
/. Austral Math. Soc. (Series A) 33 (1982), 171-178

SIMULTANEOUS APPROXIMATION OF e' ANDp(r)
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Abstract

Let t be any complex number different from the poles of a Weierstrass elliptic function^(z), having
algebraic invariants. Then we estimate from below the sum

\e'-a\+\v(t)-fi\,

where a and /8 are algebraic numbers. The estimate is given in terms of the heights of a and /S and the
degree of the field Q(a, /}), where Q is the field of rationals.

1980 Mathematics subject classification (Amer. Math. Soc): primary 10 F 10; secondary 10 F 33,
33 A 25.

1. Introduction

Let #>(z) be the Weierstrass elliptic function with the invariants g2 and g3

algebraic. Let t be any complex number different from the poles of #>(z). Then it
is known that at least one of the numbers

is transcendental. In this paper we approximate these numbers simultaneously by
algebraic numbers.

2. Notations

Let Q be. the field of rational numbers. By the height of an algebraic number a,
denoted by h(a), we mean the maximum of the absolute values of the coefficients
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of the minimal polynomial of a. It is then easy to derive that

where a( / ) denotes the various conjugates of a. By size of a we mean the

maximum of the absolute values of the conjugates of a. We also use the symbol

fp(z,A, t) for d'/dz'ip\z). c,, c2,... denote absolute constants which are effec-

tively computable.

3. Statement of the theorem

Let t be any complex number different from the poles ofg>(z). Let a and /? be
algebraic numbers of heights at most hx and h2 respectively. Assume also that a is
not a root of unity. Let K = Q(a, /?) be of degree D over Q. Let hx and h2 > ee.
Then

\e'-a\+\v(t)-p\

> exp{-c£>7log *,(logh2)2log\Dlogh] log A2)log-4(Z)logh2)}

where c is a large constant effectively computable, independent of D, hx and h2.

4. Proof

Let | e' — a | = e,; |#>(0 — )8|= e2 and e0 = max(e,, e2). Suppose

(1) e 0 <exp{- j t 7 D 7 log* 1 ( logA 2 ) 2 ( log£) 4 log- 4 £}

where B = xDlog A, log h2 and E = Dl/2 (log fc2)
1/2. Then we shall get a con-

tradiction which proves the theorem, x is a large number and restrictions on it
will appear as we go along.

The proof runs through three steps. Firstly, we construct an auxiliary function
which is small at certain lattice points up to certain order using the standard
Siegel's lemma. Secondly, using Lemma 2 of [2] we increase the order. The final
contradiction is got by using Theorem 1 of [1].

Let ex, e2, e3 be the zeros of 4x3 — g2x — g3 = 0, where g2 and g3 are the
invariants of p(z). If p(t) £ {et, e2, e3} we note that when (1) holds, for large x,
there exists /T with 0 — p(fi') such that
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If p(t) E {et, e2, e3), for large z,p(t) = /J. Butp(fi') = /? and hence the above
inequality holds trivially by taking /?' = / on the left hand side. Thus if | f — /?' |
= e'2 and e'o = max(£,, e'2) then it is enough to show that

(2) ^ < exp { -x'D1 log h,(log h2 )
2(log 5) 4 log'4 E}

leads to a contradiction.

F/m itep. Let $ be a primitive element of K. Consider

(3) F{z)= i i Y X

where

(4)

and

(5)

Here and
unknowns

Define

A,=0 A2=0 1=0

KAD3logh

x3D2logt

in the sequel [x] denotes
to be determined soon. Now

L, L2 D—\

A,=0 A2 = 0 i = 0

L, /

A,=0 A,

p(XuX2

•i D-l

I 2 P
-0 1 = 0

i2(log5)2lo;

i,(log B) log

the integral

.'V 1 (,

~2E].
part of x. p(X{, X2, i) are

where e = /?' — log a. Here we take a fixed branch of the logarithm, say the
principal. Then

F/'>(siog«)= 2 2 2
x1=o A2=o 1=0

Take

(6) F}')(sloga)=0 for 1 < 5 < S and 0 < r < T- 1,

where

(7) 5 = [xl> log fi log"1 E] and

(8) T = [x5£»4log A, log A2(log B)2log"4 £ ] .
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It is known from Lemma 5.1 of [4] that for every complex number u, there exist
polynomials $„, $* G Z[x{,...,X5], their heights and degrees bounded by an
absolute constant such that

p(z + u) = ( * B V*J

where $„( p( w, /2) , $>'(«, /2) , p(«), ga'( u ), p( w, /2)) ¥= 0. From Lemma 6.1 of [3],
for every rational integer s, there exist coprime polynomials %, ¥* of degree at
most s2 such that

*»(«) = 5W))-
The coefficients of ^*, ^ s are themselves polynomials in g2/4, g3 with a degree at
most s2 and rational integer coefficients, not larger than cs

2\ Define

and

4>s.u(z)

Then (6) becomes

( 9 ) F J < " ( 5 l o g a ) = 2 2 V 7 ;
A | = 0 X2 = 0 i = 0 " Z

= 0 f o r l < 5 < S ; 0 < r < r - l .

But (9) is equivalent to solving the following system of equations.

(10) ^i=o x2=o i=o az

= 0 for 1 < s < S ; 0 < r < 7 1 - 1.

