦𝑧, 𝑥𝑦 + 𝑧2, 𝑥𝑧, 𝑦2).
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In particular, Burke explicitly computes the A∞-module A-structure on 𝐾𝑄 and uses this to obtain the
(non-minimal) bar resolution 𝑅⊗𝜏 B(𝐴) ⊗𝜏 𝐾𝑄 of k. In comparison, by Theorem 7.8, the Priddy resolu-
tion 𝑅 ⊗𝜏 C(𝑉,𝑊) ⊗𝜏 𝐾𝑄 of k, with respect to (𝐴,𝑉,𝑊) in Example 8.4, is minimal by Theorem 7.11.

Remark 8.6. A similar argument to Example 8.4 shows that if 𝜑 : 𝑄 → 𝑅 is a minimal Cohen
presentation for an almost Golod Gorenstein ring, and if the minimal Q-free resolution of R admits a dg
algebra structure, then 𝜑 is strictly Koszul. The minimal resolution is known in the case of a compressed
artinian Gorenstein ring [MR18], and it is suspected to carry a dg algebra structure.

In Theorem 8.18, we will generalize this substantially, showing that it is only necessary for the
minimal resolution to admit a cyclic A∞-algebra resolution.

8.7. Complete intersection homomorphisms

Next, we show that surjective complete intersection homomorphisms are strictly Koszul, and that
the resulting Priddy resolution recovers a well-known construction of Eisenbud [Eis80] and Shamash
[Sha69]. The latter uses systems of higher homotopies to obtain free resolutions over the target of a
surjective complete intersection homomorphism, starting from data over the source. We first recall this
story, which provides context for some of the results in this subsection. We then proceed to verify that
such maps are strictly Koszul and conclude by laying out the connection between A∞-structures and
systems of higher homotopies.

In what follows, we return to the setting of Example 3.2. Namely, 𝜑 : 𝑄 → 𝑅 is a surjective, local
homomorphism where ker 𝜑 is generated by a Q-regular sequence f = 𝑓1, . . . , 𝑓𝑐 , and 𝐴 = Kos𝑄 (f ).

8.8. Let M be an R-module and 𝐺 → 𝑀 a free resolution over Q. A system of higher homotopies,
corresponding to f , on G is a collection of maps 𝜎 (α) : 𝐺 → 𝐺, one for each α ∈ N𝑐0 , of degree
2|α| − 1 such that

1. 𝜎 (0) = 𝜕𝐺 , where 0 = (0, . . . , 0);
2. 𝜎 (0)𝜎 (e𝑖 ) + 𝜎 (e𝑖)𝜎 (0) = 𝑓𝑖 id𝐺 , where e𝑖 = (0, . . . , 0, 1, 0, . . . 0);
3. for any α ∈ N𝑐0 with |α| > 1, one has

∑
α=β+γ 𝜎 (β)𝜎 (γ) = 0.

Such a system of maps always exists by [Eis80, Section 7]. The utility of this data is summarized in
the following construction: if D denotes the graded Q-linear dual of 𝑄 [𝜒1, . . . , 𝜒𝑐], where each 𝜒𝑖 has
homological degree −2, then the R-complex 𝑅 ⊗ 𝐷 ⊗ 𝐺 with differential

∑
α∈N𝑐

0
1 ⊗ χα ⊗ 𝜎 (α) is a

free resolution of M over R; see [Eis80, Section 7] for more details.
When M is an R-complex, one can take 𝜀 : 𝐺 → 𝑀 to be a semifree resolution over Q and impose

also the following condition to obtain analogous results:

4. 𝜀𝜎 (α) = 0 for |α| > 0 .

Such a system of maps exists and can be used to transfer semifree resolutions over Q to ones over R, by
an argument similar to the classical one in [Eis80]; this will be contained in future joint work of Grifo
with the first and fourth author.

Remark 8.9. Let M be an R-module and 𝐺 → 𝑀 a free resolution over Q. In [Bur15], Burke notes
that when 𝑐 = 1, an A∞-module structure on G over A is equivalent to a system of higher homotopies
on G. Furthermore, the bar resolution of M in Burke’s paper agrees with the Priddy resolution of M,
introduced above. Such maps are also Golod, and so we are also in the setting of Example 8.2.

