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This paper presents an asymptotic theory for recurrent jump diffusion models with
well-defined scale functions. The class of such models is broad, including general
nonstationary as well as stationary jump diffusions with state-dependent jump sizes
and intensities. The asymptotics for recurrent jump diffusion models with scale
functions are largely comparable to the asymptotics for the corresponding diffusion
models without jumps. For stationary jump diffusions, our asymptotics yield the
usual law of large numbers and the standard central limit theory with normal
limit distributions. The asymptotics for nonstationary jump diffusions, on the other
hand, are nonstandard and the limit distributions are given as generalized diffusion
processes.

1. INTRODUCTION

Though various jump diffusion models have been commonly used to model asset
prices in theoretical and empirical finance and in financial economics, the asymp-
totic properties of jump diffusions are largely unknown except for some simple
cases. Jump diffusions are Markov processes whose asymptotics have already
been established under general conditions. Nevertheless, the existing asymptotic
theory of general Markov processes is of limited use for the statistical inference of
jump diffusion models. The existing asymptotics for general Markov processes
are given in terms of their invariant measures, which are difficult to obtain,
and virtually impossible to compute even numerically for general nonstationary
Markov processes (see, e.g., Höpfner and Löcherbach, 2003).1 Furthermore,
the existing asymptotics are only available for positive recurrent processes and
integrable transformations of null recurrent processes. This severely restricts the
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applicability of the existing theory, since nonintegrable transformations appear
frequently in the statistical analysis of financial time series, such as in the unit
root test and the maximum likelihood estimation of parametric jump diffusion
models.

This paper develops an asymptotic theory for the class of general recurrent jump
diffusions that are reducible to local martingales by strictly increasing and twice
continuously differentiable nonlinear transformations. Not all jump diffusions are
in the class of jump diffusions that are reducible to local martingales. However,
the class is still broad, including nonstationary as well as stationary diffusions
with jumps driven by general compound Poisson processes of state dependent
sizes and intensities. Pure diffusion models without jumps are all reducible to
local martingales by their scale transformations, which are defined as the solutions
of simple differential equations. As the paper shows, the scale functions of jump
diffusion models can also be defined as the solutions of certain integro-differential
equations, reducing general jump diffusions to local martingale jump diffusions. In
the paper, we provide some sufficient conditions for the existence of scale functions
for general jump diffusion models and demonstrate how they may be obtained
numerically.

The most critical and innovative step in the development of our asymptotics
is to represent the scale-transformed local martingale jump diffusions approx-
imately as time changed Brownian motions.2 The representation is novel, and
expected to be generally useful for various asymptotic analyses of jump diffusion
models. Our asymptotics for jump diffusion models are comparable to those
for pure diffusion models developed in Jeong and Park (2013) and Kim and
Park (2017).3 This is rather surprising, given that the jump diffusion model is
different from the pure diffusion models in some essential aspects.4 For stationary
jump diffusions, our asymptotics yield the usual law of large numbers and the
standard central limit theory with normal limit distributions. On the other hand,
the asymptotics for the nonstationary jump diffusions are nonstandard and the
limit distributions are given as generalized diffusions. In general, we show that
the asymptotics for the jump diffusion models reducible to local martingales are
essentially the same as those for the corresponding pure diffusion models without
jumps.

Our asymptotics for the jump diffusion models are fully and exclusively deter-
mined by their functional parameters: the drift and diffusion functions for the

2For pure diffusion models, it is well known that the scale-transformed local martingale diffusions can be represented
exactly as time changed Brownian motions without any approximations, on which the asymptotics in Jeong and Park
(2013) and Kim and Park (2017) heavily rely.
3In particular, our asymptotics rely heavily on Jeong and Park (2013), which can be downloaded from
https://fis.yonsei.ac.kr/app/yonsei/member/download.do?attachNo=158.
4For the pure diffusion model, the scale function and speed measure are defined explicitly in terms of its infinitesimal
parameters, which fully characterize its recurrence property and invariant distribution. In contrast, this is not the case
for the jump diffusion model, and the recurrence property and invariant distribution of the jump diffusion model are
largely unknown except for some simple and special cases. Furthermore, unlike the pure diffusion model, the jump
diffusion model is not representable as a time changed Brownian motion.
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diffusive part and the jump size and intensity functions for the jump part. As
a result, the limit distributions derived from our asymptotics can be computed
directly from the functional parameters of the jump diffusion models. This is in
sharp contrast with the limit distributions obtained from the existing asymptotics
of general Markov processes, which involve the unknown invariant measures of
underlying Markov processes. In particular, our approach allows us to numerically
obtain the invariant measures of stationary and nonstationary jump diffusion
models, which greatly facilitates the statistical inference in jump diffusion models.
Furthermore, all of our asymptotics, including the asymptotics for integrable
and nonintegrable functions of nonstationary jump diffusions as well as the
standard asymptotics for stationary jump diffusions, are developed within a single
framework.

