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The Vibrations of a Particle about a Position of
Equilibrium—Part 2.

The Relation between the Elliptic Function and Series Solutions.

By BKVAN B. BAKER.

(Read \3th January 1922. Received 30th June 1922.

1. In a previous paper, entitled the " Vibrations of a Particle
about a Position of Equilibrium," by the author in collaboration
with Professor E. B. Ross (Proc. Edin. Math. Soc, XXXIX, 1921,
pp. 34-57), a particular dynamical system having two degrees of
freedom was chosen and solutions of the corresponding differential
equations were obtained in terms of periodic series and also in
terms of elliptic functions. I t was shown that for certain values
of the frequencies of the principal vibrations, the periodic series
become divergent, whereas the elliptic function solution continues
to give finite results.

In the present paper it is shown that the solution in terms of
periodic series may be deduced from that in terms of elliptic
functions by certain transformations. I t is thus possible to discuss
the cause of divergence of the periodic series and to define the
region in which they are convergent. I t is further shown that in
the remaining region in which real solutions of the problem exist,
the solution in terms of periodic series derived from the elliptic
function solution takes a quite different form.

2. 4>i and <p2 were taken to represent the normal coordinates of

the system, ^ and ^2 the corresponding momenta and ^-, •^•
41T 2W

the frequencies of the principal vibrations. A contact transforma-
tion to another system of coordinates plt p2, qlt qt was applied,
defined by the equations

' coaPi > ti = ^2*i ?i • sin p,;

cosp2; V2 = V2s2 ?2. sin p2.
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Hamilton's function {H) was assumed to be

H = s1q1 + sa q2 + a.q1 q-i . cos {2pt — p2).

The equations of motion of the system then become
(2)

pi = - s, -

. sin

. cos (2p

• C 0 S

x - p2),

p2) , (3)

From these it follows that q1 + 2q1 = c (4)
where c is a constant. Since the energy of the system is a constant,
we have further s1q1 + s2q2 +ajqt q2i cos(2p, -p,) = h (5)
where h is a constant.

We assumed, without loss of generality, that c and s, were both
equal to unity, and wrote 1 - h = g and 2s1-s2<=s; we then deduced
solutions in series in the form

1 C C OL' ' 1 OC*

a2*— cos M + £a, (ak - 4a2) — - 2ax a2 («! - a2)— cos M

(6)

with corresponding expressions for q1, px and p,; where

(9)

e, and «2 are arbitrary constants and < is the time.

* In the previous paper by Baker and Ross, loe. cit., this equation, given on
page 40, contains a misprint in the last term.
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This solution is obviously divergent when s is very small, i.e.
when the frequencies of the principal vibrations are such that «»is
nearly equal to 2«i.

3. The solution in terms of elliptic functions was shown to
depend on the cubic equation

iv?a?-(4.a? + fr)xi + {a? + 1sg)x-tf = 0; (10)

since, when plt p2 and qx are eliminated between the second of
equations (3) and equations (4) and (5) we obtain

ql = 4o,2 qi - (4<x.2 + s2) qi + («.• + lag) q2 - f.

Denoting the roots of equation (10) by X, p, v, where AS /i5 v, and
defining quantities I, m, k by the equations

l + m l + mk l-mk

where 0 < km < I < m and 0<k<l<p<v<m, it follows that

with corresponding expressions for qt, p1 and p2.
By means of this elliptic function solution it was shown that

real solutions of the problem can only occur for a certain range of
values of s and g, namely, when all the roots of the cubic (10) are
real and two of the roots are less than \; if s and g are taken as
variables the range of permissible values is limited by the curve
obtained by plotting the discriminant of the cubic equated to zero,
and was shown to be the shaded area in the figure (in obtaining
the figure a. was taken equal to 0-l). The elliptic function solution
is valid, and admits of calculation in any particular case, through-
out the whole of this permissible area except on the double line
s = 2^ (so called since the factor s-2g occurs squared in the
expression for the discriminant). On this double line the modulus
k of the elliptic functions is unity, and the solution is obtainable
in a particular form which was given (Joe. cit., p. 52).

We have therefore the apparent contradiction that the elliptic
function solution is valid whenever a real solution exists (except

https://doi.org/10.1017/S0013091500035951 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500035951


37

upon the double line), whereas the series solution certainly breaks
down for some such values. The problem is therefore to discover
why the series solution is limited in its application.

4. To investigate this we first, reduce the elliptic function
solution to the series solution. I t is convenient to concentrate
attention on one coordinate, say q2, the work being obviously
similar for the other coordinates.

