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THE FIRST-ORDER LOGIC OF CZF IS INTUITIONISTIC
FIRST-ORDER LOGIC

ROBERT PASSMANN

Abstract. We prove that the first-order logic of CZF is intuitionistic first-order logic. To do so, we
introduce a new model of transfinite computation (Set Register Machines) and combine the resulting
notion of realisability with Beth semantics. On the way, we also show that the propositional admissible
rules of CZF are exactly those of intuitionistic propositional logic.

§1. Introduction. The first-order logic of a theory T consists of those first-order
formulas for which all substitution instances are provable in T. A classical result of
Friedman and Ščedrov [7] is that very few axioms suffice for a set theory to exceed
the logical strength of intuitionistic first-order logic:

Theorem (Friedman and Ščedrov (1986)). Let T be a set theory based on
intuitionistic first-order logic that contains the axioms of extensionality, pairing and
( finite) union, as well as the separation schema. Then the first-order logic of T exceeds
the strength of intuitionistic first-order logic.

This result applies to intuitionistic Zermelo–Fraenkel Set Theory (IZF) but not
to constructive Zermelo–Fraenkel set theory (CZF) because the separation schema
of CZF is restricted to Δ0-formulas. It has, thus, been a long-standing open question
whether the first-order logic of CZF exceeds the strength of intuitionistic logic as
well. We give an answer to this question:

Theorem (see Corollary 5.15). The first-order logic of CZF is intuitionistic first-
order logic.

We prove this result by developing a realisability semantics for CZF based on a
new model of transfinite computation, the so-called Set Register Machines (SRMs).
Related notions of realisability had earlier been studied by Rathjen [22] and Tharp
[23]. Our main result is obtained by adapting a technique that van Oosten [19]
had developed for Heyting arithmetic: we combine the resulting notion of SRM-
realisability with Beth semantics to obtain a model of CZF that matches logical
truth in a universal Beth model.

Carl, Galeotti, and Passmann [4] gave a first proof-theoretic application of
transfinite computability and provided a realisability interpretation for (infinitary)
IKP set theory using OTMs. In particular, they proved that the propositional
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admissible rules of IKP are exactly the admissible rules of intuitionistic propositional
logic. On the way to proving our main result, we will prove the same result for CZF.
Our motivation for introducing SRMs instead of working with OTMs is that the
former are easier adapted for realising stronger set theories than IKP. This work
is thus another fruitful application of techniques of transfinite computability to
proof-theoretic questions.

1.1. Overview. After recalling some preliminaries in Section 2, we will begin, in
Section 3, with introducing our new notion of transfinite machines, the so-called set
register machines (SRMs). The main result of this section will be a generalisation
of a classical result by Kleene and Post about the existence of mutually irreducible
degrees of computability. In Section 4, we introduce a realisability semantics based
on SRMs and show that (a certain extension of) these machines allows to realise
CZF set theory. It also serves as a preparation for Section 5, in which we will combine
our realisability semantics with Beth models to prove our main result.

§2. Preliminaries.

2.1. Constructive set theory. We will be concerned with constructive Zermelo–
Fraenkel set theory, CZF, and now recall its definition and some basic facts. First,
recall the axiom schemes of strong collection,

∀a[∀x ∈ a∃yϕ(x, y) → ∃b(∀x ∈ a∃y ∈ bϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y))],

for all formulas ϕ, in which b is not free, and subset collection,

∀a∀b∃c∀u[∀x ∈ a∃y ∈ bϕ(x, y, u) →
∃d ∈ c(∀x ∈ a∃y ∈ dϕ(x, y, u) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, u))],

for all formulas ϕ, in which c is not free. By Δ0-separation we denote the restriction
of the separation schema to Δ0-formulas.

Definition 2.1. Constructive Zermelo–Fraenkel Set Theory, CZF, is based on
intuitionistic first-order logic in the language of set theory and consists of the
following axioms and axiom schemes: extensionality, pairing, union, empty set,
infinity, Δ0-separation, strong collection, subset collection, and ∈-induction.

We denote CZF without the subset collection schema by CZF–. The exponentia-
tion axiom states that function sets exists:

∀a∀b∃c∀f(f ∈ c ↔ “f is a function from a to b”).

The following is well known (consult, e.g., Aczel and Rathjen [1]).

Fact 2.2. In CZF–, the power set axiom implies the subset collection axiom.
Moreover, in CZF–, the subset collection scheme implies the exponentiation axiom.

2.2. Logics and De Jongh’s theorem. Given a theory T, based on intuitionistic
logic, the logically valid principles of T may exceed those valid in intuitionistic
logic. The most well-known example of this phenomenon is probably the following
consequence of what is known as Diaconescu’s theorem (see Diaconescu [5] and
Goodman and Myhill [8]): IZF extended with the axiom of choice implies the law
of excluded middle, i.e., IZF + AC � ϕ ∨ ¬ϕ for all set-theoretic formulas ϕ. This
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suggests that it is incorrect to say that the logic of IZF + AC is intuitionistic: after
all, the law of excluded middle is valid! For this reason, we define the propositional
and first-order logics of a theory T as follows, in terms of translations.

Definition 2.3. Let T be a theory in a language LT . A propositional translation
is a function � assigning LT -sentences to propositional formulas such that:

(i) �(p) is an LT -sentence for every propositional letter p,
(ii) �(⊥) = ⊥, and

(iii) �(A ◦ B) = �(A) ◦ �(B) for ◦ ∈ {∧,∨,→}.
As customary with translations, we will often write A� instead of �(A).

Definition 2.4. The propositional logic of T, PL(T ), consists of all propositional
formulas A such that T � A� for all propositional translations �.

A result concerning the first-order logic of Heyting arithmetic was proved by de
Jongh in his doctoral dissertation [14, 15]. We denote intuitionistic propositional
logic by IPC and intuitionistic first-order logic by IQC.

Theorem 2.5 (de Jongh (1970)). The propositional logic of Heyting arithmetic is
intuitionistic propositional logic, PL(HA) = IPC.

This result is now known as de Jongh’s theorem, and, in general, we say that a
theory T satisfies de Jongh’s theorem whenever PL(T ) = IPC.

Definition 2.6. Let T be a theory in a language LT . A first-order translation is a
function � assigning LT -formulas to propositional formulas such that:

(i) �(R(x1, ... , xn)) is an LT -formula ϕ with free variables among x1, ... , xn,
(ii) �(⊥) = ⊥,
(iii) �(A ◦ B) = �(A) ◦ �(B) for ◦ ∈ {∧,∨,→}, and
(iv) �(QxA(x)) = Qx�(A(x)) for Q ∈ {∀,∃}.

Definition 2.7. The first-order logic of T, QL(T ), consists of all first-order
formulas A such that T � A� for all first-order translations �.

Since de Jongh’s initial work, many notable results have been obtained in this
area. Leivant [18] showed that QL(HA) = IQC; van Oosten [19] gave a semantic
proof of this fact (the idea of his construction will reappear in our construction in
Section 5). De Jongh, Verbrugge, and Visser [16] consider a generalised version of
de Jongh’s theorem: given a (propositional or first-order) logic J and a theory T,
we can consider the theory T (J ) obtained by closing T under J. We then say that
T satisfies the de Jongh property for J if PL(T (J )) = J (or, QL(T (J )) = J if J is a
first-order logic).

The main negative result concerning logics of set theory is due to Friedman and
Ščedrov [7], and was also mentioned in the introduction. Here is a reformulation
based on the terminology just introduced.

Theorem 2.8 (Friedman and Ščedrov (1986)). Let T be a set theory based on
intuitionistic first-order logic that contains the axioms of extensionality, pairing and
( finite) union, as well as the separation scheme. Then, IQC � QL(T ).