In the development of our asymptotics, we consider the limits of the continuous
time additive functionals and the martingale transforms of Brownian motion and
compensated Poisson process as the time span T increases. We assume that a
jump diffusion process X is observed continuously up to time T. This is simply
for expositional convenience. Our asymptotics are also directly applicable when
X is only observed discretely at the sampling interval �, as long as we set � → 0
sufficiently fast relative to T → ∞. This is seen clearly in Aït-Sahalia and Park
(2012, 2016), Jeong and Park (2013), and Kim and Park (2017). The primary
motivation of our asymptotics is to effectively analyze the continuous time models
with jump diffusions using high frequency observations collected over a long
time period. In many practical applications requiring such analyses, � is quite
small while T is only moderately large, making our asymptotics relevant and
useful.

The rest of the paper is organized as follows: Section 2 presents a jump
diffusion model and the preliminaries necessary to develop its asymptotics. Several
examples of the jump diffusion model are also introduced with the required
technical regularity conditions. Section 3 defines and analyzes the scale function
and the speed density of the jump diffusion model. Section 4 develops the limit
theory for general jump diffusion models, including the standard asymptotics
under stationarity, and the invariance principle and the asymptotics for the additive
functionals and the martingale transforms under nonstationarity. The limit theory
is then applied to find more explicit asymptotics for jump diffusion models com-
monly used in practical applications. Section 5 demonstrates that we may obtain
the scale function and speed density of the jump diffusion model numerically.
Illustrative application is provided in Section 6, and concluding remarks follow
in Section 7. Mathematical proofs are collected in the Appendix.

A word on notation. In the paper, we follow the notational convention that is
widely used and considered to be standard in the literature on Markov processes.
The linear functional notation is used for integrals, which means that the integral
of a function f : R → R with respect to a measure m on R is denoted as m(f ) in
place of

∫
fdm or

∫
f (x)m(dx). Moreover, the same notation m is used to signify

the measure m itself and the density of m with respect to the Lebesgue measure.
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Therefore, we have

m(f ) =
∫

f (x)m(dx) =
∫

(mf )(x)dx

as a consequence. This notational convention is maintained throughout the paper,
and should cause no confusion.

2. MODEL AND PRELIMINARIES

We consider the jump diffusion model given by the stochastic differential equation

dXt = μ(Xt)dt +σ(Xt)dWt +dJt, (1)

where W is a standard Brownian motion and J is a compound Poisson process,
whose mean, variance, and intensity are given, respectively, by ν(Xt−), τ 2(Xt−),

and λ(Xt−), conditional on Xt−. More specifically, we let

dJt = [ν(Xt−)+ τ(Xt−)Zt
]
dNt
(
λ(Xt−)

)
, (2)

where Z is a sequence of i.i.d. zero mean and unit variance random variables whose
common density function is given by φ, and N

(
λ(X)

)
is a Poisson process of inten-

sity λ(X), which we may also write as Nt(λ(Xt−)) = (N◦�)t with a Poisson process
N of unit intensity and �t =

∫ t
0 λ(Xs)ds.5It is assumed that W, Z, and N are mutually

independent. Typically, X is defined on the domain D = (−∞,∞) or (0,∞).
It is possible to consider a more general jump process given by

dJt = 	(Xt−,Zt)dNt
(
λ(Xt−)

)
(3)

for some 	 : D×R → R. However, in this paper, we focus on the jump diffusion
model given by (2), to effectively analyze the differing roles of the mean and the
variance of the jumps in the asymptotics of jump diffusions. Nevertheless, some
of our asymptotics are also still applicable for the jump diffusion model with a
more general jump process in (3), as argued later. Although we set the jump size
and intensity to be flexible and state dependent, we only consider the compound
Poisson-type jump processes with finite jump activities. In particular, we do not
allow for general Lévy jump processes with infinite activities.

Below are examples of jump diffusion models that have been previously
considered in the literature.

