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Abstract. We characterize dual spaces and compute hyperdimensions of
irreducible representations for two classes of compact hypergroups namely conjugacy
classes of compact groups and compact hypergroups constructed by joining compact
and finite hypergroups. Also, studying the representation theory of finite hypergroups,
we highlight some interesting differences and similarities between the representation
theories of finite hypergroups and finite groups. Finally, we compute the Heisenberg
inequality for compact hypergroups.
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Richard Vrem studied representation theory of compact hypergroups [23]. He
showed that, similar to the group case, for every irreducible representation π of a
compact hypergroup H, π is of a finite dimension dπ . Here, we use Ĥ to denote the
maximal set of all irreducible representations of H which are pairwise inequivalent.
The set Ĥ equipped with the discrete topology is called the dual space of H.

Vrem showed that coefficient functions on compact hypergroups satisfy a
hypergroup analogue of Peter–Weyl relation which is as follows [23]. For each pair
π, σ ∈ Ĥ there exists a constant kπ such that for every coefficient functions πi,j

and σk,l,

∫
H

πi,j(x)σk,l(x)dx =
⎧⎨⎩

1
kπ

when i = k, j = l, and π = σ

0 otherwise
. (1)

It is proved that kπ ≥ dπ . We call kπ , the hyperdimension of π after [4]. Recall that for
a commutative (compact) hypergroup H, every representation π is one dimensional.

In this paper, we study dual spaces and hyperdimensions of irreducible
representations for compact hypergroups. First, in Section 1, we present some
preliminaries and simple computations on (commutative) compact hypergroups. It
is interesting that the Plancherel theorem holds for commutative hypergroups. We
show that the Plancherel measure on the dual space of hypergroups is nothing but the
map that assigns each element of Ĥ to its hyperdimension.
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Second, in Section 2, we characterize dual spaces and find hyperdimensions for two
classes of compact hypergroups. For a compact group G, the conjugacy classes form
a compact hypergroup. This hypergroup was introduced first by Jewett, in [14], as one
of the prominent examples of compact hypergroups constructed on compact groups.
Subsection 2.1 is dedicated to this class of commutative compact hypergroups. We also
present a proof for the duality relation between the compact hypergroup of conjugacy
classes and the discrete hypergroup constructed by irreducible representations of a
compact group. The majority of the results in this subsection are known for the
more general class of orbit hypergroups (look at [19] and [12]). By joining a compact
hypergroup and a finite hypergroup, one may construct a new compact hypergroup.
This class of compact hypergroups first was defined and studied in [24] where the dual
space of commutative case was also studied. In Subsection 2.2, we generalize the result
of [24] to (not necessarily commutative) compact hypergroup joins and also compute
their hyperdimensions.

Finite hypergroups have been of interest due to their many applications in number
theory, combinatorics, operator algebras and conformal field theory, [25]. In Section 3,
we study the representation theory of finite hypergroups. It is interesting that although
this theory is very similar to the representation theory of finite groups, many dramatic
differences appear in non-group cases. For an amenable Banach algebra A, there is
an associated amenability constant AM(A) (as defined by B. E. Johnson). Vaguely
speaking, amenability constant lets us measure amenability of Banach algebras. In
this section, we study the amenability constant of hypergroup algebras for finite
commutative hypergroups and present a concrete formula to compute it. Interestingly,
we show that the lower bounds and boundary properties of the amenability constant
of the center of the group algebras of finite groups do not hold for simple examples of
finite commutative hypergroups. This study is a generalization of previous studies in
[2, 5, 7] on ZL-amenability of finite groups.

We finish the paper with Section 4 on the uncertainty principle of compact
hypergroups. The classical (Heisenberg) uncertainty principle states that a function
and its Fourier transform cannot both be highly concentrated. In quantum mechanics,
this implies that it is impossible to determine a particle’s position and momentum
simultaneously. We prove that a similar fact holds for compact hypergroups. We see
that in the Heisenberg inequality of compact hypergroups, the hyperdimensions play
an important role.

1. Preliminaries. Let H be a compact hypergroup. We assume that the Haar
measure of H, denoted by λH , is normalized unless otherwise is stated. An (irreducible)
representation π of H is

(i) an (irreducible) ∗-representation from M(H), the Banach ∗-algebra of
bounded Borel measures on H, into B(Hπ ) for some Hilbert space Hπ ,

(ii) π (e) = I ,
(iii) and for each pair ξ, η ∈ Hπ , the coefficient function μ �→ 〈π (μ)ξ, η〉 forms a

continuous function on M(H)+ with respect to the weak topology.
It is a consequence of this definition that each representation π is norm decreasing.