From Lemma 5.2 of [4], the expression

can be written as a polynomial inj3()8') and^ ' (^ ' ) of degree c3X2s
2 in each of the

variables. The coefficients belong to Q(#/(wi /2) , p"(w,/2)) and their size is
bounded by exp{c4(X2s2 + flogr)}. They have a common denominator of the
form m" where m depends on g>(z) and n < c4(A2i2 + tlog t). Thus size of the
coefficients in the system of linear equations in (10) is bounded by

T \ \)D

exp{c6x5D4log hx log A2(log B)3 log"4 £ } .
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The number of unknownsp(\u X2, i) is equal to

(L, + 1)(L2+ \)D>c1x
1D6loghl\ogh2(logB)3log-5E,

while the number of equations over K is

S 7 < c8x
6Z)5 log A, log /i2(log fl)3log-5£.

Thus if x > c^cs, then there exist rational integers/?(X,, \ 2 , i), not all zero such
that

P = max\p(\uX2,i)\

^ exp{c9x5Z)4log hx log /i2(log B)3log"4£}.

Second step. Let T = [x2T].

Claim. fk<s - 0 for 1 < s < S; 0 *£ k < T - 1. If not, choose the least k such
Xh&Xfks ¥= 0 for some s.

Lower bound for \fks\ . \fks\ is an algebraic number of degree at most cwD
and size at most exp{c, ,x5l>4 log hx log /i2(log B)3 log"4 E). Hence

(12) \fk s | > exp[-c12x5D5log hx log)

£/jP/?er bound for \fk s | . For 0 < A: < T — 1,

(5/) 1 = 1 F^kHst) — F (* ' (5loga) I

L, L2 D k

(13) 2/K*,,x2,i)€'
X,=0 X2 = 0 1 = 0

X { e A ' X ^ , A2, k - M) - a A 'V(^' , X2, /c -

Let p(st, X2, k — n) — p(s/l', X2, k — ja) = e3. We can show easily by the in-
tegral formula for the left hand side of the above (see page 93, [3]) that

| e31< exp{-c13x7Z)7log /z,(log h2f(log 5)4log"4 E).

Thus from (13) it follows that for 0 < k < T - 1,

< exp{-c14x7£>7log A^log A2)2(log B)4log-4 E}.

Now let G(z) - (a(z))2LlF(z), where o(z) is the Weierstrass sigma function
associated to^(z). Put

g(z) = (o(z))2L\
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Then G(z) is entire and
k

(15) G^Hst) = y. I ^ )g(T\st)F(k~r)(st).
T=O

 T

Since | g(T\st) | ̂  T! C^Z S 2 + T ) , it is clear from (14) and (15) that for 0 < k < T - 1,

(16) | Gw{st) \< exp{-cl6x
1D1loghl(\ogh2)

2(logB)4log-AE}.

Now using Lemma 2 of [2], we see that
/ c - ^ST

m a x | G ( z ) | < m a x | G ( z ) | l —

+ST(cls)
ST max

where £ = Dx/2 (Iog/i2)1/2. By the choice of S, T and by (16) it follows easily
that

(18) max |G(z)|<exp{-c19x6
JD

7log/i1(log/i2)2(logfi)4log-4£}.

Using Cauchy's inequality, | Gw(st) \ , for 0 < k < T — 1, also has the same
estimate as in (18). For T ^ 0, from (14)

But left hand side of (15) has the same estimate as (18). Hence

(19) \g(st)F^(st)\ < exp{-c21x
6D7log A,(log h2)\\og fi)4log"4E}.

It is known that \g(st) \> c^2^. See Lemma 7.1 of [3]. Hence \F(k\st)\ and
therefore from (14) | Fs

ik\slog a) \ has the same estimate as in (19), But

But by the choice of k,

Thus

(20) |/*.,|*= exp f - c^x^ log A,(log A2)
2(log 5)4log"4 E}.

From (12) and (20) it is clear that if x > c^c^ then there is a contradiction to the
lower and upper estimates of | fk s \ . Hence the claim.
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Third step. Let P(X, Y) = 2^i=o2t2=oP(K X2)X
X'YX>, where /»(X,, X2) =

X2, Of'- Suppose P z O . Let

Now we use the theorem due to Brownawell and Masser. See Theorem 1 of [1].
Thus

2 JV, < c24{(L, + 1)(L2 + 1) + (L2 +

< c25x
7£>5 log A, log *2(log B)3 log"5 £ .

But by Second Step,

s
2 JV, > c26ST' > c27x*D5 log A, log *j(log 5 ) 3 log"5 £ .

Hence if A: > c27C25, there is a contradiction. So P = 0. But by the algebraic
independence of the functions ez and g>(z) this means that p(Xu X2) = 0 for
every (X,, X2). This by First Step, implies that 1, £, . . . , 1 ° " ' are linearly depen-
dent. But deg | = D. Hence we arrive at the final contradiction for the assump-
tion on | £Q I which proves the theorem.

5. Remarks

REMARK 1. When heights of a and /? of the theorem are of the same magnitude
h, we get

| e' - a | +\p(t) - 0 | > exp{-cD7(log h)3}.

Thus when heights of the approximating algebraic numbers are of different
magnitude, we get sharper results with regard to each of the heights as exhibited
in the theorem.

REMARK 2. When u is an algebraic point of&»(z), we get from the theorem that
e" has transcendence type at most 8 + e, e > 0.

REMARK 3. By using the above method (see [1] for more details) many other
numbers involving values of the elliptic function can be approximated simulta-
neously. As an example, we can deal with algebraic points of an elliptic function.
For these results, see [5].
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Addendum

There is an announcement of a quantitative, one variable general Schneider-
Lang result in D. W. Masser, some recent results in transcendence theory,
Asterisque 61 (1979), 145-154. The method of proof is more involved and the
dependence on the degree less satisfying, due to greater generality.
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