Example 2.1. (OU process with jumps) The Ornstein–Uhlenbeck (OU) process
with jumps is defined by

dXt = (α1 +α2Xt)dt +βdWt + (γ + δZt)dNt(η)

5See, for example, Jeanblanc, Yor, and Chesney (2009, p. 476). Here and elsewhere in the paper, we denote the
Poisson process of unit intensity simply by N, instead of by N(1).
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with α2 < 0 and β,δ,η > 0, in which X may be written more explicitly as

Xt = X0eα2t + α1

α2
(eα2t −1)+β

∫ t

0
eα2(t−u)dWu +

∫ t

0
eα2(t−u)(γ + δZu)dNu(η)

(4)

using Itô’s lemma. It is well known that X becomes stationary, if and only if the
condition

∫
R

log(1+|z|)φ(z)dz < ∞ holds and X0 follows the invariant distribution
of X given by

−α1 +γ η

α2
+β

∫ ∞

0
eα2tdWt +γ

∫ ∞

0
eα2t
[
dNt(η)−ηdt

]+ δ

∫ ∞

0
eα2tZtdNt(η)

(see, e.g., Applebaum, 2009, Thm. 4.3.17).

Example 2.2. (Lévy process with jumps) The Lévy process with jumps is
defined as

dXt = αdt +βdWt + (γ + δZt)dNt(η)

with β,δ,η > 0. The process X becomes recurrent if α + γ η = 0. If we let
Yt = exp(Xt), it follows from Itô’s lemma that

dYt =
(

α + β

2

)
Ytdt +βYtdWt +Yt−(e(γ+δZt) −1)dNt(η).

This jump diffusion model was considered in Merton (1976).

Example 2.3. (Affine model with jumps) The affine model with jumps is given
by

dXt = (α1 +α2Xt)dt +√β1 +β2|Xt|dWt + (γ + δZt)dNt
(
η1 +η2|Xt−|)

with α2 < 0, β1,β2,δ,η1 > 0 and η2 ≥ 0. Duffie, Pan, and Singleton (2000) used
this process earlier. Due to Theorems 2.1 and 2.2 of Zhang (2011), X admits a
stationary distribution if either (i) −α2 > γη2 and E|Zt|ε < ∞ for some ε > 0, or
(ii) η2 = 0 and E log(1+|Zt|) < ∞. Moreover, Lemma 2.1 of Zhang (2011) shows
that X defined with the restriction α2 = η2 = 0 is a unique weak solution that is
càdlàg, nonexplosive, and satisfies the Feller property.

Example 2.4. (AQ model with jumps) The affine-quadratic (AQ) model with
jumps is given by

dXt = (α1 +α2Xt)dt + (β1 +β2|Xt|)dWt + (γ + δZt)dNt(η)

with α2 < 0 and β1,β2,δ,η > 0. Theorem 1(2) of Wee (1999) shows that the
transition of X with normally distributed Z converges weakly as t → ∞ to a
proper distribution independent of the initial value, and that X has a unique
invariant distribution. Consequently, X becomes stationary if started from its
invariant distribution, which in most cases we may expect to be identical to its
limit distribution.
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Example 2.5. (GHK model with jumps) The generalized Höpfner–Kutoyant
(GHK) jump diffusion model is defined as

dXt = α1Xt(α2 +X2
t )

β1−1dt +β2(β3 +X2
t )

β1/2dWt + (γ + δZt)dNt(η)

for β1,β2,δ,η > 0, β3 ≥ 0 and 2α1 > −β2
2 . Kim and Park (2017) introduce the GHK

model without jumps and show that it generates diffusions with many distinctive
asymptotic properties depending upon their parameter values. The GHK model
extends the model used earlier by Höpfner and Kutoyants (2003). This model
accommodates a flexible class of jump diffusions, which are not covered by our
previous examples.

For the jump diffusion X defined in (1), we assume throughout the paper that it
is Harris recurrent, and that it satisfies the following assumption.6

Assumption 2.1. (a) σ 2(x),τ 2(x),λ(x) > 0 for all x ∈ D.
(b) μ(x), σ 2(x), ν(x), τ 2(x) and λ(x) are piecewise infinitely differentiable for

all x ∈ D and regularly varying at the boundaries of D.
(c) |ν| and |τ | are regularly varying with indices κν and κτ , respectively, such

that κν < 1 and κτ < 1 at the boundaries of D.