For each irreducible representation π of H and x ∈ H, π (x) is a dπ × dπ matrix and
therefore the (hypergroup) character x �→ χπ (x) which is the trace of π (x) as well as
x �→ πi,j(x), the coefficient function constructed by the (i, j)-th coefficient of the matrix
π (x) are continuous functions on H.
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One may easily apply the orthogonality relation (1) to get the following relation
for characters. ∫

H
χπ (x)χσ (x)dx =

⎧⎨⎩
dπ

kπ

when π = σ

0 otherwise
(2)

for π, σ ∈ Ĥ. Therefore, ‖χπ‖2
2 = dπ/kπ .

We will use the following lemma in Section 3. Its proof is a straightforward
application of (1) and is similar to the group case, so we omit the proof here.

LEMMA 1.1. Let πi,j and σk,� be two coefficient functions for representations π, σ ∈ Ĥ
for a compact hypergroup H. Then,

πi,j ∗ σk,�(x) =
{

0 if π �= σ
1

kπ
πi,�(x) if π = σ and j = k .

Consequently,

kπχπ ∗ kσχσ (x) =
{

0 if π �= σ

kπ χπ (x) if π = σ
.

For each π ∈ Ĥ, define f̂ (π ) to be the matrix [〈f, πi,j〉]dπ

ij=1 where 〈·, ·〉 is the inner
product of L2(H). For each f ∈ L2(H), applying the Fourier transform, we have

f =
∑
π∈Ĥ

kπ

dπ∑
i,j=1

f̂ (π )i,jπi,j, (3)

and the series converges in L2(H). Hence,

‖f ‖2
2 =

∑
π∈Ĥ

kπ

dπ∑
i,j=1

|̂f (π )i,j|2 =
∑
π∈Ĥ

kπ ‖̂f (π )‖2
2, (4)

for every f ∈ L2(H).
In particular if H is commutative, because every representation is 1 dimensional,

(3) is re-written as

f =
∑
χ∈Ĥ

kχ f̂ (χ )χ, (5)

for f̂ (χ ) = 〈f, χ〉. Therefore, (
√

kχχ ) forms an orthonormal basis for L2(H), by the
orthogonality relation (2). Further, (kχχ )χ∈Ĥ forms the set of all minimal projections of
L1(H), by Lemma 1.1. It is known that for every compact commutative hypergroup H,
there is a measure 	 on Ĥ with respect to that, the restriction of the Fourier transform
to L2(H) forms an isometry onto �2(Ĥ,	 ) (see [6, Section 2.2]). The measure 	 is
called the Plancherel measure on Ĥ.

PROPOSITION 1.2. Let H be a commutative compact hypergroup. Then, the Plancherel
measure 	 on every π ∈ Ĥ is equal to kπ .
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Proof. By (2), one easily gets kψψ̂ = δψ for each ψ ∈ Ĥ where δψ is the point-mass
function on ψ whose value is 1 at ψ and zero everywhere else. Hence, for a fixed ψ ∈ Ĥ,
we get

	 (ψ) =
∑
χ∈Ĥ

δψ (χ )	 (χ ) =
∑
χ∈Ĥ

|δψ (χ )|2	 (χ )

= k2
ψ

∑
χ∈Ĥ

|ψ̂(χ )|2	 (χ ) = k2
ψ

∫
H

|ψ(x)|2dλH(x) = k2
ψ‖ψ‖2

2 = kψ.

Note that the first equation in the second line is based on the definition of the Plancherel
measure. �

EXAMPLE 1.3. Let G be a compact group. Obviously, G is a compact hypergroup.
Readily based on the Peter–Weyl orthogonality relation for compact groups, kπ = dπ

for every π ∈ Ĝ. Hence, for a commutative compact group G, the Plancherel measure
on Ĝ is constantly 1.

Let K be a compact subhypergroup of a commutative hypergroup H. Then K/H,
the set of all cosets of K in H equipped with the quotient topology through the mapping
pK : H → K/H, where pK (x) = xK , forms a commutative hypergroup. Further, if H
is compact, so is H/K . The first part of the following corollary was proved in [6,
Proposition 2.2.46] (for not necessarily compact hypergroups). Here, we let ĤK denote
the set of all characters of H, say χ , such that χ (x) = 1 for all x ∈ K .

COROLLARY 1.4. Let K be a closed subhypergroup of a compact commutative
hypergroup H. Then, the mapping � : ĤK → Ĥ/K (χ �→ χ ◦ pK ) is a bijection such
that kπ = k�(χ ) for all χ ∈ ĤK .