Passmann [20] showed that PL(IZF) = IPC, and consequently, PL(CZF) = IPC.
Iemhoff and Passmann [11] analysed the logical structure of IKP and proved, among
other things, that QL(IKP) = IQC.
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2.3. Admissible rules. We can further generalise our analysis of the logical
structure of a given theory by not only considering its logically valid principles
but also by determining its admissible rules.

Definition 2.9. Let T be a theory in a language LT , and let A and B be
propositional formulas. We say that a propositional rule A/B is admissible in
T, written A �∼T B , if and only if T � A� implies T � B� for all propositional
translations �.

We say that a theory T has the disjunction property if T � ϕ ∨ � implies T � ϕ
or T � �. The restricted Visser’s rules {Vn}n<� are defined as follows and play a
special role for admissibility (Iemhoff [9] proved that they form a so-called basis of
the admissible rules of intuitionistic propositional logic):(

n∧
i=1

(pi → qi)
)
→ (pn+1 ∨ pn+2)

n+2∨
j=1

(
n∧
i=1

(pi → qi) → pj

) .

Denote by V an the antecedent and by V cn the consequent of the rule. We will make
use of the following result of Iemhoff [10] to determine admissible rules.

Theorem 2.10 (Iemhoff [10, Theorem 3.9 and Corollary 3.10]). Let T be a theory
with the disjunction property. If the restricted Visser’s rules are propositional admissible
in T, then the propositional admissible rules of T are exactly the propositional
admissible rules of intuitionistic propositional logic, �∼T = �∼IPC.

Visser [25] proved that the propositional admissible rules of Heyting Arithmetic
HA are exactly the admissible rules of intuitionistic propositional logic IPC.
Using realisability techniques, Carl, Galeotti, and Passmann [4] determined
the propositional admissible rules of IKP to be exactly the admissible rules of
propositional intuitionistic logic. Iemhoff and Passmann [12] proved that the
propositional admissible rules of CZFER and IZFR are the admissible rules of
intuitionistic propositional logic by using a modification of the so-called blended
models (earlier introduced by Passmann [20]).1 It is possible to consider first-order
admissible rules; van den Berg and Moerdijk [2] show that certain constructive
principles are first-order admissible rules of CZF (calling them derived rules).

§3. Set register machines.

3.1. Definitions and basic properties. Let us begin with some intuition for set
register machines (SRMs). A set register machine has a finite set of registers
R0, ... , Rn on which it conducts computations. However, the registers do not contain
natural numbers (as in the case of register machines) or ordinal numbers (as in the
case of ordinal register or Turing machines) but rather arbitrary sets. Accordingly,
SRMs use a different set of operations: for example, adding a set contained in a

1To obtain CZFER and IZFR, replace subset collection and (strong) collection by exponentiation
and replacement, respectively.
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register to another register, or removing a member of a set contained in a certain
register.

We assume that<� is a global well-ordering such that rank(x) < rank(y) implies
x <� y.2 This means that we are working under the assumption of the global axiom
of choice and extend our set-theoretical language with the symbol<� . Note that this
extended theory is conservative over ZFC (see Fraenkel [6, pp. 72–73]). The reason
for using this theory as our meta-theory is that we want SRM-computations to be
deterministic, and assuming a global well-ordering is a convenient way to achieve
this. For a discussion of alternatives see Remark 3.3.

We will now first define programs by giving the permissible operations, and then
computations for set register machines. While defining the permissible operations,
we will directly give an intuitive description of what the operation does.

Definition 3.1. A set register program p is a finite sequence p = (p0, ... , pn–1),
where each pi is one of the following commands:

(i) “Ri := ∅”: replace the content of the ith register with the empty set.
(ii) “ADD(i, j)”: replace the content of the jth register with Rj ∪ {Ri}.

(iii) “COPY(i, j)”: replace the content of the jth register with Ri .
(iv) “TAKE(i, j)”: replace the content of the jth register with the <�-least set

contained in Ri , if Ri is non-empty.
(v) “REMOVE(i, j)”: replace the content of the jth register with the setRj \ {Ri}.

(vi) “IF Ri = ∅ THEN GO TO k”: check whether the ith register is empty; if so,
move to program line k, and, if not, move to the next line.

(vii) “IFRi ∈ Rj THEN GO TO k”: check whetherRi ∈ Rj ; if so, move to program
line k, and, if not, move to the next line.

(viii) “POW(i, j)”: replace the content of the jth register with the power set of Ri .

Definition 3.2. Let p be a set register program and k < � be the highest register
index appearing in p. A configuration of p is a sequence (l, r0, ... , rk) consisting of the
active program line l < � and the current content ri of registerRi . If c = (l, r0, ... , rk)
is a configuration of p, then its successor configuration c+ = (l+, r+0 , ... , r

+
k ) is

obtained as follows:

(i) If pl is “Ri := ∅”, then let r+i = ∅, r+n = rn for n �= i , and l+ = l + 1.
(ii) If pl is “ADD(i, j)”, then let r+j = rj ∪ {ri}, r+n = rn for n �= j, and l+ =
l + 1.

(iii) If pl is “COPY(i, j)”, then let r+j = ri , r+n = rn for n �= j, and l+ = l + 1.
(iv) If pl is “TAKE(i, j)”, then let r+j be the <�-minimal element of ri (if that

exists; if ri = ∅, then r+j = rj), r+n = rn for n �= j, and l+ = l + 1.
(v) If pl is “REMOVE(i, j)”, then let r+j = rj \ {ri}, r+n = rn for n �= j, and l+ =
l + 1.

(vi) If pl is “IFRi = ∅ THEN GO TOm”, then r+i = ri for all i ≤ k; and, if ri = ∅,
then l+ = m; if ri �= ∅, then l+ = l + 1.

(vii) If pl is “IF Ri ∈ Rj THEN GO TO m”, then r+i = ri for all i ≤ k; and, if
ri ∈ rj , then l+ = m; if ri /∈ rj , then l+ = l + 1.

2Whenever <� is a global well-ordering, we can assume that this is the case by defining x <′
� y if and

only if rank(x) < rank(y) or rank(x) = rank(y) and x <� y. Note that <′
� is again a well-order.
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(viii) If pl is “POW(i, j)”, then r+j = P(ri), r+n = rn for all n �= i , and
l+ = l + 1.

A computation of p with input x0, ... , xj is a sequence d of ordinal length α + 1
consisting of configurations of p such that:

(i) d0 = (1, x0, ... , xj , ∅, ... , ∅),
(ii) if � < α, then d�+1 = d+

� ,
(iii) if � < α is a limit, then l� = lim inf�<� l� , and r� = lim inf�<� r� , where the

limes inferior of a sequence of sets is the set obtained from the limes inferior
of the characteristic functions, and

(iv) d+
α is undefined (i.e., lα > m).

The notion of computability obtained by restricting Definitions 3.1 and 3.2 to
clauses (i)–(vii) will be referred to as SRM; the full notion will be referred to as
SRM+. In other words, SRM+ is obtained from SRM by adding the power set opera-
tion. We allow SRMs and SRM+s to make use of finitely many set parameters which
will be treated as additional input in a fixed register as specified in the program code.

Remark 3.3. There are several alternatives for working with a global well-
ordering function <� : first, it is possible to develop a theory of non-deterministic
SRMs, where the TAKE-command takes an arbitrary set. Second, SRMs could work
on well-ordered sets (i.e., sets equipped with a well-order). This approach is not
useful for SRM+ as there is no canonical way in extending the well-ordering of a set
to its power set (i.e., a certain degree of non-determinateness is introduced again). A
third approach is to make computations dependent on a large enough well-ordering
of some initial Vα . Finally, one could work in the constructible universe L where
we have a Σ1-definable well-ordering <L. We will, in fact, consider this approach in
Section 3.3 but for different reasons: for our main application, we need computations
to be definable in the language of set theory without an additional symbol for the
global well-ordering.