Assumption 2.1 is not very stringent. In (a), there are the standard regularity
conditions that we expect to hold for all jump diffusion models used in practical
applications. The differentiability of functional parameters and their boundary
regularity conditions in (b) are also routinely imposed in the study of diffusion
and jump diffusion models. In contrast, (c) is more important and is crucial for our
asymptotics. It requires that both |ν| and |τ | are majorized asymptotically by any
linear function. This is necessary to regulate the effect of jumps and to maintain
the distributional invariance in our asymptotics of jump diffusion models. If (c)
fails, the asymptotics of jump diffusion models may become irregular and model
dependent.

For various classes of functions f, g1 and g2 defined on D, we will obtain the
asymptotics of

FT =
∫ T

0
f (Xt)dt, G1

T =
∫ T

0
g1(Xt)dWt,

G2
T =

∫ T

0
g2(Xt−)

[
υ(Zt)dNt

(
λ(Xt−)

)−φ(υ)λ(Xt)dt
]

as T → ∞, where υ is given arbitrarily as a function and other notations are defined
earlier. For expositional convenience, we assume that X is continuously observable
here. However, as discussed below, our asymptotics also hold for the corresponding
moments of discrete samples from X.

6The reader is referred to, for example, Höpfner and Löcherbach (2003) for the precise meaning of Harris recurrence,
and to Menaldi and Robin (1999) for the recurrence properties of jump diffusion models.
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To be more precise, let X be observed discretely at intervals of length � up to
time T = n�, and define FT,� = �

∑n
i=1 f (Xi�), G1

T,� =∑n
i=1 g1(X(i−1)�)(Wi� −

W(i−1)�) and G2
T,� =∑n

i=1 g2(X(i−1)�)[Ji�(υ)−J(i−1)�(υ)], where J(υ) is a jump
process defined as

dJt(υ) = υ(Zt)dNt
(
λ(Xt−)

)−φ(υ)λ(Xt)dt,

that is, a compensated compound Poisson process with intensity λ(X) and com-
pounding distribution given by υ(Z). Then FT,� = FT

(
1+op(1)

)
, G1

T,� = G1
T

(
1+

op(1)
)
, and G2

T,� = G2
T

(
1 + op(1)

)
for � sufficiently small relative to T, and

it follows that FT,δ , G1
T,�, and G2

T,� have the same limits as FT , G1
T , and G2

T ,
respectively, if we let � → 0 sufficiently fast relative to T → ∞. This can be
shown rigorously as in Aït-Sahalia and Park (2012, 2016), Jeong and Park (2013),
and Kim and Park (2017).

3. SCALE FUNCTION AND SPEED DENSITY

To derive our asymptotics, we need to introduce the scale function and the speed
density for the jump diffusion model. The scale function for the jump diffusion
model is motivated and defined similarly as in the pure diffusion model. However,
the notion of the speed density for the jump diffusion model is novel, and plays an
important role in our asymptotics.

3.1. Scale Function

For the jump diffusion X introduced in (1), we define its scale function s as a
solution to the integro-differential equation(

μs·+ 1

2
σ 2s··

)
(x) = −λ(x)

∫
R

(
s
[
x+ν(x)+ τ(x)z

]− s(x)
)
φ(z)dz (5)

whenever it exists, wherein we denote by s· and s·· the first and second derivatives
of s, respectively. If we transform X with this scale function, then the scale
transformed process s(X) becomes a local martingale. To show this, we apply Itô’s
lemma to deduce

ds(Xt) =
(

μs·+ 1

2
σ 2s··

)
(Xt)dt + (σ s·)(Xt)dWt

+
(

s
[
Xt− +ν(Xt−)+ τ(Xt−)Zt

]− s(Xt−)
)

dNt
(
λ(Xt−)

)
, (6)

and note it follows from (5) that

Et−
(

s
[
Xt− +ν(Xt−)+ τ(Xt−)Zt

]− s(Xt−)
)

dNt
(
λ(Xt−)

)= −
(

μs·+ 1

2
σ 2s··)(Xt)dt,

https://doi.org/10.1017/S0266466624000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000069


8 MINSOO JEONG AND JOON Y. PARK

where Et− denotes the conditional expectation at time t−.7 Therefore, s(X)

becomes a local martingale. If μ = −νλ, then s(x) = x and X is said to be in natural
scale. In what follows, the first derivative s· of the scale function s of X is referred
to as the scale density of X.

Throughout the paper, the following conditions are assumed.

Assumption 3.1. The scale function s exists, and it is strictly increasing from
−∞ to ∞ and it has the derivative s· which is asymptotically monotone and
regularly varying with an index κ such that κ > −1 at the boundaries of D.