For arbitrary codimension c, the bar resolution is not minimal. However, in unpublished work, Burke
constructs an acyclic twisting cochain 𝐷 → 𝐴 and uses this to transfer a semifree resolution of an R-
complex M over Q to one over R that agrees with the construction of Eisenbud and Shamash; cf. 8.8 (see
also [AB00, Mar21]). The connection between higher homotopies and A∞-structures is also implicit in
Burke’s work. We will give an explicit description of how these structures relate in Theorem 8.12.
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8.10. The narrative above is subsumed by the one in this article. Specifically, the dg algebra resolution
𝐴 = Kos𝑄 (f ) of R over Q has a quadratic presentation T𝑎 (𝑉)/(𝑊), with

𝑉 = 𝐴1 = Σ𝑄𝑐 and 𝑊 =
〈
{𝑎 ⊗ 𝑎}𝑎∈𝐴1 ∪ {𝑎 ⊗ 𝑏 + 𝑏 ⊗ 𝑎}𝑎,𝑏∈𝐴1

〉
⊆ 𝑉 ⊗2.

The graded module V is concentrated in degree 1, and the weight and homological gradings agree. It is
straightforward to check that this presentation satisfies the conditions of Theorem 7.1. By construction,

𝑚̄1 (𝑉) = 0, 𝑚̄2 (𝑊) = 0 and 𝑚̄𝑛 = 0 for 𝑛 � 3. (8.10.1)

Hence, 𝜑 is strictly Koszul.

To conclude that the constructions in 8.8 and Remark 8.9 are recovered by Theorem 7.8, we end this
subsection with the following analysis.

8.11. Let S𝑛 be the symmetric group. For α = (𝛼𝑖) ∈ N
𝑐
0 with |α| = 𝑛, we let

Sα � {𝜏 ∈ S𝑛 | 𝜏(𝛼1 + · · · + 𝛼𝑖 + 1) < · · · < 𝜏(𝛼1 + · · · + 𝛼𝑖+1) for 0 � 𝑖 � 𝑐 − 1}

denote the subgroup of α-shuffles [Bou81, Chapter IV, §5.3].
The symmetric group S𝑛 acts on (Σ𝑉)⊗𝑛 by permuting simple tensors; there are no signs appearing

since Σ𝑉 is in degree 2. The module of symmetric tensors on Σ𝑉 is the graded module Γ(Σ𝑉) =⊕
𝑛�0 Γ(𝑛) (Σ𝑉), with

Γ(𝑛) (Σ𝑉) � T(𝑛) (Σ𝑉)
S𝑛 .

The coalgebra structure on T𝑐 (Σ𝑉) restricts to a coalgebra structure onΓ(Σ𝑉). We call this the coalgebra
of symmetric tensors on Σ𝑉 and denote it by Γ𝑐 (Σ𝑉).

We denote the basis of Σ𝑉 = Σ2𝑄𝑐 corresponding to 𝑓1, . . . , 𝑓𝑐 by 𝑦1, . . . , 𝑦𝑐 . A basis of Γ(Σ𝑉) is
given by

𝑦 (α) �
∑
𝜏∈Sα

𝜏 · (𝑦⊗𝛼1
1 ⊗ · · · ⊗ 𝑦⊗𝛼𝑐𝑐 ) ∈ Γ𝑐( |α |) (Σ𝑉).

Theorem 8.12. Let 𝜑 : 𝑄 → 𝑅 be a surjective complete intersection homomorphism with kernel
generated by a Q-regular sequence f = 𝑓1, . . . , 𝑓𝑐 , and let M denote an R-complex.

1. 𝜑 is strictly Koszul, and its Priddy coalgebra is the curved coalgebra of symmetric tensors Γ𝑐 (Σ2𝑄𝑐),
with curvature term ( 𝑓1, . . . , 𝑓𝑐) : Σ2𝑄𝑐 → 𝑄.