Definition 3.4. A function f is SRM(+)-computable if there is an SRM(+)-
program p, possibly with parameters, which computes f(x) on input x. A predicate
is called SRM(+)-computable if its characteristic function is SRM(+)-computable.

Note that every function with set-sized domain is SRM-computable. Clearly, if a
function or predicate is SRM-computable, then it is also SRM+-computable. The
converse does not hold: consider, for example, the power set operation.

Proposition 3.5. Equality of sets is SRM-computable.

Proof. The following SRM-program computes whether the sets contained in
registers R0 and R1 are equal: the program successively takes elements of the first
set, checks whether they are contained in the second set, and removes the element
from both sets. If both registers R0 and R1 are empty at the same time, then the
original sets must have been equal. Otherwise, the original sets were not equal.

1: IF R0 = ∅ THEN GO TO 3
2: GO TO 5
3: IF R1 = ∅ THEN GO TO 11

https://doi.org/10.1017/jsl.2022.51 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.51


314 ROBERT PASSMANN

4: GO TO 14
5: TAKE(0, 2)
6: REMOVE(2, 0)
7: IF R2 ∈ R1 THEN GO TO 9
8: GO TO 14
9: REMOVE(2, 1)
10: GO TO 1
11: R0 := ∅
12: ADD(0, 0)
13: GO TO 15
14: R0 := ∅

Note that the operation “GO TO i” is a shortcut for “IFRj = ∅ THEN GO TO i” where j
is chosen in such a way that the registerRj is not mentioned in any other instruction
of the program. �

In view of this proposition, we can use an operation “IF Ri = Rj THEN GO TO k”
by implementing the program of the proof of the proposition as a subroutine.
The following lemma shows that many basic operations and predicates are SRM+-
computable.

Lemma 3.6. The following functions and predicates are SRM+-computable:

(i) the binary union function (x, y) �→ x ∪ y,
(ii) the intersection function (x, y) �→ x ∩ y,

(iii) the singleton and pairing functions, x �→ {x} and (x, y) �→ {x, y},
(iv) the ordered pairing function (x, y) �→ 〈x, y〉,
(v) the first and second projections 〈x, y〉 �→ x, 〈x, y〉 �→ y,

(vi) the predicate “x is an ordered pair,”
(vii) the predicate “x is a function,”

(viii) the union of a set, x �→
⋃
x,

(ix) the intersection of a set, x �→
⋂
x,

(x) the function mapping a function to its domain f �→ dom(f),
(xi) function application (f, x) �→ f(x),

(xii) the predicate “x is an ordinal,”
(xiii) the predicate “x is a sequence of ordinal length,”
(xiv) the function computing the <�-least element x ∈ y satisfying an SRM+-

computable predicate P(x),
(xv) the αth projection on a sequence, 〈xi | i < �〉 �→ xα ,

(xvi) the power set function, x �→ P(x),
(xvii) the predicate “x is the power set of y,”

(xviii) the limes inferior of a sequence of sets.

Proof. We will give explicit programs for the first few cases and then move to
increasingly abstract descriptions of the desired programs:

(i) Observe that the following program computes the union of the sets in
registers R0 and R1 by adding all elements of R1 to R0:

1: IF R1 = ∅ THEN GO TO 6
2: TAKE(1, 2)
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3: REMOVE(2, 1)
4: ADD(2, 0)
5: GO TO 1

(ii) Observe that the intersection of the sets contained in registers R0 and R1

can be computed as follows. Check for each element of R1 whether it is
contained in R0 and, if so, save it into a register for the intersection:

1: IF R1 = ∅ THEN GO TO 8
2: TAKE(1, 2)
3: REMOVE(2, 1)
4: IF R2 ∈ R0 THEN GO TO 6
5: GO TO 1
6: ADD(2, 3)
7: GO TO 1
8: COPY(3, 0)

(iii) The functions of (iii) can be easily implemented.
(iv) Recall that 〈x, y〉 = {{x}, {x, y}}, and this can easily be computed.
(v) Note that

⋂
〈x, y〉 = x and

⋃
〈x, y〉 = {x, y}. So we can construct the

desired programs by combining the procedures from (i) and (ii) in a
straightforward way.

(vi) We have to implement a procedure that checks whether x is an ordered
pair: use (v) to compute the first and second projections of x, say, y and z.
Then compute 〈y, z〉 with (iv) and check whether this equals x.

(vii) Check whether x consists of ordered pairs (using (vi)), and then check
that x is functional with (v).

(viii) Use four registers: R0 contains x, R1 for the union of x, and R2 and R3 as
auxiliary registers. Then proceed as follows: as long as R0 is non-empty,
take a set fromR0 and save it inR2, then remove it fromR0. Then, as long
asR2 is non-empty, take an element ofR2 and save it inR3, then remove it
from R2 and add it to R1. Once R0 is empty, we are done: copy our result
from R1 to R0, and stop.

(ix) A similar procedure as in the previous item does the job.
(x) Take and remove elements from R0 as long as it is non-empty. To each

element, apply the first-projection from (v), and add it to R1. Once R0 is
empty, R1 contains the domain of x.

(xi) Search through f until a pair with first coordinate x is found. Then return
the second projection of that pair.

(xii) Observe that it is straightforward to compute whether “x is a transitive set
of transitive sets.”

(xiii) Check whether x is a function whose domain is an ordinal.
(xiv) Given a procedure for checking P, take and remove elements from y until

some x is found satisfying P(x). By the definition of the TAKE-operation,
this will be the <�-minimal element of y satisfying P.

(xv) This is just function application.
(xvi) This is straightforward using the POW-operation.

(xvii) Again, straightforward using the POW-operation.
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(xviii) Note that the limes inferior of a sequence of sets can be presented as
follows:

lim inf
�<α

x� =
⋃
�<α

⋂
�∈[�+1,α)

x�.

This can be straightforwardly implemented by combining the previous
items of this lemma. �

Lemma 3.7. Let ϕ(x̄) be a Δ0-formula. Then there is an SRM p such that
p(�ϕ�, x̄) = 1 if V � ϕ(x̄) and p(�ϕ�, x̄) = 0 if V � ¬ϕ(x̄).

Proof. We construct a machine that recursively calls itself. For the base cases, let
p(�xi = xj�, x̄) be the program that returns 1 if xi = xj and 0 if xi �= xj . Similarly,
letp(�xi ∈ xj�, x̄) be the program that returns 1 ifxi ∈ xj and 0 ifxi /∈ xj . The cases
for conjunction, disjunction, and implication are easily constructed by recursion. For
the bounded existential quantifier, ∃x ∈ a ϕ(x), the machine p conducts a search
through a by consecutively taking and removing elements. If p finds some b ∈ a
such that p(�ϕ�, 〈b, a, x〉) = 1, then p returns 1. If no such b is found, then a does
not contain a witness for ϕ and p returns 0. The bounded universal quantifier can
be implemented similarly with a bounded search. �

The next theorem shows that moving from Ordinal Turing Machines to Set
Register Machines does not increase the computational strength. We do not give a
detailed proof since the result is not used in the remainder of this article.

Theorem 3.8. Ordinal Turing machines with parameters (OTMs) and set register
machines with parameters (SRMs) can simulate each other.

Proof. For the first direction, recall that OTMs and ordinal register machines
(ORMs) can simulate each other (e.g., Carl [3]). It will, therefore, be enough to
show that SRMs simulate ORMs but, in fact, more is true: it is straightforward to
see that every ORM-program can be executed by an SRM.

The other direction can be shown by a straightforward but tedious coding
argument by using a large enough fragment of the well-order <� as a parameter
(Carl, Galeotti, and Passmann [4] spell out a very similar argument in an appendix;
Carl [3, Section 2.3.2 and Chapter 3] discusses codings as well). �

3.2. Oracles and relative computability. As with other notions of computability,
we can enrich SRM+s with oracles. Let O : V → V be a partial class function. We
obtain oracle SRM+,O by extending Definition 3.1 with the following operation:

“ORACLE(i, j)”: replace the contents of the jth register with the
result of querying the oracle O with Ri .