For any continuous diffusion X without jumps, the scale function s always exists
and s· satisfies all conditions in Assumption 3.1 as long as κ > −1 under the
conditions in Assumption 2.1. Furthermore, s diverges to ±∞ at boundaries of
D, if and only if X is recurrent.

Unfortunately, for jump diffusion X, the scale function s may not exist, and the
divergence of s at the boundaries ofD is only necessary and generally not sufficient
to ensure the recurrence property. Nevertheless, Assumption 3.1 appears to hold
for a large class of jump diffusion models. To show this, we further characterize
the solution of the integro-differential equation (5) below.

Lemma 3.1. The function f = s··/s· is a fixed point of the integral operator A
defined as

(Af )(x) = −2μ

σ 2
(x)− 2τλ

σ 2
(x)
∫
R

exp

(∫ x+ν(x)+τ(x)z

x
f (y)dy

)
ϕ(z)dz,

that is, f = Af .

Therefore, we can expect that the scale function s exists, whenever the operator
A defined in Lemma 3.1 is a contraction. In the next lemma, we provide a sufficient
condition, which ensures that A is a contraction and that the scale function exists.
In what follows, we let �(x) = ∫ x

−∞ φ(z)dz and ϕ(x) = 1{x ≥ 0}−�(x).

Proposition 3.2. Let |ν(x)| ≤ ν̄, τ(x) ≤ τ̄ , (λ/σ 2)(x) ≤ λ̄σ , and |(μ/σ 2)(x)| ≤
μ̄σ for all x ∈ D with some constants μ̄σ,λ̄σ,ν̄,τ̄ > 0. Moreover, define

Pc,ν̄,τ̄ =
∫
R

�c,ν̄,τ̄ (z)dz,

Qc,ν̄,τ̄ =
∫
R

∣∣∣∣Pc,ν̄,τ̄ 1{y ≥ 0}−
∫ y

−∞
�c,ν̄,τ̄ (z)dz

∣∣∣∣dy,

where �c,ν̄,τ̄ (z) = exp[c(ν̄ + τ̄ |z|)]|ϕ(z)| for some c > 0, and assume that there
exists 0 < c < ∞ such that 2μ̄σ +2τ̄ λ̄σ Pc,ν̄,τ̄ ≤ c and 2τ̄ 2λ̄σ Qc,ν̄,τ̄ < 1. Then there
exists a strictly increasing solution s to the integro-differential equation (5).

7See, for example, Jeanblanc et al. (2009, Sect. 8.8.4 and Prop. 8.8.6.1) for the computation of this type of expectation.
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Remark 3.1. When φ is the standard normal density function and ν = 0, the
conditions in Proposition 3.2 hold if8

K(τ̄,μ̄σ ) ≤ 1+2τ̄ (μ̄σ + τ̄ λ̄σ )

τ̄ 2λ̄σ

,

K(τ̄,μ̄σ ) <
1+4τ̄ μ̄σ −τ̄ 2

(
λ̄σ −4μ̄2

σ +λ̄σ

√
2/π

)−2τ̄ 3λ̄σ μ̄σ

√
2/π

4τ̄ 3λ̄σ μ̄σ (1+ τ̄ μ̄σ )
,

where

K(τ̄,μ̄σ ) = 2exp

(
(2τ̄ μ̄σ +1)2

2

)
�
(
2τ̄ μ̄σ +1

)
and � is the standard normal distribution function. Note that, for any given value
of μ̄σ , there will always be a τ̄ and λ̄σ small enough to satisfy the conditions intro-
duced here. Therefore, for the jump diffusions with normal-compound Poisson
jumps, the scale functions exist whenever τ̄ and λ̄σ are sufficiently small.

Remark 3.2. The boundedness conditions |ν(x)| ≤ ν̄, τ(x) ≤ τ̄ , (λ/σ 2)(x) ≤ λ̄σ

and |(μ/σ 2)(x)| ≤ μ̄σ required in Proposition 3.2 are satisfied by a large class of
jump diffusion models. The conditions are satisfied by the Lévy jump diffusion
model in Example 2.2, the affine jump diffusion model in Example 2.3, the AQ
jump diffusion model in Example 2.4, and the GHK jump diffusion model in
Example 2.5, that is, all jump diffusion models provided as examples in the
previous section, except for the OU jump diffusion model.

Proposition 3.2 only provides a set of sufficient conditions for the existence
of the scale function. Needless to say, a jump diffusion that does not satisfy the
conditions there may also have the scale function. In some special cases, the scale
function may be obtained explicitly, as shown below.