Proof. Here we just show the equality of the hyperdimenstions. To do so, by [6,
Theorem 1.5.20], we have

1
k�(χ)

=
∫

H/K
|�(χ )(xK)|2dλH/K (xK) =

∫
H

|χ (x)|2dλH(x) = 1
kχ

,

for χ ∈ ĤK . �

2. Two classes of compact hypergroups.

2.1. Conjugacy classes of a compact group. Let G be a compact group and
Conj(G) denote the set of all conjugacy classes of G. Here, for each x ∈ G, we use
Cx to denote the conjugacy class of x that is {yxy−1 : y ∈ G}. For each pair x, y ∈ G,
the convolution ∗ defined by

δCx ∗ δCy =
∫

G

∫
G

δCsxs−1 tyt−1 dsdt, (6)

forms a hypergroup action on Conj(G) when Conj(G) is equipped with the quotient
topology carried through the canonical mapping x �→ Cx. A function f ∈ C(G) is called
a class function if it is invariant on conjugacy classes of G. A class function f ∈ C(G)
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can be canonically considered as a continuous function on Conj(G). The Haar measure
of Conj(G), denoted by λConj(G), is characterized as the measure on Conj(G) for that∫

G
f (x)dλG(x) =

∫
Conj(G)

f (Cx)dλConj(G)(Cx), (7)

for every class function f on G. Note that Conj(G) is a commutative hypergroup, so
for each χ ∈ Ĉonj(G), dχ = 1.

This class of hypergroups fall into a larger class of commutative hypergroups,

called orbit hypergroups. Orbit hypergroups are admitted by [FIA]
B

locally compact
groups G where B is a relatively compact group of automorphisms of G including all
inner automorphism. For a detailed reference on this class of hypergroups look at [14,
8.1]. In [19], it was shown that the dual object of these commutative hypergroups can
be identified with the set of all B-characters on G defined and studied formerly by
Mosak [17]. This generalizes the first part of the following theorem.

THEOREM 2.1. Let G be a compact group and Conj(G) denotes the hypergroup
of conjugacy classes of G. Then, the mapping π �→ d−1

π χπ is a bijection from Ĝ onto
Ĉonj(G). Further, for each ψ ∈ Ĉonj(G), kψ = d2

π for ψ = d−1
π χπ .

Proof. As we mentioned before, by [19] and [17], the dual object of Conj(G) is
identified with the set of all characters of G which are invariant under the conjugations
of all inner automorphisms. But the former set is the set of all characters constructed
by irreducible representations of G. Hence, there is a bijection from Ĝ onto Ĉonj(G)
through the mapping π �→ ψπ where ψπ (Cx) := d−1

π χπ (x) for every conjugacy class
Cx ∈ Conj(G).

Since Conj(G) is commutative, dψ = 1 for all ψ ∈ Ĉonj(G). Hence, for each π ∈ Ĝ
by applying (2), we have

1
kψπ

=
∫

Conj(G)
|ψπ (C)|2dλConj(G)(C) = 1

d2
π

∫
G

|χπ (x)|2dx = 1
d2

π

.

�
EXAMPLE 2.2. Let � denote the compact group of {x ∈ � : xx = 1} and �2 =

{1,−1}. Therefore, for each α ∈ �2, x �→ xα forms a group automorphism on �. We
define G to be the semidirect product of � � �2 with respect to this action. One
simple computation implies that Conj(G) is decomposed into three classes of elements,
namely, C(1,1) = {(1, 1)}, C(x,−1) = {(y,−1) : y ∈ �}, and C(x,1) = {(x, 1), (x, 1)} for all
x ∈ �. The irreducible representations of G are constructed by induction (see [10,
Theorem 6.42]). There are two dimensional representations πn for n �= 0 induced
from � into G and two linear representations χ1 and χ−1 as extensions of (linear)
representations of �2. Therefore, kχπ

= 4 for all non-linear characters χπ associated to
representations π of G while kχ±1 = 1 for the linear representations χ±1.

EXAMPLE 2.3. Let SU(2) denote the compact group of 2 × 2 special unitary
matrices. It is straightforward that each conjugacy class of SU(2) except I and −I
intersects the maximal tori of SU(2) twice. Therefore, one may represent Conj(SU(2))
by [0, π ] (half of the tori). The representation theory of SU(2) is very well known,
for example look at [10, Theorem 5.39]. The dual space ŜU(2) is represented by
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{πn : n = 0, 1, 2, . . .} where for each n, πn is of dimension n + 1. Also the character
χn, constructed by the trace of πn, is computed on θ ∈ [0, π ] by

χn(θ ) = sin((n + 1)θ )
sin(θ )

.

Therefore, {ψn := (n + 1)−1χn : n = 0, 1, 2, . . .} forms the representation theory of
Conj(SU(2)) as a commutative compact hypergroup, where for each n, kψn = (n + 1)2.

A commutative hypergroup H is called a strong hypergroup if its dual space, Ĥ,
forms a hypergroup whose Haar measure corresponds to the Plancherel measure. For
a locally compact abelian group, this is always the case, but this is not true necessarily
for many known examples of commutative hypergroups including many classes of
polynomial hypergroups, see [6].