We also extend Definition 3.2:

If pl is “ORACLE(i, j),” proceed as follows: if O(ri) is defined,
let r+j = O(ri), r+n = rn for all n �= i , and l+ = l + 1. If O(ri) is
undefined, let r+j = rj for all j ≤ k and l+ = l .
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The evaluation function is chosen like this to ensure that any SRM+,O loops
whenever the oracle is queried on undefined input. This entails that the oracle
is only queried on its domain within a successful computation. Given oracles, we
can define a relative notion of computability.

Definition 3.9. We say that a function f is SRM+-computable in g if and only if
there is an SRM+,g program p that computes f.

A function is SRM+-computable if and only if it is SRM+-computable in the
empty function. In fact, a function is SRM+-computable if and only if it is SRM+-
computable in any set-sized function.

We will now work towards generalising a result of Kleene and Post [17], which
will be useful later but is also interesting in its own regard.

Proposition 3.10. The class function V(·) : Ord → V,α �→ Vα is SRM+-
computable.

Proof. An SRM+-program does this by starting with the empty set and
consecutively computing power sets while keeping the current rank in an auxiliary
register. The program keeps computing until it reaches the desired α.

This procedure is implemented in the following program, where the input α is
written into R0; note that the initial configuration of all other registers is ∅. We use
R1 to count our current stage � and R2 to save the current V� .

1: IF R0 = R1 THEN GO TO 5
2: POW(2, 2)
3: ADD(1, 1)
4: GO TO 1

Note that the register R0 remains unchanged, and the registers R1 and R2

are monotonically increasing. Therefore, the program does the job also at limit
stages. �

The following proposition can be anticipated from how the evaluation of the
TAKE-operation was defined.

Proposition 3.11. The global well-ordering <� is SRM+-decidable.

Proof. This is implemented by an SRM+ that does the following: given a and b,
check whether a = b. If so, we are done. If not, compute {a, b} and use the TAKE-
operation to take a set c ∈ {a, b}. By the definition of the TAKE-operation, either
c = a and then a <� b, or c = b and then b <� a. �

By the αth element of V according to <� , we denote the unique x such that the
order type of ({y | y <� x}, <�) is α.

Proposition 3.12. The bijective class function F� : Ord → V mapping α to the
αth element of V according to <� is SRM+-computable and so is its inverse.

Proof. Recall our assumption that rank(x) < rank(y) implies x <� y. There-
fore, computing<� on some Vα means to compute an initial segment of<� . We can
therefore proceed as follows.
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For the forward direction, use the POW-operation to compute Vα+1. Then take
and remove elements from Vα+1 while running a counter until it reaches α. The last
element taken is the set we were looking for.

For the other direction, given a ∈ V , compute a V� such that a ∈ V� . Then start
a counter and successively take and remove elements fromV� until a is reached. The
value of the counter is the ordinal α we are looking for. �

Proposition 3.13. Let O be a (partial) class function. The SRM+,O halting
problem is SRM+,O undecidable.

Proof. This is proved by contradiction with the usual diagonal argument.
Assume that there is a machine p such that p(x) = 1 if and only if x is an SRM+

that halts, and p(x) = 0 otherwise. Then define a machine q such that q(x) does
not halt if and only if p(x) = 1. Then, p(q) = 1 if and only if q(q) does not halt if
and only if p(q) = 0. A contradiction. �

Proposition 3.14. Let O be a (partial) class function. Then there is an oracle Õ
such that there is an SRM+,Õ-program u which is universal for SRM+,O, i.e., u(p, x)
and p(x) are both defined and equal whenever at least one of them is defined. Moreover,
there is an SRM+,Õ-program c such that c(p, x) = 1 if x is a successful computation
of p and c(p, x) = 0 otherwise. In particular, if O is the empty function, then Õ can be
taken empty as well.

Proof. Let Õ be the function such that Õ(x) = 〈1, O(x)〉 whenever O(x) is
defined and Õ(x) = 〈0, 0〉 whenever O(x) is undefined. Using Lemma 3.6 and Õ,
it is straightforward (but tedious) to construct a program c such that c(p, x) = 1 if
x is a successful computation of p and c(p, x) = 0 otherwise. Then note that p(x)
is defined if and only if there is a successful computation of p on input x. For this
reason, the universal machine can be implemented as an unbounded search through
V that stops if a successful computation for p on input x is found, and returns p(x).
In the case where O is the empty function, we can take Õ to be the empty function
as well because all SRM+-operations are SRM+-decidable. �

It is possible to construct an SRM+,O-universal machine for SRM+,O, if one
changes the definition of oracle evaluation in such a way that the universal machine
can query the oracle without the risk of not halting.

Let D(x, y) be a binary predicate in the language of set theory. Adapting from
Kleene and Post [17], we write Dz(x) := D(x, z) and define Dz to be the join of all
Dy with y �= z, as follows:

Dz(x, y) :=

{
D(x, y), if y �= z,
0, if y = z.

The proof of the following theorem is a generalisation of a result by Kleene and
Post [17, Theorem 2]; our proof will be a generalisation of their diagonal argument
to the case of SRM+.

Theorem 3.15. There is a set-theoretic predicate D(x, y) such that Dz is not
SRM+-computable in Dz .
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Proof. We define the predicate by informally describing a total SRM+,H -
program that makes use of an oracle H for the SRM+-halting problem.

Let Rinit be an auxiliary register which is used to save an initial segment of the
predicate we are defining. LetRstage be an auxiliary register that contains an ordinal
representing the current stage of the construction.

To ensure the non-computability desired in the theorem, we have to satisfy
class-many conditions, for each SRM+-program e (possibly with parameters) and
set z:

The program e does not witness that Dz is SRM+-computable in Dz. (Pe,z)

Apply the inverse of the Gödel pairing function to Rstage to obtain ordinals α and
� . By Proposition 3.12, calculate e := F –1

� (α) and z := F –1
� (�). We want to extend

Rinit in such a way that Pe,z will hold. To this end, let x be the<�-least set for which
Rinit(x, z) is undefined. For convenience, let us say that E is a z-extension of Rinit
if Rinit ⊆ E and if Rinit(w, z) is undefined for some w then so is E(w, z). There are
two cases to consider.

Case 1: There is a z-extension Dinit of Rinit such that there is a successful
computation of e on input (x, z) using Dzinit as an oracle, i.e., the oracle is the
predicate obtained from Dinit by taking Dzinit(w, y) = Dinit(w, y) if y �= z, and
Dzinit(w, z) = 0 for all w. Note that our machine can decide whether such an extension
exists by using the oracle for the SRM+-halting problem. Let y ∈ {0, 1} be the result
of this computation. As Dinit is a z-extension of Rinit , it must be that Dinit(x, z) is
undefined. We can therefore setRinit := Dinit ∪ {((x, z), 1 – y)}. This choice ensures
that e does not witness that Dz is computable in Dz .

Case 2: For all z-extensions Dinit of Rinit there is no successful computation of e
on input (x, z) with Dzinit as oracle. In this case, we let Rinit := Rinit ∪ {((x, y), 0)}.
This (arbitrary) choice works because the final predicate D will be such that there
is no successful computation of e on input (x, z) with oracle Dz : for contradiction,
suppose there was such a successful computation c and consider the z-extension
Dinit ofRinit given byDinit(x, y) = D(x, y) for all (x, y), y �= z, for which the oracle
is called during the computation c. AsDzinit(w, z) is defined for all w, all oracle calls
during the computation c are still the same when using Dzinit instead of Dz . Hence,
there is a successful computation c of e on input (x, z) with oracle Dzinit . But that is
in contradiction to the assumption of this case.