Equation (12) may be written

IKxIKx
provided k< 1. Putting u= , where iKia the real period of the
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elliptic functions, and using the formula

2_Kx 1 r2gisina;- 2?* sin 3a; + 2y¥ sin 5a; - ...
" • • ] •

we obtain, after some reduction,

q-2 = I + (m - I) [2B . sin x . qi - 2k (1 - cos 2x) qi

+ 2A* . (3 sinx - sin 3x)qi - 2k2(3-4 cos 2a; + cos 4a;)? + ...]...(14)
This expansion is valid throughout the whole region in which a
real solution exists except in the immediate neighbourhood of that
part of the double line, s = 2g, for which k=l. From equations
(11) we obtain

l - v - , / („- / . ) ( , -A) ,

k

the ambiguity of sign being removed by the condition m > I.
The series (14) reduces to the particular forms given in the

previous paper (loc. cit., pp. 53 and 54) on all boundaries of the
permissible area : for on the part of the double line, s= 2g, which
is a boundary of the permissible area we have A = /x = £ < v and
therefore l = \ and k — 0, . •. q., reduces to J, which agrees with the
result previously obtained ; on the curved part of the discriminant
curve which is a boundary of the permissible area we have
A = yu < J < v and therefore 1= A and & = 0, giving q2=\ which
agrees with the previous result.

5. To reduce y, to the form of au expansion in powers of —

we require to obtain A, p and v in series of powers of — .
8

Writing g = kis, so that k2 is the same as the constant introduced
in the series solution and defined by equation (8), the cubic (10)
takes the form

Assuming a to be small in comparison with s, the two smallest
roots of the cubic are given by

~ Jx~(\-2,x) (17)
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Solving this equation by successive approximations we obtain

s <r
. . . a a.2 a.3 a.1 <A. ^

0" AlT+ V"" V + 4^"" V + V ~ •" '
where

(18)

.4,= - 2 ( 1 - - 1OAJ+2OAJ),

- 2376^ + 1402MJ - 20592*1),

A, = 2 (1 - 2*̂ ) (5 - 70*| + 280** - 336*«).

also, since A + //. + v = l + —— , we have

(19)

4c3

Neglecting higher powers of — and substituting these values in

equations (15) we obtain

k = 180* )̂ ^
s

136^-7176^ + 4321

- 64368*1) _
s

.: *'= JT^?= 1 - 2* (̂1 - 2*1;—- | (1 - 2k\f (1-60*?+ 180*=)-̂

+ | ( 1 - 2*|)a(64~27844+16203*4-24
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To this approximation

1 - JY
" 1+ Jk1'

l+-^(l-6O*5+18O*})-£

1
16/Jf

(64-2784A1+16203**

- 24192A|) —

(3-232*S + 6312*J

and qi = i*, (1 - 2*|) (—) [~ 1 + 4r (l ~ 60A* + 180^) 4"l •
\ S / |_ OK* 8 J

Further

m = s^-fl + 2 (2 - 5£*) -^ - 5 (1 - 2*|) (1 - 6/^)-^

+ 4 (1 - 1k\ )(5 - 51AJ + 1O2A4) ^ I,

(1 - 2/q) (1 - 6*5)-^ - 2 (1 - 2*5) (1 - 11*5+ 22**)4 •
s s

-L
We deduce

** qi =h(\ - 2*5)

and kqi =*|(1 - 2*5)s ^ .
s

Substituting these values in equation (14) we obtain

l - 2*5) s in». — + | (1 - 2*5) (1 - 6*5)^-
8 S

(21)
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6. Now using the series solution for q2, equation (6), sub-

stituting for A, in terms of k% and arranging in powers of — ,
8

we have

q2 = kl + k, (1 - 2/4) cos M. — + $ (1 - 2$) (1 - 6AS> i
8 o

+ 4 r (1 - 2*|) (1 - 28A| + 84*$) cos M. -^
fCry 8

^(l-2/fc;)2cos2i/]-^ (22)

s

Thus if we can identify M with x + — the two expansions (21) and

(22) will be the same.
Integrating equation (13) we obtain

M = ±J^T) < / ( ' - x ) ( ' - / 0 <*-")•« + <?, (23)

where C is an arbitrary constant of integration. Taking the
negative sign and using the values already obtained we find

(24)

2Z
since, to this approximation = 1 and therefore x = u.

7T

Now M is given by

< 4
\_

2 4

+ 2 ( 0 , - 0 , , ) — - $ ( i 1 2 )
8 8

^ ] ....(25)
Comparing (24) and (25) it follows that x and M differ only by an

arbitrary constant, which may be taken to be — .

The series solution is thus completely identified with a series
solution obtained from the elliptic function solution.