The hypergroup structures on the duals of (not necessarily compact) orbit
hypergroups have been studied in [12] where a generalized proof for the following
proposition is presented. Here, to be self-contained, we present a proof for the compact
case which is shorter and relies on the theory of compact (hyper)groups.

PROPOSITION 2.4. Let G be a compact group. Then, Conj(G) and Ĝ both form strong
hypergroups and they are dual objects of each other.

Proof. The fusion rule for compact groups is the key point to define a hypergroup
action on the dual space of irreducible representations of compact groups. See [6,
Example 1.1.14] or [1, Section 3] for a brief summary. In Theorem 2.1, we showed that
the dual object of Conj(G) is isomorphic to Ĝ as two discrete sets. Also we showed that
for each π ∈ Ĝ, the Plancherel measure 	 (π ) = d2

π . But this matches exactly with the
hypergroup Haar measure defined on Ĝ based on its fusion rule.

To prove that the dual object of Ĝ is Conj(G), we need to recall that the hypergroup
algebra of Ĝ is isometrically isomorphic to a subspace ZA(G) := ZL1(G) ∩ A(G) of the
Fourier algebra of G where ZL1(G) denotes the centre of the group algebra of G. (Some
properties of ZA(G) have been studied extensively in [3].) It is proved that the maximal
ideal space of ZA(G) is homeomorphic to Conj(G). See [13, 34.37] or [3, Proposition 3.1]
for a generalized proof. Therefore the dual object of Ĝ is homeomorphic
to Conj(G).

To finish the proof, we show that the Haar measure on Conj(G), (7), corresponds to
the Plancherel measure of Ĝ, denoted by 	 . To do so, we use this fact that the extension
of the Fourier transform on L2(Ĝ) is an isometry onto L2(Conj(G),	 ). Also, in the
proof of [1, Theorem 3.7], it was shown that L2(Ĝ) is isometrically isomorphic to
ZL2(G) = ZL1(G) ∩ L2(G). One simple averaging argument implies that ZL2(G) is
also isometrically isomorphic to L2(Conj(G)). This finishes the proof. �

2.2. Compact hypergroup joins. In this subsection, we study compact
hypergroups constructed by joining compact hypergroups with finite hypergroups, so
called compact hypergroup joins. General hypergroup joins were defined and studied
extensively in [24].

DEFINITION 2.5. Suppose (K, ∗K ) is a compact hypergroup and (J, ∗J) is a discrete
hypergroup with K ∩ J = {e} where e is the identity of the both hypergroups. Let
H = K ∪ J have the unique topology for which K and J are closed subspaces of H.
Let λK be the normalized Haar measure on K and define the operation ∗ on H as
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follows:

� If s, t ∈ K then δt ∗ δs = δt ∗K δs.
� If s, t ∈ J and s �= t̃ then δs ∗ δt = δs ∗J δt.
� If s ∈ K and t ∈ J \ {e} then δs ∗ δt = δt ∗ δs = δt.
� If s ∈ J and δs ∗J δs̃ = ∑

t∈J αtδt,

δs ∗ δs̃ = αeλK +
∑

t∈J\{e}
αtδt.

We call H the hypergroup join of K and J and write H = K ∨ J.

If the discrete hypergroup J is finite, the hypergroup join K ∨ J forms a compact
hypergroup. It should be noted that K ∨ J and J ∨ K are not necessarily equal for two
non-equal finite hypergroups J and K .

The following lemma is a generalization of [24, Lemma 3.1 ].

LEMMA 2.6. Suppose H = K ∨ J is a compact hypergroup. Then each π ∈ K̂ \ {1}
extends to a representation �(π ) ∈ Ĥ via

�(π )(x) =
{

π (x) x ∈ K
0 x ∈ J \ {e}.

Also for each π ∈ Ĵ there is some �(π ) ∈ Ĥ such that

�(π )(x) =
{

π (x) x ∈ J
Iπ x ∈ K.

Proof. First, let us consider the case that π ∈ K̂ \ {1}. Clearly, for each s, t ∈
K , �(π )(δx ∗ δy) = �(π )(x)�(π )(y), since �(π )|K = π . If x, y ∈ J and x �= ỹ then
�(π )(δs ∗ δt) = �(π )(δs ∗J δt) = 0 = �(π )(s)�(π )(t). If s ∈ K and t ∈ J \ {e} then
�(π )(δs ∗ δt) = �(π )(t) = 0. If s ∈ J and δs ∗J δs̃ = ∑

t∈J αtδt,

�(π )(δs ∗ δs̃) = αeπ (λK ) +
∑

t∈J\{e}
αtπ (t).

Here, note that for each 1 �= π ∈ K̂, π (λK ) = 0 by (1). Hence, �(π )(δs ∗ δs̃) = 0 =
�(π )(s)�(π )(s̃). Moreover, clearly �(π ) is an ∗-continuous irreducible representation
as is π .