The program defined this way will eventually give rise to a completely defined
predicate D on V × V . The value of D(x, y) can be computed by running the
procedure above until the value for (x, y) is known. �

Note that the program described in the proof above does not use any parameters
and can thus be coded as a natural number.

Remark 3.16. In fact, Kleene and Post prove a stronger result which allows to
locate D between any two Turing degrees. A similar result is possible here but we
leave the proof to the interested reader as we do not need it.

3.3. Constructible SRMs. For our applications to the first-order logic of CZF, it
will be important that we can express the predicate “D(x, y) holds” in a way that
only uses the language of set theory without introducing an extra relation symbol
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into our language to refer to the global well-order. This means that we have to
circumvent referring to<� as this is an extra symbol that cannot be defined in terms
of a set-theoretic formula. Due to the following well-known fact, we will restrict our
attention to constructible sets (for reference see, e.g., Jech [13, Theorem 13.18 and
Lemma 13.19]):

Fact 3.17. There is a Σ1-definable well-ordering <L of the constructible
universe L.

So if we restrict our attention to SRM+s that work only on constructible sets,
we can replace <� with <L in Definition 3.2. The resulting notion of SRM will
be called constructible SRM+ and denoted, in short, by SRM+

L . Note that all
of the results obtained so far about SRM+s can be relativised to L and thus
transferred to SRM+

L . In particular, we get the following versions of Lemma 3.7 and
Theorem 3.15:

Lemma 3.18. Let ϕ(x̄) be a Δ0-formula. There is an SRML-program p such that
p(�ϕ�, x̄) = 1 if L � ϕ and p(�ϕ�, x̄) = 0 if L � ¬ϕ.

Corollary 3.19. There exists a non-SRM+
L -computable set-theoretic predicate

D(x, y), expressible in the language of set theory, such that Dz is not SRM+
L -

computable in Dz .

§4. Realisability. We will now define a notion of realisability based on SRM+s,
and observe a few proof-theoretic consequences for CZF.

Definition 4.1. We define the realisability relation � for an SRM(+),(O)
(L) r

recursively as follows:

(i) r � a ∈ b if and only if a ∈ b;
(ii) r � a = b if and only if a = b;

(iii) r � ϕ0 ∧ ϕ1 if and only if r(0) � ϕ0 and r(1) � ϕ1;
(iv) r � ϕ0 ∨ ϕ1 if and only if r(1) � ϕr(0);
(v) r � ϕ0 → ϕ1 if and only if whenever s � ϕ0, then r(s) � ϕ1;

(vi) r � ∃xϕ(x) if and only if r(1) � ϕ(r(0));
(vii) r � ∀xϕ(x) if and only if r(a) � ϕ(a) for every set a.

We say that ϕ is SRM-realisable if and only if there is an SRM realising ϕ. Similarly,
we say that ϕ is SRM+-realisable if and only if there is an SRM+ realising ϕ; and
so for SRM+,O, SRM+

L , and SRM+,O
L .

This could be extended to infinitary languages as done by Carl, Galeotti, and
Passmann [4]. Analogously to (i) and (ii), one could give realisability semantics to
the global well-order <� .

Theorem 4.2. SRM(+),(O)
(L) -realisability is sound for intuitionistic logic.

Proof. This is a standard argument and can be established, for example, by
providing a realiser for every axiom in a Hilbert-style formalisation of IQC and
showing that modus ponens is valid. The latter follows immediately from the
definition of the realisability relation. �
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Lemma 4.3. Let ϕ(x̄) be a Σ1-formula. Then there is some realiser r � ϕ(x̄) if and
only if V � ϕ(x̄).

Proof. This is a straightforward induction on Σ1-formulas. We will prove a more
intricate version of this lemma below (see Lemma 5.8). �

Theorem 4.4. The axioms (and schemes) of extensionality, pairing, union, infinity,
collection, ∈-induction, and Δ0-separation are SRM-realisable. The axiom of choice,
AC, is SRM-realisable. The axioms of power set and strong collection are SRM+-
realisable. In conclusion, IKP + AC is SRM-realisable, and CZF + PowerSet + AC is
SRM+-realisable. Moreover, IKP + AC is SRML-realisable, and CZF + PowerSet +
AC is SRM+

L -realisable.

Proof. It is straightforward to construct a realiser for the extensionality axiom.
For the empty set axiom, let r be an SRM that returns the empty set on input
0 and the identity function on input 1. Then r(1) � ∀y(y ∈ r(0) → ⊥) because
��w y ∈ ∅ for allw ∈ P and y ∈ V. Hence, r � ∃x∀y(y /∈ x). A realiser for the union
axiom is an SRMr such that, for every a ∈ V, r(a)(0) =

⋃
a, using Lemma 3.6,

r(a)(1)(x)(0) = id, and r(a)(1)(x)(1) = id for every x. The infinity axiom is realised
by an SRMr with r(0) = �, r(1)(x)(0) = id, and r(1)(x)(1) = id for every x ∈ V.
Using the power set operation provided by SRM+-programs, it is straightforward to
construct a realiser of the power set axiom. Note that the subset collection schema
is a consequence of the power set axiom.

Let us consider Δ0-separation next, i.e., the schema consisting of

∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ ϕ(x)),

where ϕ(x) is a Δ0-formula. By combining Lemmas 3.18 and 4.3, we know that
� ϕ(x) if and only if p(�ϕ�, x) = 1, and p(�ϕ�, x) = 0 in case �� ϕ(x). Hence, we
can compute the witnessing set y by conducting a bounded search through x and
collecting all z ∈ x such that p(�ϕ�, z) = 1. It is then trivial to realise ∀z(z ∈ y ↔
z ∈ x ∧ ϕ(x)) because ϕ is a Δ0-formula.

Consider the schema of ∈-induction next:

∀x(∀y ∈ xϕ(z) → ϕ(x)) → ∀xϕ(x).

An SRMr is a realiser for this if and only if, if s � ∀x(∀y ∈ xϕ(z) → ϕ(x)), then
r(s) � ∀xϕ(x). Now, in this situation, s allows us to iteratively construct realisers
for every x ∈ V by successively building realisers for every Vα . Hence, given x ∈ V,
we just compute realisers until we reach x and then output the realiser for ϕ(x).

Next, we consider the strong collection schema:

∀x[(∀y ∈ x∃zϕ(y, z)) → ∃w(∀y ∈ x∃z ∈ wϕ(y, z) ∧ ∀z ∈ w∃y ∈ xϕ(y, z))],

for all formulas ϕ(x, y) for which w is not free. Given x ∈ V, let r(x)(s), for
s � ∀y ∈ x∃zϕ(z, y), be an SRM that computes a set consisting of all s(y)(0)
for every y ∈ x, and returns this set on input 0. Using s, it is straightforward to
construct a realiser r(x)(s)(1) � ∀y ∈ x∃z ∈ r(x)(s)(0) ϕ(y, z) ∧ ∀z ∈ r(x)(s)(0)
∃y ∈ xϕ(y, z)).
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Finally, consider the axiom of choice,

∀x((∀y ∈ x∃z z ∈ y) → ∃f∀y ∈ x f(y) ∈ y).

This axiom states that whenever x consists of non-empty sets, then there is a choice
function f on x. Using Lemma 3.6, it is straightforward to construct an SRM that
computes such a choice function: for every element of y ∈ x, use the TAKE-operation
to obtain some z ∈ y. Then add (x, y) to the register in which we build the choice
function.

The corresponding results for SRML and SRM+
L are obtained through relativisa-

tion and absoluteness properties (or by observing that the exact same realisers still
do the job). �

It turns out that IZF is not SRM+-realisable.

