
ON PROJECTIVE MODULES AND AUTOMORPHISMS 
OF CENTRAL SEPARABLE ALGEBRAS 

L. N. CHILDS 

This paper developed from, and complements, the paper by F. R. DeMeyer 
(see 6). 

In the first section of this paper we note a correspondence between pro­
jective modules of a central separable i?-algebra A and the two-sided ideals of 
central separable algebras in the same class as A in the Brauer group of R. 
When R has the property that rank one projective i^-modules are free, this 
correspondence yields a bijection between isomorphism types of indecom­
posable projective A -modules and the isomorphism types of algebras in the 
Brauer class of A which are the analogue of division algebra components in 
the field case. This bijection was remarked on without proof by DeMeyer 
in (6). 

Pursuing the ideas behind this correspondence, we consider the situation 
for a separable order A in a central simple algebra A over an algebraic number 
field, and obtain, by means of results involving the reduced norm, a generaliza­
tion of DeMeyer's remark except when the division algebra component of A 
is a totally definite quaternion algebra (Theorem 3.3). We cite examples to 
show that our approach to this generalization fails in the totally definite case. 

In (6), DeMeyer showed that certain well-known properties held by central 
simple algebras over fields hold also for central separable algebras over semi-
local rings with no non-tri vial idempo tents and over polynomial rings with 
coefficients in a field of characteristic zero. Using the reduced norm results, we 
measure how badly these properties fail for maximal orders in central simple 
algebras over algebraic number fields. We conclude by applying a result of 
L. Silver to study the outer automorphism group of such orders. 

The author would like to thank F. R. DeMeyer for his cooperation in the 
preparation of this paper. 

Notation. Throughout, we hold to the convention that modules are finitely 
generated. Unadorned ® denotes tensor product over R. HA is a ring, A° 
denotes the opposite ring of A. 

We shall say that two central i^-algebras A and A1 are Brauer equivalent if 
A ® Endfl(£) —A' ® End^CE') for some faithful projective i^-modules 
E and E'. If A and A' are central separable algebras, this is the usual notion of 
equivalence in the formation of the Brauer group of R. We shall say that two 
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P-algebras A and B are Mori ta equivalent if there exists a left A -right 
jB-module P such that HomA(P, P)° ~B and ( ) 0 4 P induces an isomor­
phism from the category of right A -modules to the category of right 5-modules. 
A left A -right ^-module P induces such an isomorphism if P is a projective 
left ^4-module, HomA(P, P)° ^ B and the trace ideal, trA(P), of P , namely, 
the two-sided idempotent ideal of A which is the image of the map from 
P (&B Hom^(P, A) to A given by x ® f —>f(x), is all of A. This is a conse­
quence of the Morita theorems, expositions of which may be found in (1 ; 3 ; or 
4). If A is an P-algebra, we denote by PB(A) the group of isomorphism classes 
of projective left A -modules P with HomA(P, P)° ^A. 

If R is an integrally closed domain with quotient field K, "A is a maximal 
order" will mean "A is a maximal order over R in a central simple i£-algebra 
A = i ® K." An ideal I of A is a (finitely generated) left A -submodule of A 
such that I ® K ~ A. lî A is a. maximal order, we let T(A) denote the group 
of two-sided ideals of A and let J (A) denote the group of left A -isomorphism 
classes of the elements of T{A). By the degree of a central simple X-algebra A 
we mean (A:2£)5. 

1. Projective modules. We first note some facts concerning Brauer and 
Morita equivalence. 

LEMMA 1.1. (a) If A and B are two R-algebras which are Brauer equivalent, 
then A and B are Morita equivalent. Conversely, if R is a Noetherian ring of 
finite Krull dimension, A and B are R-algebras which are Morita equivalent, 
and A is a central separable R-algebra, then A and B are Brauer equivalent. 

(b) If R is a Dedekind ring with quotient field K and A and B are maximal 
R-orders in central simple K-algebras A and B, then A is Morita equivalent to B 
if and only if A is Brauer equivalent to B. 

Proof. Part (a) is proved in (4, pp. 45-46). The "if" part of part (b) follows 
from (1, Theorem 3.9); the "only if" part is obtained by noting that the 
Morita equivalence of A and B is preserved by forming the tensor product 
with K and using part (a). 

LEMMA 1.2. If A is an R-algebra, then there is a one-to-one correspondence 
between isomorphism classes of projective left A-modules P with trA(P) = A and 
U B P R ( B ) , where B runs over all the isomorphism types of R-algebras, Morita 
equivalent to A. 