Now let π ∈ Ĵ. If s, t ∈ K then �(π )(δt ∗ δs) = Iπ = �(π )(t)�(π )(s). If s, t ∈ J
and s �= t̃ then �(π )(δs ∗ δt) = �(π )(s)�(π )(t) as �(π )|J = π . If s ∈ K and t ∈ J \
{e} then �(π )(δs ∗ δt) = π (t) = �(π )(s)�(π )(t). And eventually, if s ∈ J and δs ∗J δs̃ =∑

t∈J αtδt,

�(π )(δs ∗ δs̃) = αe�(π )(λK ) +
∑

t∈J\{e}
αtπ (t).

Note that �(π )(λK ) = Iπ = π (e) since λK is the normalized Haar measure on K ;
therefore, �(π )(δs ∗ δs̃) = π (δs ∗ δs̃) = π (s)π (s̃) = �(π )(s)�(π )(s̃). Similarly, �(π ) is an
∗-continuous irreducible representation as is π . �
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REMARK 2.7. The proof of Lemma 2.6 implies that [24, Lemma 3.1] cannot
be accurate since Vrem has not excluded the trivial representation of Ĥ. One may
note that in the proof of Lemma 3.1, he assumed that

∫
L χ (x)dx = 0 which is not

precise regarding the trivial character χ ≡ 1. Consequently, [24, Theorem 3.2] should
be slightly modified correspondingly. Ironically, Vrem has considered the redundant
of the identity for the dual case in Theorem 3.3 in [24].

For the rest of this subsection, let us assume that the Haar measure of H, λH , is
normalized and the Haar measure of J, λJ , is so that λJ(e) = 1. Recall that since J is
finite λJ(J) < ∞. The following theorem is the main result of this subsection.

THEOREM 2.8. Let H = K ∨ J be a compact hypergroup and J �= {e}. Then, there is a
bijection � from (K̂ \ {1}) ∪ Ĵ onto Ĥ. Moreover, for each π ∈ (K̂ \ {1}) ∪ Ĵ, d�(π) = dπ

and

k�(π) =
{

kπλJ(J) π ∈ K̂ \ {1}
kπ π ∈ Ĵ

.

Proof. In Lemma 2.6, we showed that � is an injective mapping into Ĥ. Let σ ∈ Ĥ,
we find some π ∈ (K̂ \ {1}) ∪ Ĵ such that �(π ) = σ . By [24, Theorem 2.3], there is a
subset P ⊆ Ĥ such that ρ|J\{e} = 0 for all ρ ∈ Ĥ \ P while ρ|K = Iπ for all ρ ∈ P. If σ

belongs to P, we need to show π := σ |J is an irreducible representation of (J, ∗J). Note
that π is a hypergroup homomorphism, since π (e) = σ (λK ) = I . Moreover, σ |K = I
guarantees that π is irreducible if and only if σ is irreducible. Therefore, π ∈ Ĵ and
σ = �(π ).

If σ ∈ Ĥ \ P, we show that π := σ |K belongs to K̂ \ {1}. To do so, first note that,
π is clearly a homomorphism with respect to ∗K and it is also irreducible. Further,
since σ |J\{e} = 0 and the topology on K is corresponding to the topology inherited
from H into K , π is continuous with respect to the topology of K . We should show
that π cannot be the trivial representation 1 on K . Towards a contradiction assume
that π ≡ 1. If J �= {e}, there is some s �= e such that δs ∗J δs̃ = ∑

t∈J αtδt, therefore,

0 = π ′(s)π ′(s̃) = π ′(δs ∗ δs̃) = αeπ
′(λK ) +

∑
t∈J\{e}

αtπ
′(t) = αeπ (λK ) = αe �= 0.

Therefore, π �= 1.
The fact that dπ = d�(π) is immediate based on the first part of the proof. To

study hyperdimensions, we need to apply the decomposition of the Haar measure of
H obtained in [24], that is, λH = λK + λ′

J where λK is the normalized Haar measure of
K and λ′

J(x) = λJ(x) for every x ∈ J \ {e} and λ′
J(x) = 0. Furthermore,

‖χ�(π)‖2
2 = d�(π)

k�(π)
λH(H) = dπ

k�(π)
λJ(J),

as an immediate consequence of (2). Hence,

dπ

k�(π)
λJ(J) =

∫
H

|χ�(π)(x)|2dλ(x) =
∫

K
|χ�(π)(x)|2dλK (x) +

∑
x∈J\{e}

|χ�(π)(x)|2λJ(x).

(8)
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First let π ∈ K̂ \ {1}. Therefore, χ�(π)(x) = 0 for all x ∈ J \ {e}; hence,

λJ(J)
dπ

k�(π)
=

∫
K

|χπ (x)|2dλK (x) = dπ

kπ

.