Theorem 4.5. There is an instance of the separation axiom that is not SRM+-
realisable. In conclusion, IZF is not SRM+-realisable.

Proof. Consider the predicateH (x, y) expressing that “x is an SRM+ that halts
on input y.” One can easily construct a formulaϕ(x, y) such thatϕ(x, y) is realised if
and only ifH (x, y) is true (see also the proof of Lemma 5.11 for a similar argument).
Then let s be a realiser of the following instance of the separation axiom:

∀x∀y∀z∃w∀u(u ∈ w ↔ (u ∈ z ∧ ϕ(x, y))).

We can then construct an SRMr that does the following. Given x and y, compute
w := s(x)(y)(1)(0) and return the result. By construction, r(x, y) = 1 just in case
H (x, y) holds, and r(x, y) = 0 otherwise. So r is an SRM+ solving the SRM+

halting problem but this is impossible (see Proposition 3.13). �
In fact, we have just seen that CZF + PowerSet is SRM+-realisable. The following

proposition shows that we cannot be more fine-grained: if there is an SRM realising
the exponentiation axiom (possibly using an oracle), then we can already compute
power sets. Recall that the axiom of exponentiation is a consequence of subset
collection (Fact 2.2).

Proposition 4.6. Let r be an SRM, possibly using an oracle, such that r realises
the axiom of exponentiation, then there is an SRM, using r as an oracle, that computes
power sets.

Proof. Let r be a realiser of the axiom of exponentiation:

∀x∀y∃z∀f(f ∈ z ↔ “fis a function from x to y”),

where “f is a function from x to y” is expressed as a Δ0-formula. Then, given a set
a, the set b := r(a)({0, 1})(0) contains all f for which there is a realiser of “f is a
function from x to y.” As this is a Δ0-formula, Lemma 4.3 implies that b consists of
all functions from a to 2. It is now easy to compute the power set of a as follows:
for each element f of b, compute the set consisting of exactly those x ∈ a for which
f(a) = 1. This results in the power set of a because each subset of a gives rise to its
characteristic function contained in b. �

Our realisability semantics also allow to give an upper bound for Π2-formulas
provable in CZF in terms of the computable strength of SRM+.
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Theorem 4.7. Let ϕ be a Σ1-formula. If CZF � ∀x∃yϕ(x, y), then there is an
SRM+p such that V � ϕ(x, p(x)).

Proof. If CZF � ∀x∃yϕ(x, y), then, by Theorem 4.4, there exists an SRM+r �
∀x∃yϕ(x, y). Take p(x) to be the SRM+ to compute r(x)(0). Then, for all x,
ϕ(x, p(x)) is realisable. As ϕ is a Σ1-formula, it follows with Lemma 4.3 that
V � ϕ(x, p(x)). �

Finally, we can use SRM+-realisability to easily determine the admissible rules of
CZF. A proof of Carl, Galeotti, and Passmann [4, Theorem 56] can be adapted to
work here.

Theorem 4.8. The propositional admissible rules of CZF are exactly those of
intuitionistic logic.

Proof. Using the fact that CZF is SRM+-realisable, we can prove this with glued
realisability using Theorem 2.10; almost exactly as we did in earlier joint work with
Carl, Galeotti, and Passmann [4]. �

§5. Beth realisability models.

5.1. Fallible Beth models. In this section, we will make use of so-called fallible
Beth models because they satisfy a particular handy universal model theorem.

Definition 5.1. A fallible Beth frame (P,U ) consists of a tree P and an upwards
closed set U ⊆ P such that if every path through p ∈ P meets U, then p ∈ U .

Definition 5.2 (Fallible Beth model). A fallible Beth model (P,U,D, I ) for first-
order logic consists of a fallible Beth tree (P,U ), domains Dp for p ∈ P, and an
interpretation Ip of the language of first-order logic for each p ∈ P such that:

(i) Iv(R) ⊆ Iw(R) for all w ≥ v,
(ii) Iv(R) = Dv for all v ∈ U , and

(iii) if R is an n-ary relation symbol, x̄ ∈ Dnv and on every path through v there is
some w such that x̄ ∈ Iw(R), then x̄ ∈ Iv(R).

A Beth model is a fallible Beth model whereU = ∅. If p ∈ P, then a bar for p is a set
B ⊆ P such that every path through p meets B. A U-bar for p is a set B ⊆ P such
that B ∪U is a bar for p.

Definition 5.3. Let (P,U,D, I ) be a fallible Beth model and v ∈ P. We define
by recursion on sentences in the language of first-order logic:

(i) v � ⊥ if and only if v ∈ U ;
(ii) v � R(d1, ... , dn) if and only if (d1, ... , dn) ∈ Iv(R);

(iii) v � A0 ∧ A1 if and only if v � A0 and v � A1;
(iv) v � A0 ∨ A1 if and only if there is a bar B for v such that for every w ∈ B ,
w � A0 or w � A1;

(v) v � A0 → A1 if and only if for every w ≥ v, if w � A0, then w � A1;
(vi) v � ∃xA(x) if and only if there is a bar B for v such that for allw ∈ B , there

is some a ∈ Dw with w � A(a);
(vii) v � ∀xA(x) if and only if for every w ≥ v and a ∈ Dw , w � A(a).
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Note that, by this definition, if v ∈ U , then v forces every formula trivially, i.e.,
the relation � trivialises in U. By definition of U, it follows that if v /∈ U and B is
a U-bar for v, then B \U is non-empty. The following result of Troelstra and van
Dalen [24, Chapter 13, Remark 2.6 and Theorem 2.8] will be a crucial ingredient of
our proof.

Theorem 5.4. Let J be a recursively enumerable theory in intuitionistic first-order
logic. Then there is a fallible Beth model BJ with constant domain �, based on the full
binary tree of height �, such that B � A if and only if J � A for every sentence A of
first-order logic.

In what follows, we will refer to BJ as the universal Beth model for J.

5.2. Beth realisability models. Inspired by van Oosten [19], we now combine
our notion of SRM+,O

L -realisability with Beth semantics. To make coherent use of
oracles, we need the following definition.

Definition 5.5. Let P be a partial order. A system of oracles (Ov)v∈P consists of
partial class functionsOv : V → V such that, for allw ≥ v, we have that dom(Ov) ⊆
dom(Ow) and Ov(x) = Ow(x) for all x ∈ dom(Ov).

We need some notation to work with oracles. Given an SRM+,O
L -program r, we

write r(x1, ... , xn;O) for the result of the successful computation (if it exists) of r
on input x1, ... , xn and oracle O. If we work with a system of oracles (Ov)v∈P , we
also write r(x1, ... , xn; v) to mean r(x1, ... , xn;Ov). Finally, we write r(x1, ... , xn)
to mean r(x1, ... , xn; ∅), i.e., the output (if it exists) of r run with the empty
oracle.

Definition 5.6. Let (P,U ) be a fallible Beth frame, (Ov)v∈P be a system of
oracles. We define recursively for sentences ϕ and � in the language of set theory,
for a, b ∈ L, v ∈ P and an SRM+,O

L -program r:

(i) r �v ⊥ if and only if v ∈ U ;
(ii) r �v a = b if and only if a = b or v ∈ U ;

(iii) r �v a ∈ b if and only if a ∈ b or v ∈ U ;
(iv) r �v ϕ ∧ � if and only if r(0; v) �v ϕ and r(1; v) �v �;
(v) r �v ϕ ∨ � if and only if there is a U-bar B for v such that, for everyw ∈ B ,

either r(0;w) = 0 and r(1;w) �w ϕ, or r(0;w) = 1 and r(1;w) � �;
(vi) r �v ϕ → � if and only if for every w ≥ v, if s �w ϕ, then r(s ;w) �w �;

(vii) r �v ∃xϕ(x) if and only if there is a U-bar B for v such that for all w ∈ B ,
r(1;w) �w ϕ(r(0;w));

(viii) r �v ∀xϕ(x) if and only if for every a, r(a; v) �v ϕ(a).