7. In obtaining this result it has been assumed that a. is small
in comparison with s. Now let us suppose « to be small compared

4 Vol. 40

https://doi.org/10.1017/S0013091500035951 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500035951


42

with a.. In this case two of the roots of the cubic are given by

(26)

Solving this equation by successive approximations we find the
two largest roots of the cubic to be

1 1 . 1 *2 \
^ ( 5> +

2 2 V2 a. 8

~ (1-2*5) (1 + 4*5 + 20*3) ^

•£-(1-2*5) * * £ + ....,

1 s4

...(27)

the remaining root is then

This gives

where

...(28)

https://doi.org/10.1017/S0013091500035951 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500035951


43

Writing

32 V 2

.(29)

we obtain

1 - 4C, (—V + 8A — - (4C, + 85, (7.) f - ? + 165? f—V ;

Also

L \a. ) s( J

Substituting in equation (14) we deduce

-2C?)— + ... | s i... | s i na ;x
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We thus obtain a series of the form

the coefficients Dlt D%, D3, ... being infinite series involving x and
&i. A series of this form will therefore represent q2 in that part
of the permissible area in which the series (21) is divergent.

8. To summarise the results: we have found that the elliptic
function solution may be expressed in the form of a series of powers
of q, the coefficients in this series being functions of the roots of
the cubic (10) and periodic functions of the quantity x. The roots
of the cubic may be expressed in the form of series of positive

powers of — , provided that s is sufficiently large in comparison
8

with a.; in this case the series obtained from the elliptic function
solution reduces to the series solution obtained in the previous

paper, namely, to a periodic series of positive powers of —. On the
8

other hand, if « is small compared with <x, the roots of the cubic

may be expressed in the form of series of positive powers of —,
and the series obtained from the elliptic function solution then
reduces to the form (30).

The convergence or divergence of the series solution therefore
depends directly on the convergence or divergence of the series of

positive powers of — expressing the roots of the cubic. The

divergence of the series solution does not imply any discontinuity
in the system but merely shows that this form of series is not
capable of representing the functions over the whole range of
values of s and g which correspond to real solutions.

A fundamental difference is thus to be observed between the
series solution and the series (14) obtained from the elliptic
function solution This latter series is divergent when k=l, i.e.
when « = 2^, and this divergence does imply a discontinuity of the
system. This appears to bear out a remark made in the previous
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paper (loc. cit., p. 57), namely, that the double line is probably the
limiting case of a belt in the region of real solutions, in which no
stible orbit can occur; such a belt would probably arise when
other less important and suitably chosen terms were introduced
into the fundamental expression for H, equation (2).

9. To determine the boundary of the region in which the series
solution is convergent, we observe that the form (21) will be
derived from the expansion (14) whenever the roots of the cubic
are expressible in the form of infinite series of positive powers of

—; and that the form (30) will be derived whenever the roots are
s

expressible in the form of infinite series of positive powers of —.
a.

Further, it is apparent that at least one of the roots of this

cubic is an even function of —, this root being obtained from
3

equation (16) when it is put in the form
jP_ (*»-»)»

this equation then being solved by successive approximations. If
then x> J, equation (31) will take the form

and we shall then obtain from this root an infinite series of positive

powers of —, and q2 will be of the form
8

if x<\, equation (31) will take the form

powers of —, and q2 will be of the form (21). On the other hand,
8

12a;2 + . . . ) , (33)

and we shall obtain for this root an infinite series of positive

powers of — so that q% will be of the form (30).
a.

Now in the previous paper (Joe. cit., p. 48) it was shown that,
in the permissible area, one, and only one, root of the cubic is
greater than \; so that, when equation (31) reduces to the form
(32), this equation must give the greatest root of the cubic. Thus
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a necessary condition that qt shall be represented by a series of the
form (21) is that the greatest root of the cubic shall be an even

function of — .
s

The condition is also sufficient: for suppose the greatest root of

the cubic to be an even function of —; this root must be given

either by equation (31) or by equation (26) or by equation (17).
If it is given by equation (31) the series obtained will consist

of positive powers of—, and.<?2 will be given by equation (21).
s

If, however, the greatest root is given by either of equations (17)
or (26), another root of the cubic must be obtained by changing

the sign of —. But we have supposed this root to be an even
s

function of —, and therefore in this case we must have two roots
s

equal and greater than £, which is impossible. Thus if the greatest

root is an even function of — it must be given by equation (31).
A necessary and sufficient condition for the convergence of the

series (21) is therefore that the greatest of the roots of the cubic

(10) should be an even function of —.s ' s
This condition, though of interest theoretically, does not lend

itself to the determination of the boundary of the region of con-
vergence of the series solution. I t will be seen, however, that it
does define a certain range of values of s and g, for which the series
(21) will be convergent.