Example 3.1. Let X be given by

dXt = αXtdt +βXtdWt +Xt−(e(γ+δZt) −1)dNt(η)

with parameter restriction γ η = −α + β/2 as well as β > 0. Clearly, X may be
redefined as

dXt = αXtdt +βXtdWt +
(
γ ∗Xt− + δ∗Xt−Z∗

t

)
dNt (7)

with γ ∗ = Ee(γ+δZt) − 1, δ∗2 = E
(
e(γ+δZt) − 1 − γ ∗)2, and Z∗ = (e(γ+δZ) − 1 −

γ ∗)/δ∗, conformably as our representation of jump diffusion models. For the
jump diffusion model (7), the scale function is given by s(x) = log(x). In fact,
it follows immediately from Itô’s lemma that we have d log(Xt) = (α −β/2)dt +
βdWt + (γ + δZt)dNt(η), which becomes a local martingale jump diffusion under
parameter restriction γ η = −α+β/2. Moreover, it is easy to see that s(x) = log(x)

8Though quite lengthy, the derivation of this sufficient condition is rather straightforward. It will be provided upon
request.
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satisfies the integro-differential equation (5) with any distribution for Z∗ defined
from arbitrary Z as long as EZt = 0 and EZ2

t = 1.

In some cases, our asymptotics rely only on the limit of the scale function s(x) as
x approaches the boundaries ofD. Therefore, it suffices to find a limit version of the
scale function, which becomes asymptotically equivalent to the scale function as x
approaches the boundaries of D. An asymptotically equivalent version of the scale
function may be obtained by applying the so-called method of dominant balance to
the integro-differential equation (5).9 To employ the method of dominant balance,
we need to introduce a moment condition on Z.

Assumption 3.2. Let φ(ιk) < ∞ for some k such that

k > max

(
2(κ +2),

|κ+ −κ−|−1+ (κν ∨κτ )

1−κτ

)
,

where κ+ and κ− are the regularly varying indices of s· at the right and the left
boundaries of D with κ = κ+ ∨κ−, and κν and κτ are the regularly varying indices
of ν and τ at the boundaries of D.

If Z has a bounded support, the condition in 3.2 is trivially satisfied.

Lemma 3.3. The asymptote of the solution s· to the integro-differential equation
(5) obtained by the method of dominant balance is given as

s·(x) ∼ exp

(
−
∫ x

w

2(μ+νλ)

σ 2 + (ν2 + τ 2)λ
(u)du

)
(8)

for any w ∈ D as x approaches the boundaries of D.

In our subsequent discussions, the function defined in (8) and its anti-derivative
are referred to as the asymptotic scale density and the asymptotic scale function,
respectively, to distinguish them from the exact scale density and the true scale
function given by the integro-differential equation (5). Though always obtainable,
the asymptotic scale density and the asymptotic scale function are meaningfully
defined only when the exact scale density and the exact scale function exist.10

The asymptotic scale density of the jump diffusion model in (8) is indeed
well expected from the scale density of the diffusion model, which is given by
exp
(− ∫ x

w

(
2μ/σ 2

)
(u)du

)
. For the diffusion model, μ(x) and σ 2(x) in the scale

density represent the conditional mean and variance of the infinitesimal increment
in X at X = x for x ∈ D, respectively. Analogously,

(
μ + νλ

)
(x) and

(
σ 2 +

(ν2 + τ 2)λ
)
(x) represent the conditional mean and variance of the infinitesimal

9The method of dominant balance is a well-known and widely used method to determine the asymptotic behavior of
solutions to a differential equation or an integro-differential equation. Though we may normally expect the method of
dominant balance to find an asymptotically equivalent version of the solution to a differential equation or an integro-
differential equation, it may fail in some pathological cases (see Lin and Segel, 1974, pp. 188–189).
10Clearly, the method of dominant balance only works for the integro-differential equation (5) when it has a solution.
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AN ASYMPTOTIC THEORY FOR JUMP DIFFUSION MODELS 11

increment in X at X = x for x ∈ D, respectively. As expected, if we set λ = 0, the
asymptotic scale density of the jump diffusion model reduces to the scale density
of the diffusion model.