2. Given a semifree resolution 𝐺 → 𝑀 over Q, there exists a strictly unital A∞-module structure {𝑚𝐺
𝑛 }

over 𝐴 = Kos𝑄 (f ) making 𝐺 → 𝑀 a strict morphism of A∞-modules over A, where A acts on M
via restricting scalars along the dg algebra map 𝐴 → 𝑅. Then setting

𝜎 (α) � (−1)
|α| ( |α|−1)

2 𝑚𝐺
|α |+1((Σ

−1)⊗ |α |𝑦 (α) ⊗ id)

for α ∈ N𝑐0 and 𝑦1, . . . , 𝑦𝑐 the standard basis for Σ2𝑄𝑐 defines a system of higher homotopies on G
corresponding to f .

3. Moreover, the Priddy resolution from Theorem 7.8 recovers the Eisenbud–Shamash resolution de-
scribed in 8.8.

Proof. We saw in 8.10 that 𝜑 is strictly Koszul. Using the same notation, we first show that C(𝑉,𝑊) =
Γ(Σ𝑉). Indeed, for the nontrivial element 𝜏 ∈ S2, one has

Σ2𝑊 = ker
(
Σ𝑉 ⊗ Σ𝑉

id−𝜏
−−−−→ Σ𝑉 ⊗ Σ𝑉

)
= Γ(2) (Σ𝑉),
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and so using the transposition 𝜏𝑖 = (𝑖 𝑖 + 1) ∈ S𝑛, we obtain

(Σ𝑉)⊗𝑖−1 ⊗ Σ2𝑊 ⊗ (Σ𝑉)⊗𝑛−𝑖−1 = ker
(
(Σ𝑉)⊗𝑛

𝜏𝑖−id
−−−−→ (Σ𝑉)⊗𝑛

)
.

Since S𝑛 is generated by the transpositions 𝜏𝑖 , it follows that C(𝑉,𝑊) = Γ(Σ𝑉).
The coalgebra structure on C(𝑉,𝑊) is inherited from B(𝐴), and this coincides with the coalgebra

structure on T𝑐 (Σ𝑉) because of the compatible inclusions

C(𝑉,𝑊) = Γ𝑐 (Σ𝑉) ⊆ T𝑐 (Σ𝑉) ⊆ T𝑐 (Σ 𝐴̄) = B(𝐴).

The differential on C(𝑉,𝑊) is zero by (8.10.1). It is straightforward to see that the curvature term on
C(𝑉,𝑊) is (up to a shift) the first differential of A. This completes the proof of (1).

For (2), such an A∞-module structure making 𝐺 → 𝑀 a strict morphism exists by 5.2. Then, by
definition 8.8(1) holds. The fact that 8.8(2) holds follows from using the second Stasheff identity from
4.10. Another computation using the Stasheff identities, the unital structure on G, and the fact that A is
graded-commutative show that 8.8(3) holds. The verification of 8.8(3) for α = e1 + e2 is illustrative of
the proof for the general case, and so we sketch this case below.

Fix basis elements 𝑒𝑖 ∈ 𝐴1 with 𝜕𝐴(𝑒𝑖) = 𝑓𝑖 , and note that

(Σ−1)⊗2𝑦 (α) = 𝑒1 ⊗ 𝑒2 + 𝑒2 ⊗ 𝑒1. (8.12.1)

Observe that for {𝑖, 𝑗} = {1, 2}, one has

𝑚𝐺
2 (𝑒𝑖 ⊗ 𝑚𝐺

2 (𝑒 𝑗 ⊗ id) − (𝑒𝑖 · 𝑒 𝑗 ) ⊗ id)
= 𝜕𝐺𝑚𝐺

3 (𝑒𝑖 ⊗ 𝑒 𝑗 ⊗ id) + 𝑚𝐺
3 ( 𝑓𝑖 ⊗ 𝑒 𝑗 ⊗ id−𝑒 𝑗 ⊗ 𝑓𝑖 ⊗ id+𝑒𝑖 ⊗ 𝑒 𝑗 ⊗ 𝜕𝐺)

= 𝜕𝐺𝑚𝐺
3 (𝑒𝑖 ⊗ 𝑒 𝑗 ⊗ id) + 𝑚𝐺

3 (𝑒𝑖 ⊗ 𝑒 𝑗 ⊗ id)𝜕𝐺 ,

where the first precomposes the third Stasheff identity from 4.10 with 𝑒𝑖 ⊗ 𝑒 𝑗 ⊗ id, while the third
equality uses that {𝑚𝐺