If v ∈ U , then r �v ϕ for every realiser r and set-theoretic sentence ϕ. The
following is established by a standard argument.

Theorem 5.7. Beth-realisability is sound for the axioms and rules of intuitionistic
first-order logic.

Lemma 5.8. Let ϕ(x̄) be a Σ1-formula and v /∈ U . Then there is some realiser
r �v ϕ(x̄) if and only if L � ϕ(x̄).
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Proof. As v /∈ U , we know that any U-bar B for v satisfies B \U �= ∅.
We prove this by induction. The cases for equality and set-membership are
trivial.

Suppose that �v ϕ(ā) ∧ �(ā). By definition, this is equivalent to �v ϕ(ā) and
�v �(ā). Applying the induction hypothesis, this holds if and only if L � ϕ(ā) and
L � �(ā). This is, of course, equivalent to L � ϕ(ā) ∧ �(ā).

For disjunction, first suppose that r �v ϕ(ā) ∨ �(ā). By definition, this
means that there is a U-bar B for v such that for all w ∈ B we have either
r(0;w) = 0 and r(1;w) �w ϕ(ā), or r(0;w) = 1 and r(1;w) �w �(ā). Recall
that B \U is non-empty. So take any w ∈ B \U , then �w ϕ(ā) or �w �(ā).
By induction hypothesis, L � ϕ(ā) or L � �(ā). Hence L � ϕ(ā) ∨ �(ā).
Conversely, assume that L � ϕ(ā) ∨ �(ā). Then L � ϕ(ā) or L � �(ā).
It follows, by induction hypothesis, that �v ϕ(ā) or �v �(ā), but then
�v ϕ(ā) ∨ �(ā).

For implication, assume that r �v ϕ → �. If L �� ϕ, then trivially L � ϕ → �. So
assume that L � ϕ. By induction hypothesis, we know that there is a realiser s �v ϕ.
Hence, r(s) �v �. Applying the induction hypothesis once more, we get L � �.
Conversely, assume that L � ϕ → �. If L �� ϕ, then, by induction hypothesis, ��w ϕ
for all w ≥ v. So �v ϕ → � holds trivially. If L � ϕ, then L � �. So, by induction
hypothesis, there is a realiser s �v �. Hence, a realiser for ϕ → � is the SRM p that
returns s on any input.

For bounded universal quantification, assume that L � ∀x ∈ yϕ(x). Then, by
induction hypothesis, we can find a functionf : y → L such thatf(z) �v ϕ(z). Let
p be the SRM with parameter f that returnsf(z) on input z. Thenp �v ∀x ∈ yϕ(x).
Conversely, note that �v ∀x ∈ yϕ(x) entails that �v ϕ(x) for every x ∈ y. An
application of the induction hypothesis yields L � ∀x ∈ yϕ(x).

For unbounded existential quantification, assume that L � ∃xϕ(x). Then there
is some a ∈ L such that L � ϕ(a). By induction hypothesis, there is a realiser
s �v ϕ(a). Let p be an SRM such that p(1) = s and p(0) = a (by using, if
necessary, parameter a). Then p �v ∃xϕ(x). Conversely, if p �v ∃xϕ(x), then
there is a U-bar B for v such that for all w ∈ B , p(1;w) �w ϕ(p(0;w)). Take
any w ∈ B and the induction hypothesis implies that L � ϕ(p(0;w)), and, hence,
L � ∃xϕ(x). �

Theorem 5.9. The Beth realisability model satisfies CZF + PowerSet + AC.

Proof. Realisers for the axioms and schemas can be constructed (almost exactly)
as in the proof of Theorem 4.4. For the case of Δ0-separation, observe that the use of
Lemma 4.3 has to be replaced with Lemma 5.8. (Note that we only need to consider
the cases for v /∈ U , as the other case is trivial.) �

5.3. Constructing a model for a given logic. The goal of this section is to
construct a Beth-realisability model that matches the truth in the universal Beth
model BJ = (P,U,D, I ) for a given logic J. To begin with, we define the two
systems of oracles (Fv)v∈P and (Gv)v∈P . If a is a set, let rank�(a) be the unique
natural number such that rank(a) = α + rank�(a) for a maximal (possibly 0) limit
ordinal α.
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(i) We define Fv : V × V → V by recursion on v ∈ P (P being the binary tree of
height �) such that:

Fv(m, 〈b0, ... , bn〉) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, if m = �∃xA(x, y0, ... , yn)�
and w ≤ v is least such that
a ∈ � is least with
BJ , w � A(a, rank�(b0), ... , rank�(bn)),

i, if m = �(A0 ∨ A1)(y0, ... , yn)�
and w ≤ v is least such that
i ∈ � is least with
BJ , w � Ai(rank�(b0), ... , rank�(bn)),

undefined, otherwise.

(ii) We define Gv : V × V → V such that:

Gv(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if b = 〈i, b0, ... , bn〉,
BJ , v � Pi(rank�(b0), ... , rank�(bn)),
and D(a, b) = 1,

0, if b = 〈i, b0, ... , bn〉,
BJ , v � Pi(rank�(b0), ... , rank�(bn)),
and D(a, b) = 0,

undefined, otherwise.

Lemma 5.10. The sequences (Fv)v∈P and (Gv)v∈P form systems of oracles.

From now on, we consider the Beth-realisability based on these systems of oracles.
Note that, without loss of generality, we can combine two systems of oracles into
one by, e.g., taking Ov(〈0, x〉) = Fv(x) and Ov(〈1, x〉) = Gv(x) for all v ∈ P.

Lemma 5.11. Let v /∈ U . There is a negative formula �(x, y) such that there is a
realiser r �v �(x, y) is realised if and only if D(x, y) = 1.

Proof. Except for the power set case, every clause of the definition of successful
computation (Definition 3.2), adapted for SRM+

L , can be written as a Σ1-formula.
For the TAKE-operation, recall that <L is Σ1-definable. Now consider the predicate
“x = P(y)” which is needed for the POW-operation and can be formalised as
“∀z(z ∈ x ↔ ∀w ∈ z w ∈ y).” As the part in brackets is a Δ0-formula, it follows
with Lemma 5.8 that this predicate is realised if and only if it is true. Note, in
particular, that also the successor case for the halting problem oracle is realised if
and only if it is true in L. This is because the existence of a successful computation
is absolute, as we have just seen.

Applying Lemma 5.8 once more, these observations show that we can construct
a formula 	 expressing “c is a successful computation ofD(x, y) with result 0” such
that 	(c, x, y) is realised if and only if it is true in L. Take�(x, y) to be¬∃c	(c, x, y).
It follows that �(x, y) is realised if and only ifD(x, y) = 1 because D halts on every
input with either 0 or 1 as output. �
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Lemma 5.12. Let Pi(y0, ... , yn) be a predicate in the language of first-order
logic. There is a set-theoretic formula ϕi(y0, ... , yn) and a realiser r such
that for all b0, ... , bn ∈ L, r(b0, ... , bn) �v ϕi(b0, ... , bn) if and only if BJ , v �
Pi(rank�(b0), ... , rank�(bn)).

Proof. Let �(x, y) be the negative formula from Lemma 5.11 expressing that
D(x, y) = 1. As � is negative, we know that, for every v and a, b ∈ L, either �v
�(a, b) or �v ¬�(a, b). Then take:

ϕi(y0, ... , yn) := ∀x(�(x, 〈i, y0, ... , yn〉) ∨ ¬�(x, 〈i, y0, ... , yn〉)).