Thus k�(π) has to be kπλJ(J).
Second, let π ∈ Ĵ. Therefore, χ�(π)|K ≡ dπ . Hence,

λJ(J)
dπ

k�(π)
= d2

π +
∑

x∈J\{e}
|χπ (x)|2λJ(x) =

∑
x∈J

|χπ (x)|2λJ(x) = λJ(J)
dπ

kπ

.

And this implies that k�(π) = kπ . �
In the following example, using compact hypergroup joins, for each positive

integer n, we construct a (commutative) hypergroup that has representations of
hyperdimension p for a given 1 < p < ∞.

EXAMPLE 2.9. Let � be the torus as a compact group and Hp the hypergroup
defined in Example 3.6 for 1 < p < ∞. Then, the compact hypergroup � ∨ Hp is an
(infinite) compact hypergroup join whose representations are either of hyperdimension
p or p + 1.

3. Finite hypergroups. Let H be a discrete hypergroup. For each x ∈ H, it is
known that function λ defined by λ(x) = (δx̃ ∗ δx)(e)−1 forms a Haar measure on H.
Therefore, λ(x) ≥ 1 and the equality holds if and only if x is invertible in H. Thus, if
λ(x) = 1 for every x ∈ H, H is a group. In this section H is a finite hypergroup and λH

(or simply λ if there is no risk of confusion) is the aforementioned Haar measure on H.
We use �1(H, λ) to denote the hypergroup algebra. Note that λ is not normalized unless
H is a trivial hypergroup. So, we adjust some constants when we use results proved in
the previous sections as there we assumed that the Haar measure is normalized.

Here by |A| we mean the (finite) cardinal of a set A.

PROPOSITION 3.1. Let H be a finite hypergroup.
(i) Then,

∑
π∈Ĥ d2

π = |H|. In particular if H is commutative, |H| = |Ĥ|.
(ii) Then.

∑
π∈Ĥ kπdπ = λ(H). In particular if H is commutative, λ(H) = 	 (Ĥ).

Proof. The proof of (i) is simply based on this fact that �2(H, λ) is a finite
dimensional Hilbert space with {πi,j : π ∈ Ĥ, i, j = 1, . . . , dπ } and {δx : x ∈ H} as two
of its basis.

To prove (ii), note that for f = δe ∈ �2(H, λ), by (4) and adjusting the
normalization,

‖f ‖2
2 = 1

λ(H)

∑
π∈Ĥ

kπ ‖̂f (π )‖2
2.

But, on one hand ‖f ‖2
2 = 1 and on the other hand, f̂ (π ) = Idπ

. �
COROLLARY 3.2. Let H be a finite hypergroup. Then, H is a group if and only if

kπ = dπ for all π ∈ Ĥ.
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Proof. If H is a group, it is known that kπ = dπ for every π ∈ Ĥ, by Example 1.3.
Conversely, let kπ = dπ for every π ∈ Ĥ. Therefore, by Proposition 3.1 we have

|H| =
∑
π∈Ĥ

kπdπ = λ(H).

And this implies that for every x ∈ H, λ(x) = 1 which imposes H to become a
group. �

PROPOSITION 3.3. Let H be a finite commutative hypergroup. Then the following
orthogonality relations hold on H.

∑
x∈H

χπ (x)χσ (x)λ(x) =
{

0 if π �= σ ,
λ(H)

kπ
if π = σ .

(9)

and

∑
π∈Ĥ

χπ (x)χπ (y)kπ =
{

0 if x �= y
λ(H)
λ(x) if x = y . (10)

Proof. Note that the first orthogonality relation is nothing but (2). To prove
the second one, let A be a |H| × |H| matrix whose rows are labelled by elements
of Ĥ and whose columns are labelled by elements of H with entries ax,π =
χπ (x)

√
λ(x)kπ/

√
λ(H). Thus by the first part of this proposition, the rows of the

matrix A are orthonormal. This means that A is unitary and hence its columns are also
orthonormal, which finishes the proof. �

REMARK 3.4. Note that in Proposition 3.1 and especially in Proposition 3.3 we did
not assume that Ĥ is a hypergroup with respect to the Plancherel measure.

EXAMPLE 3.5. Let H = {e, a, b} the hypergroup presented in [14, Example 9.1C].
It is shown that Ĥ does not form a hypergroup for Ĥ = {1, χ, ψ}. The convolution
formulas computed in [14] imply that the Haar measure λ on H takes values 1, 4, 4
for e, a, b respectively. One also may compute the hyperdimensions based on their
presence in (1) and gets k1 = 1, kχ = 36/17, and kψ = 100/17. Note that regarding
these hyperdimensions and the character table of H, the orthogonality relation (10)
holds, although Ĥ is not a hypergroup.