Proof. Suppose that A and B are Morita equivalent via the left A -right 
J5-module P and let Q be a projective left A -module with trA(Q) = A and 
HomA(Ç, Q)° ^ B. Then A and B are Morita equivalent via Q, so B and B 
are Morita equivalent via HomA(P, A) 0 A Ç , and in particular, 

Hom 5 (Honu(P , ,4 ) ® A Q, HomA(P, A) ®AQ)°^B. 
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Thus, HomA(P, A) ®A ( ) induces a bijection between left isomorphism 
classes of projective left ^.-modules Q with HomA(<2, Q)° ~ B and elements 
olPR(B). 

Lemmas 1.1 and 1.2 can be combined to prove the final remark in (6), 
generalizing Corollary 3 of that paper. 

PROPOSITION 1.3. Let R be a Noetherian ring of finite Krull dimension, 
suppose that R has no idempotents other than 0 and 1, and assume that rank one 
projective R-modules are free. If A is a central separable R-algebra, then the 
number of left A-isomorphism classes of indecomposable projective left A-modules 
is equal to the number of isomorphism types of algebras without idempotents 
other than 0 and 1 in the class of A in the Brauer group of R. 

Proof. A central separable i^-algebra A with R a Noetherian ring with no 
non-trivial idempotents has no non-trivial two-sided idempotent ideals, since 
R has none. This follows from the Krull intersection theorem (for R) and 
Theorem 3.2 of (2) (for ^4). Thus, Lemma 1.2 yields a one-to-one correspon­
dence between all isomorphism classes of projective left A -modules and 
UBPR(B), where B runs over all isomorphism classes of algebras, Morita 
equivalent to A. By Lemma 1.1, B then runs over all isomorphism classes of 
algebras Brauer equivalent to A. By (2, Theorem 3.5), the algebras B are 
then central separable 7£-algebras. 

Now, Rosenberg and Zelinsky (16) have shown that if rank one projective 
.R-modules are free, then PR(B) = (1). Since B has no idempotents other than 
zero and one if and only if M, a left A -right 7>-module giving a Morita equi­
valence of A and B, is indecomposable, the result follows. 

For maximal orders we can obtain a result analogous to Proposition 1.2 via 
the following lemma. 

LEMMA 1.4. If R is a Dedekind ring and B is a maximal R-order, then 
J(B) = PR(B). 

Proof. We must show that any left J5-module M with HomB(M, M)° ^ B 
is left ^-isomorphic to a two-sided ideal of B. Now, M (g) K ~ B as left 
B <g) X-modules ; therefore, by embedding M in B via this map we can assume 
that M is a left S-ideal. Then HomB(il7, M) C HomB(M, M) ® K ^ B; 
therefore, HomB(M, M)° = Br = {% in B: mx is in M for all m in M}, the right 
order of M. Since B =Bf and this isomorphism extends to an inner auto­
morphism of B, we have that B = t~xBt for some t in B. Then, the right order 
of Mt is B; therefore, Mt is a two-sided ideal of B which is left ^-isomorphic 
to M. 

Conversely, if / is a two-sided ideal of B, then H o m ^ / , 7)°, the right order 
of 7, is equal to B by the results in (7). 
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PROPOSITION 1.5. If R is a Dedekind ring and A is a maximal R-orderf then 
the left isomorphism classes of projective left A-modules correspond with U BJ{B), 

where B runs over all maximal orders in central simple algebras Brauer equivalent 
to A. 

Proof. Once we note that A has no non-trivial two-sided idempotent ideals 
(12), the proposition follows immediately from Lemmas 1.1, 1.2, and 1.4. 

Remark. Using Propositions 1.2 and 1.5 one can obtain, by using results of 
Rosenberg and Zelinsky, and Silver, respectively, a relationship between the 
projective modules of a central separable algebra or a maximal order A and 
the groups of i^-algebra automorphisms of algebras Brauer equivalent to A. 
For example, the former authors have shown, in the central separable case, 
that PR{A) ^P(R)/0(A), where P(R) is the projective class group of R 
and 0(^4) is the group of i?-algebra automorphisms of A modulo inner auto­
morphisms. We shall return to this theme in § 4. 

2. The reduced norm. The results of § 1 suggest the desirability of com­
puting PR(A) in order to attempt to obtain more results similar to Proposition 
1.3. I t turns out that in many arithmetic cases there exist explicit computa­
tions of PR(A) = J (A) in terms of the arithmetic of R, using the reduced 
norm. In this section we outline these results and some examples, in preparation 
for the results of §§ 3 and 4. 

Henceforth, R is a Dedekind ring with quotient field an algebraic number 
field. A is a maximal order. Let m denote the degree of A. 