Suppose there was a realiser r �v ϕi(b0, ... , bn) but we also have that BJ , v ��
Pi(rank�(b0), ... , rank�(bn)). In this situation, we can decide D〈i,b0,...,bn〉 from
r for every a: if r(a, b0, ... , bn) returns a realiser for �(a, 〈i, b0, ... , bn〉), then
D〈i,b0,...,bn〉(a) = 1; if r(a, b0, ... , bn) returns a realiser for ¬�(a, 〈i, b0, ... , bn〉), then
D〈i,b0,...,bn〉(a) = 0. However, by our assumption, Gv(c, 〈i, b0, ... , bn〉) is undefined
for all c ∈ L. This means that r cannot query the oracle Gv on elements of the form
(c, 〈i, b0, ... , bn〉) because then the computation would not be successful. Hence,
using r, we can construct a witnesses thatD〈i,b0,...,bn〉 is computable inD〈i,b0,...,bn〉 but
that is a contradiction to Theorem 3.19. (Note that F does not matter here because
the information contained in F could be saved in a set-sized parameter.)

Conversely, assume that BJ , v � Pi(rank�(b0), ... , rank�(bn)). By definition of
G, it follows thatGv(a, 〈i, b0, ... , bn〉) is defined for all a ∈ L. Hence, a realiser for ϕi
can be easily obtained by querying the oracle G(a, 〈i, b0, ... , bn〉): if the result is 1,
then return a realiser of�(a, 〈i, b0, ... , bn〉). If the result is 0, then return a realiser of
¬�(a, 〈i, b0, ... , bn〉). In both cases, the computation of the corresponding realiser
is trivial because the formulas are negative. �

Let �(Pi) = ϕi and extend � to a translation of all formulas in the language of
first-order logic in the obvious way. Note that the formulas ϕi are Π3-formulas.

Lemma 5.13. Let A(y0, ... , yn) be a formula in the language of first-order logic.
Then:

(i) If there is a realiser r �v A�(b0, ... , bn), then

BJ , v � A(rank�(b0), ... , rank�(bn)).

(ii) There is a realiser rA such that for all b0, ... , bn ∈ L, if

BJ , v � A(rank�(b0), ... , rank�(bn)),

then

rA(b0, ... , bn) �v A�(b0, ... , bn).

Proof. We prove (i) and (ii) simultaneously by induction so that both directions
are available in the induction hypothesis. We begin with proving the cases for (i). The
base case follows from Lemma 5.12. For conjunction, A ∧ B , note that �v A� ∧ B�
entails �v A� and �v B� . Hence, by induction hypothesis, BJ , v � A and BJ , v � B .
So, BJ , v � A ∧ B . For disjunction, A ∨ B , we have that r �v A� ∨ B� entails that
there is a U-bar B for v such that for everyw ∈ B , either rw(0) = 0 and rw(1) �w A�
or rw(0) = 1 and rw(1) �w B� . By induction hypothesis, this means that there is a
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U-bar B for v such that for every w ∈ B , w � A or w � B . Hence v � A ∨ B . The
case for implication is similar (making use of (ii) as well), and the cases for universal
and existential quantification follow with the induction hypothesis.

Regarding the cases for (ii), we recursively construct the required realisers
rA(b0, ... , bn), uniform in b0, ... , bn ∈ L, for each formula A. Once more, the base
case, rPi (y0, ... , yn), was established in Lemma 5.12. To keep notation light, we will
write ȳ for y0, ... , yn (or, potentially, a subsequence of this), and similarly for b̄.

For conjunction (A ∧ B)(ȳ), take r(A∧B)(ȳ)(b̄)(0) = rA(b̄) and r(A∧B)(ȳ)(b̄)(1) =
rB(b̄). An application of the induction hypothesis shows that r(A∧B)(ȳ) does the job.

For implication (A→ B)(ȳ), we know by our induction hypothesis—for both (i)
and (ii)—that rB(ȳ)(b̄) �w B(b̄) if and only if w � B(b̄) for all w ≥ v. Hence, let
rA→B(ȳ)(b̄, s) = rB(b̄). It is straightforward to check that this does the job.

For disjunction, define rA∨B(ȳ) to be the SRM+,O that, on input b̄, returns a code
s for an SRM+,O with parameters b̄ that does the following. On input 0, s calls the
oracle F on (�(A ∨ B)(ȳ)�, 〈b̄〉) and returns this value. On input 1, s returns rA(b̄)
if F (�(A ∨ B)(ȳ)�, 〈b̄〉) = 0 and it returns rB(b̄) otherwise. To see that r(A∨B)(ȳ)

does the job, assume that there is a U-bar B such that for every w ∈ B , w � A(b̄)
or w � B(b̄). Equivalently, by induction hypothesis, for every w ∈ B , rA(b̄;w) �w
A(rank�(b0), ... , rank�(bn)) or rB(b̄;w) �w B(rank�(b0), ... , rank�(bn)). By defi-
nition of r(A∨B)(ȳ), it follows that r(A∨B)(ȳ)(b̄;w)(1) = rA or r(A∨B)(ȳ)(b̄;w)(1) = rB .
In conclusion, r(A∨B)(ȳ)(b̄;w) �w (A ∨ B)(b̄).

For existential quantification, define r∃xA(x,ȳ) to be the function that, on input b̄,
calls the oracle F on input (�∃xA(x, y)�, 〈b̄〉). Let the result of this query be n ∈ �.
Then let r∃xA(x,ȳ)(0) = n and r∃xA(x,ȳ)(1) = rA(n,ȳ). Note here that we do not require
the use of parameters because the realiser rA(n,ȳ) is uniform in n, ȳ. To check that
r∃xA(x,ȳ) does the job, let b̄ ∈ L and assume that there is a U-bar B for v such that,
for everyw ∈ B , there is some nw ∈ � such thatw � A(nw, rank�(b̄)). By induction
hypothesis, it follows that rA(nw ,ȳ)(b̄;w) �w A�(nw, b̄) (as BJ has constant domain
� and rank�(nw) = nw), i.e., r∃xA(x,ȳ)(b̄, 0;w) �w A�(r∃xA(x,ȳ)(b̄, 1;w), b̄). Hence,
r∃xA(x,ȳ)(b̄; v) �v ∃xA�(x, b̄).

For universal quantification, define r∀xA(x,ȳ)(ȳ) to be the function that returns
rA(x,ȳ)(x, ȳ). �

If J is a set of formulas in first-order logic, we write J � for the image of J under �
(i.e., J � = �[J ]).

Theorem 5.14. Let J be a recursively enumerable theory in intuitionistic first-order
logic, and T ⊆ CZF + PowerSet + AC. Then T + J � � A� if and only if J �IQC A.

Proof. The backwards direction is straightforward with the soundness of the
Beth realisability model. For the forward direction, assume that J �� A. Then, by
Theorem 5.4, we know that BJ �� A. In this situation, Lemma 5.13 implies that there
is no realiser of A� . But the same lemma implies that B� is realised for every B ∈ J .
Hence, T + J � �� A� . �

The following corollary follows immediately by taking J = ∅.
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Corollary 5.15. Let T ⊆ CZF + PowerSet + AC be a set theory. Then the
first-order logic of T is intuitionistic first-order logic, QL(T ) = IQC. In particular,
QL(CZF) = IQC.

Remark 5.16. Rathjen [21] points out that “the combination of CZF and the
general axiom of choice has no constructive justification in Martin-Löf type theory.”
In contrast, our results show that the combination of CZF and the axiom of
choice is innocent on a logical level in that adding the axiom of choice does not
result in an increase of logical strength: QL(CZF + AC) = QL(CZF) = IQC. Note,
of course, that CZF + AC satisfies the law of excluded middle for Δ0-formulas.
This follows from the proof of Diaconescu’s theorem (see Section 2) which only
requires Δ0-separation to prove the law of excluded middle for Δ0-formulas. Such
theories satisfying the law of excluded middle for Δ0-formulas but not in general are
sometimes called semi-intuitionistic.
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