10. In certain simple cases this range of values of 8 and g may
be readily determined.

(i) On the double line, s = 2g, outside the points of contact with
the discriminant curve, the roots of the cubic are

The condition is therefore satisfied all along this boundary of the
permissible area.
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EDINBURGH MATHEMATICAL SOCIETY

FORTY FIRST SESSION. 1922-23.

T 'HE FOURTH ORDINARY MEETING for the Session
will be held on Friday, gtk February, at 7 p.m.

in the RESEARCH ROOM of the MATHEMATICAL-

INSTITUTE of EDINBURGH UNIVERSITY.

BUSINESS.
1. The Algebra of Geometrical Reciprocation,

Professor H. W. TURNBULL.
2. Note on a Theorem of Barlow's regarding

the representation of a number as a sum
of four squares, Professor J. E. A. STEGGALL.

3. Motion with reference to Rule 6 (as below).

At the January Meeting the Committee gave notice of the
following motion with reference to Rule 6, to be moved at the
February Meeting :—

"That the Ordinary Meetings be held on the First Friday of
the month instead of the Second Friday, except in the
month of January."

Any Members to whom this alteration will cause inconvenience
are requested to communicate with the Secretary before the Meeting.

Tea will be served in the Institute from 6 15 p.m.

The Subscription of Ten Shillings for the current Session is now due, and
payable to the Hon. Treasurer,

E. M. HORSBURGH, M.A., D.Sc, A.M.I.C.E.,
11 GRANVILLK TERRACE, EDINBURGH.

BEVAN B. BAKER, Hon. Sec,
Mathematical Institute, 16 Chambers Street, Edinburgh.

Committee Meeting at 6.40 p.m.
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(ii) When # = 0, i.e. k2 = 0, the roots of the cubic are given by

A. = 0.

If therefore s- > 8a.5, v will be an even function of — and the

series obtained will be

A. = 0.

We obtain then, from equation (14),

/a.2 2a4 \

and the series solution in this case reduces to

it may be verified, as before, that M=x + —.

If, however, s2<8a.2, v will be an odd function of— and the series

obtained will be
1 s 1 s2 1 ss Is"

v = l + —=r— + + 1==- = — + . . . ,
V o a. o a. ID v o a. OH v o a.

1 8 1 *2 I s 3 I s 5

J~8 a. 8 a.2 16 N/TT a.3 51

in this case we shall reach a solution of the form (30).
The demarcation between the two forms of series solution thus

occurs when «2 = 8a2.
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11. To determine the boundary of the region of convergence in
genera], suppose the roots of the cubic to be diminished by A, the
smallest root. The cubic then becomes

-2k)z + (v-\)(n-\)}=0, (34)
having roots

0, z =

We thus get the following relations between the roots of the
original cubic (10)

These will develope into series of positive powers of— only if

— is the dominant term under the radical, i.e. if
16a.'

- >

8a.2

• JA — oA

^ ( 2 A - 3 A 2 ) 1 (35)

This condition will define a certain range of values of s and g
for which the series solution will be convergent. The limit between
the two forms of series solution will occur when

= 1. .(36).

By eliminating A between equation (36) and the equation of the
cubic (10), when x is replaced by A, the equation of this boundary
curve could be obtained.

In practice it is simplest to take trial values of s and g, solve
the cubic and test whether the condition (35) is satisfied. Pro-
ceeding in this way, the boundary curve is found to consist of that
part of the double line which lies between its points of contact
with the curved branches of the discriminant curve, together with
the curve indicated by a broken line in the figure. For values of
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s and g corresponding to points on that side of this curve which
is remote from the origin and which lie in the permissible area,
the series solution (21) will be convergent. For other points in
the permissible area the series solution will be divergent, and the
solution will be represented by series of the form (30).

13. The discussion has been only concerned with the one
coordinate q2, but it is seen to apply also to the coordinate qu since
it is related to q2 by the equation

ql + 2q2=l.

The reduction of the coordinates p, and p., would be more difficult
on account of the complicated form of their expression in terms of
elliptic functions (see Baker and Ross, loc. cit, p 56), but there is
no doubt that agreement could be obtained in the same manner.

The argument has shown that the divergence of the series
solution arises in a natural manner from the divergence of the series
representing the roots of a certain cubic, and it demonstrates fully
the failure of the series solution to give a complete representation
of the system, just as one form of the expansions for the roots
of the cubic represents them only for a limited range of the
coefficients.

This is believed to be the first case in which it has been found
possible to determine the conditions of convergence of series of the
form of those discussed, and is of importance on account of the
frequency with which they occur in the problems of Mathematical
Physics. Although the argument applies only to this particular
problem, there seems some justification for believing that the
conditions obtained indicate the form of the conditions which
govern the convergence of such series in general.

In conclusion, I would express my continued obligation to
Professor E. T. Whittaker, who originated the problem, for repeated
advice and encouragement.
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