Definition. The (reduced) norm n(M) of an integral left ideal M of A is 
defined to be the rath root of the product of the invariant factors of M in A 
(viewed as i^-modules) (7, Chapter VI, § 4; 14, p. 214). 

If i f is a principal ideal, M = Ax, then n(m) = n(x), the element norm of 
x, denned equivalently as ( — l)d e g ff(0), whe re / is the "hauptpolynom" of 
x (7, p. 51), or as det T, where T is the matrix of x 0 1 in the representation 
of A ®KL as matrices over L, where L is a splitting field of A. The norm 
preserves multiplication of ideals when multiplication is defined. One extends 
n to all ideals by representing them as multiples of integral ideals by elements 
inK (see 7). 

Concerning the reduced norm, we have the following classical facts: 
n maps the ideals of A onto I{R), the group of all fractional ideals of R. 

In fact, n maps the set of left A -ideals onto I(R), where A is any maximal 
order of A (see 11); 

n sends two-sided ideals of A onto the subgroup of I(R) generated by 
pm/mp, where p runs through all finite prime ideals of R, and mv is the ^-index of 
A (mp is the degree of the division algebra component of A ®K Kp, where Kp 

is the completion of K at the prime p). 
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If U is the set of infinite primes at which A is ramified (i.e., not split), 
n sends principal ideals to Ru, the ray mod u, the set of principal ideals of R 
which have a generator which is positive at all primes of li (see 8, § 3, p. 198). 

A crucial result of Eichler is the following: If A is not a totally definite 
quaternion algebra, i.e., if the degree of A is not 2, or A splits at some infinite 
prime of K, then the only ideals sent to Ru by n are principal (10, p. 482, 
Satz 1). 

From these facts, one obtains the following information: n maps J (A) onto 
Hp(p

m/mp)/Up(p
m/mp) H Ru. If A is not a totally definite quaternion algebra, 

the map is an isomorphism. 
The ideal class number h (A) (the number of isomorphism classes of left 

A -ideals) is greater than or equal to [I(R) :RU], and equality holds if A is not a 
totally definite quaternion algebra (8). 

The number /(A) of isomorphism types of maximal orders in A is at least as 
large as [I(R):Yl(pm/mp) • Ru], and equality holds if A is not a totally definite 
quaternion algebra (17). 

From these computations one immediately obtains the following results. 

PROPOSITION 2.1. If A is not a totally definite quaternion algebra and A and A' 
are any two maximal orders in A, then J (A) ~ J{Af). 

COROLLARY 2.2. If A is not a totally definite quaternion algebra, then h{A) = 
t{A) • [I(A):1], where A is any maximal order in A. 

Corollary 2.2 also follows from Proposition 2.1, using Proposition 1.5. 
Proposition 2.1 also follows directly from Eichler's result: define a map from 
T(A) to T(A') by M-* Q~lMQ, Q any left b r i g h t ^'-ideal (such as the 
conductor); Eichler's result implies that multiplication of ideals "gets along" 
with the taking of left ideal classes. 

The exceptional cases in the computations above are genuine. For example, 
Swan (19) gives an example of a totally definite quaternion algebra A with 
t(A) = h (A) = 2 although I(R) = Ru] the orders in his example are separ­
able. Also, the following example shows that Proposition 2.1 is not generally 
valid, thus indicating a limitation on the usefulness of Proposition 1.5. 

Let A be a totally definite quaternion algebra over the rationals. Then 
Eichler, in the proof of (9, Satz 2) shows that all maximal orders over the 
integers in A whose groups of units have order 4 are isomorphic, and all maxi­
mal orders over the integers whose groups of units have order 6 are similarly 
isomorphic. Now, for any two such maximal orders, A2 and A%, Eichler 
computes h2 = [J(A2):1] and hz = [J(Ad):l] in that proof to be as follows: 
h2 = 2U~1, where u is the number of odd primes dividing the discriminant d2 of 
A, unless no prime divisor of d is congruent to 1 modulo 4 (in which case 
h2 = 0) ; hz = 2V~1

1 where v is the number of primes different from 3 dividing 
d, unless no prime divisor of d is congruent to 1 modulo 3 (in which case 
A3 = 0). If A is the quaternion algebra generated over the rationals by 
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1, i,j, k = ij = —ji with i2 = — 1, j 2 = a with a = —11 • 23 • 2, for 
example, then d = a (see 9, p. 104); thus, we have that h2 = 2, h% = 4. (An 
example such as this, of course, is not a separable algebra; whether Corollary 
2.2 holds for all separable orders is unknown.) 