Example 3.2. We may easily obtain the asymptotic scale functions for the jump
diffusions introduced earlier in Section 2. For all of them, we have D = R. The
asymptotic scale densities of the OU process with jumps in Example 2.1 under
α2 < 0 and the affine model with jumps in Example 2.3 under α2 < 0 and α2 <

γη2 < −α2 both exponentially increase as x → ±∞. On the other hand, for the
Lévy process with jumps in Example 2.2, the asymptotic scale density is 1 under
α +γ η = 0. Moreover, the asymptotic scale densities of the AQ and GHK models
with jumps in Examples 2.4 and 2.5 are given, respectively, by

c(x)|x|−2α2/β2
2 and c(x)|x|−2α1/β2

2

as x → ±∞, where c(x) = a1{x ≥ 0} + b1{x < 0} for some constants a,b ≥ 0
depending upon their parameter values.

3.2. Speed Density

For a local martingale jump diffusion given by

dXt = −(νλ)(Xt)dt +σ(Xt)dWt +
[
ν(Xt−)+ τ(Xt−)Zt

]
dNt
(
λ(Xt−)

)
, (9)

we define its speed density as

m(x) =
(

1

σ 2 + (ν2 + τ 2)λ
)

(x) (10)

for x ∈ D. Following the usual convention, m is also used to denote the measure
defined by the density m with respect to the Lebesgue measure.

It follows from our definition that

d〈X〉t = 1

m(Xt)
dt,

where 〈X〉 is the conditional quadratic variation of X in (9). This is analogous to the
definition of the speed density m for the local martingale diffusion dXt = σ(Xt)dWt,
which is given by m(x) = 1/σ 2(x) and yields d[X]t = d〈X〉t = [1/m(Xt)

]
dt. For

a local martingale jump diffusion X, 〈X〉 becomes a compensator for [X] and
we have, in particular, Et−d[X]t = d〈X〉t = [1/m(Xt)

]
dt with Et− denoting the

conditional expectation at time t− (see, e.g., Protter, 2005 for more discussions).
Note that even instantaneous futures are unknown for jump diffusions, whereas
continuous diffusions are perfectly predictable over any infinitesimal time interval.
As is well known, any continuous local martingale diffusion X can be represented
as a time changed Brownian motion, and its speed density indicates how fast to read
X at each spatial point x ∈ R to make it a Brownian motion. Likewise, we show in
the paper that the speed density of a local martingale jump diffusion X represents
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the expected speed at which X should be read at each spatial point x ∈ R to make
it an approximate Brownian motion asymptotically.

Our definition of the speed density for local martingale jump diffusions intro-
duced above may be extended to general jump diffusions reducible to local
martingales by their scale transformations. If X is the general jump diffusion in
(1) and it has a well-defined scale function s, the speed density ms for its scale
transformation Xs = s(X) in (6) is given by

ms(x) =
(

1

σ 2
s +ω2

s λs

)
(x), (11)

where σs = (σ s·)◦ s−1, λs = λ◦ s−1 and ω2
s = ω2 ◦ s−1 with

ω2(x) =
∫
R

(
s
[
x+ν(x)+ τ(x)z

]− s(x)
)2

φ(z)dz (12)

for x ∈ R. If X is a local martingale jump diffusion in (9), then s becomes identity
and ω2 in (12) reduces to ω2 = ν2 + τ 2. In this case, the speed density ms in (11)
reduces to the speed density m in (10). The speed density ms of Xs introduced in
(11) leads us to define the speed density m of X as

m(x) =
(

1

σ 2s·+ (ω2λ)/s·
)

(x) (13)

for x ∈ D.11 Note that, for the speed densities m and ms, respectively, of X and
Xs = s(X) defined in (11) and (13), we have m(f ) = ms(fs) for all m-integrable f
with fs = f ◦ s−1.

As we may expect, the speed density defined in (13) represents the invariant
measure of any jump diffusion X satisfying our assumptions, particularly a jump
diffusion reducible to a local martingale by its scale transformation. The invariant
measure of a recurrent Lévy process is the Lebesgue measure, as shown in,
for example, Applebaum (2009, Exer. 6.7.7), and this corresponds to the speed
density obtained from (13). More generally, it can be easily seen by comparing
the existing asymptotics for general Markov processes with our asymptotics
specifically developed for jump diffusions. The former is given in terms of the
invariant measures of underlying Markov processes, whereas the latter is fully
characterized by the speed densities of jump diffusions (see, e.g., Höpfner and
Löcherbach, 2003, Thm. 3.1 and the theorems in the next section). As a result,
the speed density m can be used to find an essential recurrence property for any
Harris recurrent jump diffusion X reducible to a local martingale by its scale
function: X becomes positive recurrent if m is integrable, and null recurrent if m
is nonintegrable. This is precisely the same as in the continuous diffusion model
without jumps.