𝑛 } is a strictly unital A∞-module structure. It follows that

𝜕𝐺𝑚𝐺
3 (𝑒𝑖 ⊗ 𝑒 𝑗 ⊗ id) − 𝑚𝐺

2 (𝑒𝑖 ⊗ 𝑚𝐺
2 (𝑒 𝑗 ⊗ id)) + 𝑚𝐺

2 (𝑒𝑖 · 𝑒 𝑗 ⊗ id) + 𝑚𝐺
3 (𝑒𝑖 ⊗ 𝑒 𝑗 ⊗ id)𝜕𝐺 = 0,

and so adding these expressions for (𝑖, 𝑗) = (1, 2) and (𝑖, 𝑗) = (2, 1), and recalling (8.12.1), we obtain∑
β+γ=α

𝜎 (β)𝜎 (γ) + 𝑚𝐺
2 (𝑒1 · 𝑒2 ⊗ id) + 𝑚𝐺

2 (𝑒2 · 𝑒1 ⊗ id) = 0.

It now remains to observe that since A is graded-commutative,

𝑚𝐺
2 (𝑒1 · 𝑒2 ⊗ id) + 𝑚𝐺

2 (𝑒2 · 𝑒1 ⊗ id) = 𝑚𝐺
2 ((𝑒1 · 𝑒2 + 𝑒2 · 𝑒1) ⊗ id) = 0.

Thus, 8.8(3) holds for α = e1 + e2.
The condition 8.8(4) holds since 𝜀 is a strict morphism, and since M is a dg A-module where the 𝑒𝑖’s

act trivially. This completes the proof of (2).
It remains to show (3). By [Bou81, IV.§.5.11], we have a natural isomorphism of algebras

𝑄 [𝜒1, . . . , 𝜒𝑐] � Γ𝑐 (Σ2𝑄𝑐)∨ = C(𝑉,𝑊)∨

determined by 𝜒𝑖 ↦→ 𝑦∨𝑖 ; this correspondence can also be seen via (7.4.1):

C(𝑉,𝑊)∨ � T𝑎 (Σ−2(𝑄𝑐)∨)/(Σ−1𝑊⊥) = Sym(Σ−2(𝑄𝑐)∨) � 𝑄 [𝜒1, . . . , 𝜒𝑛],
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where 𝑊⊥ =
{
𝑓 ⊗ 𝑔 − 𝑔 ⊗ 𝑓

�� 𝑓 , 𝑔 ∈ Σ−1(𝑄𝑐)∨
}
, identifying (𝑦 (α) )∨ with χα for each α ∈ N𝑐0 .

As a consequence, dualizing the correspondence above yields an isomorphism of graded Q-modules
𝐷 � C(𝑉,𝑊) inducing an isomorphism of graded R-modules

𝜓 : 𝑅 ⊗ 𝐷 ⊗ 𝐺
�
−−→ 𝑅 ⊗ C(𝑉,𝑊) ⊗ 𝐺.

It remains to observe that

𝜓 ◦
∑

|α |=𝑛−1
χα ⊗ 𝜎 (α) = (−1)

(𝑛−1) (𝑛−2)
2 𝑚̄𝐺

𝑛 ((Σ
−1)⊗(𝑛−1) ⊗ id)

���
Γ𝑐
(𝑛−1) (Σ

2𝑄𝑐) ⊗𝐺
.

Therefore, 𝜓 is compatible with the differentials of its target and source, and so it is an isomorphism of
R-complexes; cf. Theorem 7.8 and 8.8. �

Remark 8.13. The higher homotopies 𝜎 (α) with |α| = 𝑛 induce a Γ𝑐 (Σ2𝑄𝑐)-comodule structure on
Γ𝑐 (Σ2𝑄𝑐) ⊗𝐺; in fact, conditions 8.8(1–4) are equivalent to this. However, an A∞-module structure on
G is equivalent to a B(𝐴)-comodule structure on B(𝐴) ⊗ 𝐺. Hence, a system of higher homotopies on
G captures the ‘symmetric’ part of an A∞-module structure on G over A.