As we observed in Example 3.5 unlike dimensions, the hyperdimensions of a
compact hypergroup are not necessarily positive integers. Even more, in the following
example we observe that for every real number 1 ≤ p < ∞, there is a (commutative)
hypergroup Hp of order 2 which has p as a hyperdimension.

EXAMPLE 3.6. Let 1 < p < ∞ be a fixed real number. Define Hp := {0, a} where
δa ∗ δa = (1/p)δ0 + (1 − 1/p)δa. Note that this implies that λ(a) = p. One can easily
observe that the dual object of H is nothing but Ĥ = {1, χ} where χ (a) = −1/p. But
this implies that ‖χ‖2

2 = (p + 1)/p and therefore, kχ = p.

If A is a Banach algebra, we let A⊗γ A denote the projective tensor product of A
with itself. We say A is amenable if it admits a bounded approximate diagonal (b.a.d.)
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that is a bounded net (mα) ⊆ A ⊗γ A which satisfies

m(mα)a → a, a m(mα) → a, and a · mα − mα · a → 0,

for a in A, where m : A ⊗γ A → A is the multiplication map, and the module actions of
A on A ⊗γ A are given on elementary tensors by a · (b ⊗ c) = (ab) ⊗ c and (b ⊗ c) · a =
b ⊗ (ca). This is not the original definition of amenability but it is equivalent to the
cohomological one.

Note that if A is a finite dimensional commutative amenable Banach algebra, there
is a unique ([11]) element � ∈ A ⊗γ A so that m(�) = eA and a · � = � · a for every
a ∈ A and the identity eA. � is called the diagonal of A. We can quantify amenability
of A via the amenability constant, denoted by AM(A), which was defined in [15]. Let

AM(A) = inf{sup
α

‖mα‖ : (mα) is a b.a.d. for A},

where we allow the infimum of an empty set to be ∞. Again for a finite dimensional
amenable commutative Banach algebra A, AM(A) = ‖�‖.

For a locally compact group it is known that the group algebra is amenable if and
only if its amenability constant is 1 (see [21, Corollary 1.11]). For a finite group G, the
amenability constant of the center of the group algebra, denoted by Z�1(G) has been
studied before in [2, 5, 7]. Note that Z�1(G) is nothing but the hypergroup algebra of
Conj(G). In the following, we generalize these studies by computing the amenability
constant for finite commutative hypergroups and observe that how different the results
could be in comparison to the ones for Z�1(G).

The following theorem and its proof are a hypergroup adaptation of [5,
Theorem 1.8].

THEOREM 3.7. Let H be a finite commutative hypergroup with the Haar measure λ.
Then,

AM(�1(H, λ)) = 1
λ(H)2

∑
x,y∈H

∣∣∣∣∣∣
∑
χ∈Ĥ

k2
χχ (x)χ (y)

∣∣∣∣∣∣ λ(x)λ(y).

Also AM(�1(H, λ)) ≥ 1 and the equality AM(�1(H, λ)) = 1 holds if and only if H is a
group.

Proof. Using Lemma 1.1 one can check that for

� = 1
λ(H)2

∑
χ∈Ĥ

k2
χχ ⊗ χ, (11)

we have ψ · � = � · ψ and even more, ψ ∗ m(�) = m(�) ∗ ψ = ψ for every character
ψ ∈ Ĥ. But note that the set of characters is a basis for �1(H, λ). Thus, � is the unique
diagonal of �1(H, λ).
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So to compute the amenability constant of �1(H, λ) it is enough to compute the
1-norm of � as follows.

AM(�1(H, λ)) = 1
λ(H)2

∑
x,y∈H

∣∣∣∣∣∣
∑
χ∈Ĥ

k2
χχ (x)χ (y)

∣∣∣∣∣∣ λ(x)λ(y)

≥ 1
λ(H)2

∑
x∈H

∑
χ∈Ĥ

k2
χ |χ (x)|2λ(x)2

≥ 1
λ(H)2

∑
χ∈Ĥ

k2
χ

∑
x∈H

|χ (x)|2λ(x) (†)

≥ 1
λ(H)2

∑
χ∈Ĥ

k2
χ

λ(H)
kχ

≥ 1
λ(H)

∑
χ∈Ĥ

kχ = 1.

It is known that for an amenable locally compact group H, the amenability
constant of the group algebra is 1 (see [21, Corollary 1.11]). Conversely, if H is not a
group there should be at least one x ∈ H so that λ(x) > 1. Meanwhile there is some
character χ so that χ (x) �= 0. Therefore, the inequality (†) has to be strict. Hence,
AM(�1(H, λ)) > 1. �

EXAMPLE 3.8. Let Hp be the commutative hypergroup introduced in Example 3.6
for 1 < p < ∞. By Theorem 3.7, we have

AM(�1(Hp, h)) = 5p2 − 2p + 1
(p + 1)2

.