3. Simple properties. Using the results of § 2, we consider the questions 
answered affirmatively in certain cases by DeMeyer (6), and obtain "en route" 
a generalization of Proposition 1.3. The assumptions on R, K, A of § 2 are 
retained in this section. 

1. Is there a unique (up-to isomorphism) indecomposable projective A-module? 

Let A be a maximal order in A, a central simple i£-algebra of degree m. Let 
A have division algebra component D of degree ra0. Then A = Mn(D) and 
m = mGn, by Wedderburn's theorem. 

Let P be a projective left A -module. Then, as is seen by forming the tensor 
product with K, P has P-rank mm0r for some positive integer r. Let D b e a 
maximal order in the division ring component D of A. By Lemma 1.1, D and 
A are Mori ta equivalent via some left D-right A -module Q. Then Q ® A P is a 
projective left .D-module, of P-rank m0

2r. Now let B = Mr(D), let B be a 
maximal order in B, and let Q' be a left .B-right .D-module giving a Mori ta 
equivalence of D and B. Then Qf ® D Q ® AP is a left jB-module of the same 
P-rank as B, namely, m0V

2, hence is isomorphic to a left ideal of B (by an 
argument similar to that of Lemma 1.4). 

Thus, Qf ®D Q ®A ( ) is an invertible map sending left A -isomorphism 
classes of projective left A -modules of the same rank as P , mm0r, onto the set 
of left ^-ideals. From this we have (by the computations of § 2) the following 
theorem. 

THEOREM 3.1. With R, K, A, A, D, m, and mo as above, the number of left 
isomorphism classes of projective left A-modules of R-rank equal to mm0r is 
equal to I(R):RU if r > 1, and is equal to h(T>) if r = 1. We have that h(D) ^ 
I(R) :RU with equality ifD is not a totally definite quaternion algebra. 

This result was obtained for A a division algebra by Swan in (19). 

2. Is there a unique {up-to isomorphism) algebra Brauer equivalent to A 
containing no idempotents other than 0 and 1 ? 

PROPOSITION 3.2. If A is a separable order, the number of isomorphism classes 
of such algebras is equal to /(D), where D is the division algebra component of A. 

Proof. If D is any algebra Brauer equivalent to A, then D is Brauer equi­
valent to A. Thus, D has no idempotents other than 0 and 1 if and only if 
D is an order in D, the division algebra component of A. (Note that by (2, 
Theorem 3.5), D is separable, since A is.) Now, if D is a maximal order in D, 
then since A = D ®KEndK(E), A' = D ®R EndR(E') is an order in A, 
where E' is some free P-module of the same P-rank as the X-dimension of E. 
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A1 and D are Mori ta equivalent by Lemma 1.1; therefore, A' is a maximal 
order in A by (12). Thus, A' is a separable i^-algebra since A is (12, Proposition 
7.3). Since the map from the Brauer group of R to the Brauer group of K 
given by A —» A ® K is a monomorphism by (2, Proposition 7.2), 4̂ and A' 
are in the same class in the Brauer group of R since they are orders in the same 
central simple algebra. Thus, D and A are Brauer equivalent. 

The number /(D) was described in § 2. Regarding that description, it is 
worth noting that A is separable over R if and only if all mv = 1 (see 7, p. 108, 
and 15, §5) . 

From the last three results (Corollary 2.2, Theorem 3.1, and Proposition 
3.2), we now immediately have the generalization of Proposition 1.3 above, 
namely, the following theorem. 

THEOREM 3.3. If A is a separable order in A and the division ring component 
D o / A is not a totally definite quaternion algebra, then the number of isomorphism 
types of indecomposable projective left A-modules is equal to the product of 
[J(A):1] and the number of isomorphism types of algebras with no idempotents 
other than 0 and 1, Brauer equivalent to A. 

We now continue with the questions considered in (6). 

3. If B is a separable R-subalgebra of A with no non-trivial central idempotents 
andf: B —> A is an R-algebra monomorphism, does f extend to an automorphism 
of A? 

This question has a negative answer whenever one has the situation: 
A and A' are non-isomorphic separable orders in A, and there exist free 
jR-modules E and E! such that 

A" = H o m a ( £ , E) ® A ^ Hom*(E', E') ® A'. 

For then, viewing HomR(E', E') and A' as embedded in A" via that iso­
morphism, the obvious map from Hom B (£ , E) to H o m ^ E ' , Er) cannot 
extend to an automorphism of A", or else (using 2, Theorem 3.5) it would 
yield an isomorphism of A and A'. This was pointed out and applied to Swan's 
example in (5). 