Remark 8.14. Moving beyond finite projective dimension, complete intersection homomorphisms fit
into the well-studied class of quasi-complete intersection homomorphisms; cf. [AHŞ13, AI03]. In
residual characteristic zero and two, it is straightforward to check that such maps are strictly Koszul;
this provides more examples of strictly Koszul homomorphisms of infinite projective dimension. In
odd characteristic, the presence of divided powers prevents Tor𝑄 (𝑅, 𝑘) from admitting a quadratic
presentation.

8.15. Almost Golod Gorenstein rings

To end the paper, we return to the class of almost Golod Gorenstein rings that we studied in Section
3.13. We show that these rings are strictly Cohen Koszul (i.e. every Cohen presentation is a strictly
Koszul map), and we thereby obtain concrete free resolutions for all modules over such rings, using the
machinery developed in Section 7.2.

The next lemma is a general construction in the homological algebra of Gorenstein rings, building
on work of Avramov and Levin [LA78].

Lemma 8.16. Let R be a zero dimensional Gorenstein ring of codimension d, with a minimal Cohen
presentation 𝑄 → 𝑅, and let 𝐴 �

−→ 𝑅 be the minimal Q-free resolution of R. The inclusion of the socle
lifts to a chain map

𝐾𝑄 𝐴

soc(𝑅) 𝑅,

� �

where 𝐾𝑄 is the Koszul complex of Q. The subcomplex

𝐴′ � cone(𝐾𝑄<𝑑 → 𝐴<𝑑) ⊆ cone(𝐾𝑄 → 𝐴)

is then a minimal Q-free resolution of 𝑅/soc(𝑅).

Proof. By the exact sequence of homology groups, H∗(cone(𝐾𝑄 → 𝐴)) is isomorphic to 𝑅/soc(𝑅),
concentrated in degree zero. The proof of [LA78, Theorem 1] shows that the map 𝐾𝑄𝑖 ⊗𝑄 𝑘 → 𝐴𝑖⊗𝑄 𝑘 is
an isomorphism for 𝑖 = 𝑑 and zero for 𝑖 < 𝑑. The former fact implies that the inclusion 𝐴′ ⊆ cone(𝐾𝑄 →
𝐴) is a quasi-isomorphism, and the latter implies that 𝐴′ is minimal as a complex. Altogether, this shows
that 𝐴′ is the minimal resolution of 𝑅/soc(𝑅). �
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Lemma 8.17. Let R be an almost Golod Gorenstein ring of codimension d having a minimal Cohen
presentation 𝑄 → 𝑅. Assume that the minimal Q-free resolution A of R is equipped with a cyclic A∞-
structure. Then (𝑚̄𝑛 ( 𝐴̄

⊗𝑛))𝑖 ⊆ 𝔪𝑄 𝐴̄𝑖 for all 𝑖 < 𝑑, and (𝑚̄𝑛 ( 𝐴̄
⊗𝑛))𝑑 = 0 for 𝑛 � 3. In particular,

𝑅 ⊗L
𝑄 𝑘 is formal and Koszul.

Proof. We first address what happens in degree d, and for this, we use the fact that A is a cyclic A∞-
algebra. If 𝑛 � 3 and 𝑚𝑛 (𝑎1, . . . , 𝑎𝑛) has degree d, then

〈𝑚𝑛 (𝑎1, . . . , 𝑎𝑛), 1〉 = (−1)𝑛〈𝑚𝑛 (1, 𝑎1, . . . , 𝑎𝑛−1), 𝑎𝑛〉 = 0

since A is strictly unital. But 〈−, 1〉 is the projection onto the (rank 1) degree d part of A, so this implies
𝑚𝑛 (𝑎1, . . . , 𝑎𝑛) = 0.

For the rest of the argument, we need to reduce to the case that R has dimension zero. We may find a
sequence x that is part of a minimal generating set of 𝔪𝑄 and that maps to a maximal regular sequence
in 𝔪𝑅. All of the hypotheses, and the remaining assertions to prove, are unchanged if we replace Q,
R and A with 𝑄/(x), 𝑅/(x𝑅) and 𝐴 ⊗ (𝑄/(x)) respectively, using Proposition 2.17 for the Koszul
conclusion. Therefore, we may assume that R has dimension zero.