Note that p �→ AM(�1(Hp, λ)) is an increasing function whose range is the interval
(1, 5).

REMARK 3.9. Note that for a commutative finite hypergroup H, the diagonal � ∈
�1(H × H, λ × λ) is an idempotent. Example 3.8 implies that for every r > 1, we may
find a commutative hypergroup which has an idempotent whose 1-norm is r. Compare
this observation with Saeki’s result, in [20], that says for an abelian locally compact
group G and for every non-contractive idempotent μ ∈ M(G), ‖μ‖M(G) ≥ (1 + √

2)/2.

EXAMPLE 3.10. Let G be a finite group. For the finite hypergroup Conj(G) with the
Haar measure λConj(C) = |C|, the formula of AM(�1(Conj(G), λConj)) corresponds to
the one in [5, Theorem 1.8] computed for Z�1(G). Also, for the finite hypergroup Ĝ with
the Haar measure λĜ(π ) = d2

π , the formula obtained for AM(�1(Ĝ, λĜ)) corresponds
to the one in [3, Proposition 4.2] computed for ZA(G).

4. Uncertainty principle for compact hypergroups. The uncertainty principle has
been studied in special settings such as �n as well as in more general settings such as
locally compact groups and in particular for compact groups, and a variety of results
concerning lower bounds for the product of the measures of the support of a function
and the support of its Fourier transform have been derived.
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The uncertainty principle on commutative hypergroups has been studied before.
Many researchers considered different variations of the uncertainty inequality for a
variety of commutative hypergroups. To name a few, Sturm-Liouville hypergroups,
[9], commutative hypergroups with 1 not in the support of the Plancherel measure,
[22], finite and σ -compact hypergroups, [16], and ultraspherical expansions, [18], were
studied for this property. In this section, we focus on (not necessarily commutative)
compact hypergroups and prove a Heisenberg inequality for them.

The main observation for the proof of the following theorem is inspired by [8]. In
the following, tr(A) denotes the trace of a matrix A.

THEOREM 4.1. Let H be a compact hypergroup with the Haar measure λ. Then, for
each f ∈ L2(H),

λ(H) ≤ λ(supp(f ))
∑

π∈supp(̂f )

kπdπ .

Proof. Without loss of generality assume that λ(H) = 1. Let f ∈ L2(H). If supp(̂f )
is infinite there is nothing left to be proved. So assume that supp(̂f ) is finite. In this
case, f is continuous and therefore for an arbitrary x ∈ H, applying (3) we get

|f (x)| ≤
∑

π∈supp(̂f )

kπ |̂f (π )i,jπi,j(x)|

=
∑

π∈supp(̂f )

kπ |̂f (π )i,jπ j,i(x̃)|

=
∑

π∈supp(̂f )

kπ | tr(̂f (π )π(x̃))|.

Note that by properties of the Hilbert-Schmidt norm on matrices and since π is a
contractive representation on M(H),

| tr(̂f (π )π(x̃))| ≤ ‖̂f (π )‖2‖π (x̃)‖2 ≤ ‖̂f (π )‖2

√
dπ‖π (x̃)‖ ≤

√
dπ ‖̂f (π )‖2.

Therefore, by Hölder’s inequality, one gets

|f (x)|2 ≤
⎛⎝ ∑

π∈supp(̂f )

kπ ‖̂f (π )‖2
2

⎞⎠ ⎛⎝ ∑
π∈supp(̂f )

kπdπ

⎞⎠
= ‖f ‖2

2

∑
π∈supp(̂f )

kπdπ

≤ ‖f ‖2
∞ λ(supp(f ))

∑
π∈supp(̂f )

kπdπ .

�
EXAMPLE 4.2. For a compact group G, for a function f ∈ L2(G), Theorem 4.1

implies the classical Heisenberg inequality

λ(G) ≤ λG(supp(f ))
∑

π∈supp(̂f )

d2
π . (12)
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If f is a central function, i.e. f ∈ ZL2(G). Then, f can be considered as a function in
L2(Conj(G)). Note that in this case, for each π ∈ Ĝ, ψ := d−1

π χπ ∈ Ĉonj(G) is linear
while kψ = d2

π . Therefore, Theorem 4.1 still implies the same inequality (12).
If G is a finite group, then for each f ∈ Z�2(G)(= �2(Conj(G)), the Fourier

transform f̂ is indeed a function in �2(Ĝ). Note that ̂̂f = f and its support is nothing
but the set all conjugacy classes C ∈ Conj(G), for them f (C) �= 0. Note that for
each C ∈ Conj(G), kC = |C| which is a direct corollary of Proposition 1.2. Also
|Ĝ| = ∑

π∈Ĝ d2
π which is nothing but λ(G). Now applying Theorem 4.1 for the finite

hypergroup Ĝ we get the inequality (12) again.
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