In fact, in our situation, one obtains a counterexample whenever there exist 
two non-isomorphic separable orders A and A' in an algebra A. For then, 
by (2, Theorem 7.2), A and A' are in the same class in the Brauer group of R. 
There is an epimorphism from B(R) to B(R), where B(R) is the group con­
structed like the Brauer group B(R) with the equivalence relation being A 
equivalent to A' if and only if there exist free i^-modules, E and E' , such that 
A ® HomB(E, E)^Af ® HomR(E\ Ef). Hoobler points out (13, pp. 34, 57) 
that if R has a torsion ideal class group, as in our case, this map is an isomor­
phism. Thus, in our situation, any non-isomorphic separable orders A and A' 
in A are equivalent in the more restricted sense, thus yield a counterexample 
to the extension of the isomorphism problem. 
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Clearly, whenever B is a separable order and t(B) > 1, B may be used in an 
example of this type. 

4. Automorphisms. We now use the results of § 2 to study the auto­
morphisms of a maximal order. The assumptions concerning R, A, K, etc., in 
§ 2 remain in effect in this section. 

In (16), Rosenberg and Zelinsky derived, for central separable ^-algebras, 
the exact sequence 

(1) 1 - » 0 ( 4 ) - C ( 2 0 - P * ( ^ ) - > 1 , 

where 004) is the group of i£-algebra automorphisms of A modulo inner 
automorphisms, C(R) is the ideal class group of R, and PR(A) is as defined 
above. They showed that if A = HomR(£, E) with the J?-rank of E equal to 
m, then the sequence becomes 

(2) 1-+0{A)-+C(R)^C(R), 

where the last map sends the class of / to the class of Im. The sequence (1) 
was generalized by Silver (18) to tame orders. The special case of his generaliza­
tion which we use here is for maximal orders: if A is a maximal order, then the 
following sequence is exact: 

(3) 1 -» 0(A) -> C(A) -> J (A) -> 1, 

where C(A) is the group of A 0 ^-isomorphism classes of two-sided ideals 
of A, the epimorphism is the obvious one, and the monomorphism assigns to 
any automorphism a of A the ideal At, where t is an element in A with <r(x) = 
txtr1 for all x in A ; see the proof of Lemma 1.4. 

The group C(A) is defined by 

(4) l->P(R)-+nA)-+C(A)-+l, 

where P(R) is the group of principal ideals of R, the maps in (4) being 
(x) —•» Ax, I —> cl(I) (see 18, Chapter I, Lemma 3.3). Now, T(A) is the direct 
product of infinite cyclic groups generated by N(p), where N(p) is the two-
sided prime ideal of A lying over p, as p runs over all finite prime ideals of R 
(see 12). We have that pA = N(p)mp, where mv is the £-index of A (see 7, 
p. 114, Satz 5). We thus have the exact sequence 

(5) 1 -* I(R) ->T(A)-> UpZ/mpZ -> 1. 

The monomorphisms in (5), (4) and in the exact sequence which defines 
C(R) form an obvious commutative diagram, from which we obtain immedi­
ately that C(A)/C(R) = UpZ/mpZ. Out of this discussion, our final results 
follow immediately. 

THEOREM 4.1. If A is a maximal order in A and A is not a totally definite 
quaternion algebra, then 
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(a) [0(A):1] = Tipmv • h(R)/(h(A)/t(A)); 
(b) The following sequence is exact: 

(6) i^o(A)^c(A)-^Y[(pm/mp)/U (Pm,mi,)nRa^i, 

where m is the index of h,mv the p-index, and b (cl (pA ) ) = the coset of pm. 

Proof. The first statement of the theorem is immediate from the sequence (3) 
together with the calculation of C(A) and Corollary 2.2. 

In sequence (6), the monomorphism is the same as in the sequence (3). The 
epimorphism b sends the class of a two-sided ideal I oî A to the coset of n (I), 
where n is the reduced norm. In particular, the class of pA is sent by b to the 
coset of pm since n is multiplicative and n(N(p)) = pm/mp (see 7). The sequence 
(6) is clearly exact, since (3) is. 

When A is also separable, C(A) ^ C(R) via: class of I in C(R) goes to class 
of I A. All mv = 1; thus, (6) becomes 

i _ o ( A ) - > a s ) - > n ( p m ) I n (pm)n *» -» i, 
where the epimorphism sends the class of / to the coset of Im = n(IA). In 
particular, when A ~ HornR(E,E), Ru = P(R), and the sequence (6) 
reduces to the sequence (2) above. 
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