We now use the notation and results of Lemma 8.16. Since 𝐴′ = cone(𝐾𝑄<𝑑 → 𝐴<𝑑) is the minimal
Q-free resolution of 𝑅/soc(𝑅), there is a splitting

𝐴′ cone(𝐾𝑄 → 𝐴),
�

and we define 𝜑1 to be the composition 𝐴 → cone(𝐾𝑄 → 𝐴) → 𝐴′. By construction, (𝜑1)𝑖 : 𝐴𝑖 → 𝐴′
𝑖

is a split injection for 𝑖 < 𝑑. Since 𝑅/soc(𝑅) is Golod, we may endow 𝐴′ with a strictly unital A∞-
structure {𝑚′

𝑛} satisfying 𝑚̄′
𝑛 ( 𝐴̄

′⊗𝑛) ⊆ 𝔪𝑄 𝐴̄
′ for all 𝑛 � 1 by [Bur15, Theorem 6.13]. Having done

this, the chain map 𝜑1 can be extended to a strictly unital map of A∞-algebras using Proposition 5.3.
We apply Lemma 5.5 to the morphism 𝐴⊗𝑄 𝑘 → 𝐴′ ⊗𝑄 𝑘 to deduce that the A∞-structure of A satisfies
(𝑚̄𝑛 ( 𝐴̄

⊗𝑛))𝑖 ⊆ 𝔪𝑄 𝐴̄𝑖 for all 𝑛 � 1 and all 𝑖 < 𝑑.
Since the induced higher A∞-structure on 𝐴 ⊗𝑄 𝑘 vanishes, 𝑅 ⊗L

𝑄 𝑘 � 𝐴 ⊗𝑄 𝑘 is formal by
Proposition 5.4. It also follows that 𝐴 ⊗𝑄 𝑘 is a short Gorenstein ring, and in particular, it is Koszul by
Example 3.7. �

We are finally able to prove that almost Golod Gorenstein rings satisfying certain technical assump-
tions are strictly Cohen Koszul, as promised in the proof of Theorem 3.16, and substantially generalizing
the class of Gorenstein local rings of codimension three covered by Example 8.4.

Theorem 8.18. If R is an almost Golod Gorenstein ring of odd codimension d, containing a field of
characteristic zero, with a minimal Cohen presentation 𝜑 : 𝑄 → 𝑅, then 𝜑 is strictly Koszul. More
precisely, if the minimal resolution A of R admits a cyclic A∞-structure, then (regardless of d or the
characteristic) 𝐴 � T(𝑉)/𝑊 , where

𝑉 =
⊕𝑑−1

𝑖=1 𝐴𝑖 and 𝑊 = ker
(
〈−,−〉 : 𝑉 ⊗ 𝑉 → Σ𝑑𝑄

)
, (8.18.1)

and (𝐴,𝑉,𝑊) is a strictly Koszul presentation for 𝜑.

Proof. Since d is odd and R is Gorenstein of characteristic zero, we may endow A with a cyclic A∞-
structure by Theorem 5.7.

The pairing 〈−,−〉 defined in Section 5.6 is nondegenerate, and this implies that W is a summand
of 𝑉 ⊗ 𝑉 . We know that 𝐴 ⊗ 𝑘 � T𝑎 (𝑉 ⊗ 𝑘)/(𝑊 ⊗ 𝑘) since 𝐴 ⊗ 𝑘 is short Gorenstein. It follows
from Nakayama’s lemma that 𝐴 � T(𝑉)/𝑊 as graded Q-modules. The assertion (𝑚̄𝑛 ( 𝐴̄

⊗𝑛))𝑑 = 0 from
Lemma 8.17 implies that 𝑚𝑛 (𝑉

⊗𝑛) ⊆ 𝑉 for all n, and therefore, the presentation (𝐴,𝑉,𝑊) is strict. �
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Taking an almost Golod Gorenstein ring R, with Q and A as in the theorem, we can describe the
Priddy coalgebra explicitly:

C(𝑛) (𝑉,𝑊) =
{∑

𝑣1 ⊗ · · · ⊗ 𝑣𝑛

��� ∑𝑣1 ⊗ · · · ⊗ 〈𝑣𝑖 , 𝑣𝑖+1〉𝑣𝑖+2 ⊗ · · · ⊗ 𝑣𝑛 = 0, 1 � 𝑖 < 𝑛
}
.

This is also the dual of a noncommutative hypersurface, as in Example 8.4.
If we let M be a bounded complex of finitely generated R-modules, then there is a finite free Q-

resolution 𝐺 → 𝑀 , and G can be given a strictly unital A∞-module structure over A by 5.2. All of this
data can be constructed with finitely many computations, and it can be assembled into a resolution

𝑅 ⊗𝜏 C(𝑉,𝑊) ⊗𝜏 𝐺
�
−−→ 𝑀

with an explicit differential given in Theorem 7.8 in terms of the A∞-structures of A and G. When
𝑀 = 𝑘 is the residue field and 𝐺 = 𝐾𝑄 is the Koszul complex of Q, the Priddy resolution is minimal by
Theorem 7.11.

The last example provides a class of almost Golod Gorenstein rings where we verify they are Cohen
Koszul without any assumptions on the characteristic of k or the parity of the codimension.

Example 8.19. Let Q be a standard graded polynomial ring over k and let 𝑅 = 𝑄/𝐼, where I is an ideal
generated by forms of degree 𝑒 � 3 admitting an almost linear free resolution, as in Remark 3.17. We
further assume that R is Gorenstein of codimension d.

Writing 𝑇𝑖, 𝑗 = Tor𝑄𝑖 (𝑅, 𝑘) 𝑗 = H𝑖 (𝐾
𝑅) 𝑗 , we have, by assumption, 𝑇𝑖, 𝑗 = 0 when 0 < 𝑖 < 𝑑 and

𝑗 − 𝑖 ≠ 𝑒 − 1. The only other nontrivial components are the unit 𝑇0,0 = 𝑘 and the socle 𝑇𝑑,2𝑒−2+𝑑 = 𝑘 .
The product on T must preserve both gradings, and it follows that T is a short Gorenstein ring.

Let 𝐴 �
−→ 𝑅 be the minimal graded free resolution of R over Q. In this setting, there exists an A∞-

algebra structure {𝑚𝑛} on A that is homogeneous of degree zero with respect to the internal grading. In
particular, the induced operations 𝑚𝑛 ⊗𝑄 𝑘 on T restrict to maps

𝑇𝑖1 , 𝑗1 ⊗𝑘 · · · ⊗𝑘 𝑇𝑖𝑛 , 𝑗𝑛 −→ 𝑇𝑖1+···+𝑖𝑛+𝑛−2, 𝑗1+···+ 𝑗𝑛 .

If some 𝑖ℓ = 𝑑, the map above is zero for (homological) degree reasons, and so we may assume each 𝑖ℓ
is strictly smaller than d. Therefore, each 𝑗ℓ − 𝑖ℓ = 𝑒 − 1 and

( 𝑗1 + · · · + 𝑗𝑛) − (𝑖1 + · · · + 𝑖𝑛 + 𝑛 − 2) = 𝑛(𝑒 − 1) − 𝑛 + 2.

For 𝑚𝑛 ⊗𝑄 𝑘 to be nonvanishing on this component, this expression must equal 𝑒 − 1 or 2𝑒 − 2. In the
former case, we find (𝑛− 1) (𝑒 − 1) = 𝑛− 2, which cannot hold; in the latter case, (𝑛− 2) (𝑒 − 1) = 𝑛− 2,
and this cannot hold when n and e are not 2. Hence, 𝑚𝑛 ⊗𝑄 𝑘 = 0 for 𝑛 ≠ 2.

Thus, we may apply Theorem 7.1 with 𝑉 =
⊕𝑑−1

𝑖=1 𝐴𝑖 and W as in (8.18.1) to conclude that 𝑄 → 𝑅
is Koszul. Finally, it follows from Theorem 3.16 that R is not only Cohen Koszul, but also almost Golod
Gorenstein.
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