11For the jump diffusion models specified in (3), the speed densities ms and m are similarly defined with ω2(x)

replaced by
∫
R

(
s
[
x+	

(
x,z
)]− s(x)

)2
φ(z)dz.
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Once the scale density s· is given, the speed density m may be readily found from
(13). The speed densities may be obtained from either the exact scale function or
the asymptotic scale function, and the resulting speed densities are referred to as
the exact speed density or the asymptotic speed density, respectively. Of course,
the latter is much easier to find than the former. Typically, the integrability of m
is determined entirely by its behavior at the boundaries of D. Therefore, we only
need its asymptotic speed density to find whether a given jump diffusion is positive
recurrent or null recurrent.

Example 3.3. For the jump diffusions introduced in Section 2, all with
D =R, their asymptotic speed densities may be easily derived from the asymptotic
scale densities obtained in Example 3.2. The asymptotic speed densities of the OU
process with jumps in Example 2.1 under α2 < 0 and the affine model with jumps
in Example 2.3 under α2 < 0 and α2 < γη2 < −α2 both decrease exponentially as
x → ±∞, which implies that they are integrable. For the Lévy process with jumps
in Example 2.2, the asymptotic speed density is constant under α + γ η = 0, and
therefore, it is not integrable. On the other hand, the asymptotic speed densities
of the AQ and the GHK models with jumps in Examples 2.4 and 2.5 are given,
respectively, by

c(x)|x|α2/β2
2 −2 and c(x)|x|α1/β2

2 −2β1

as x → ±∞, where c(x) = a1{x ≥ 0}+ b1{x < 0} for some constants a,b ≥ 0 as
defined in Example 3.2. Note that the asymptotic speed density of the AQ model
with jumps is always integrable under α2 < 0.

For our asymptotics developed later in the paper, the following conditions are
employed.

Assumption 3.3. The speed density ms of Xs = s(X) in (11) is either integrable
or regularly varying such that ms(λx)/|λ|r → m̄s(x) as λ → ∞, where

m̄s(x) = a|x|r1{x ≥ 0}+b|x|r1{x < 0} (14)

for some r > −1 and a,b ≥ 0 with a+b > 0.

If ms is regularly varying with index r > −1, we may let ms(λ) denote either
ms(λ) or ms(−λ) depending upon whether ∞ or −∞ is the dominating boundary
and have ms(λx) ∼ ms(λ)m̄s(x) as λ → ±∞ with m̄s given by (14), in which
case either a or b becomes unity. The reader is referred to, for example, Kim
and Park (2017) for more details. In Assumption 3.3, we effectively assume that
ms(λ) ∼ |λ|r, which excludes the possibility of ms(λ) having a slowly varying com-
ponent in the limit as λ → ∞. This can be restrictive. However, this assumption is
not essential and is only made to more clearly and explicitly present our subsequent
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asymptotics.12 For expositional brevity, we will simply say that ms is regularly
varying with index r > −1 if it satisfies Assumption 3.3.

In case ms is not integrable and regularly varying, our asymptotics involve its
index r > −1.13 To find it, we only need to know any asymptotic version of
the speed density ms of Xs = s(X) on R defined in (11), for which we have the
following.

Proposition 3.4. We have ω2
s (x) ∼ [(ν2 + τ 2)s·2] ◦ s−1(x) as x → ±∞, where

s and s· are any asymptotic versions of the scale function and the density,
respectively.

Therefore, the index r of regular variation for ms is easily found, once we obtain
any asymptotic versions of σ 2

s and λs.

Example 3.4. Under the required conditions, the OU process with jumps and
the affine model with jumps in Examples 2.1 and 2.3 become stationary and they
have integrable speed densities. The Lévy process with jumps in Example 2.2
is already in natural scale under the recurrence condition and it has a constant
speed density. Let c(x) be defined as in Examples 3.2 and 3.3. For the AQ model
with jumps in Example 2.4, under the given condition, we have ms(x) ∼ c(x)|x|−2

as x → ±∞, which follows directly from (11) using the results in Example 3.2
and Proposition 3.4. Finally, the GHK model with jumps in Example 2.5 yields
ms(x) ∼ c(x)|x|(4α1/β2

2 −2β1)/(1−2α1/β2
2 ) as x → ±∞. Therefore, it is regularly varying

with index r > −1 if (4α1/β
2
2 −2β1)/(1−2α1/β

2
2 ) > −1. On the other hand, it is

integrable if (4α1/β
2
2 −2β1)/(1−2α1/β

2
2 ) < −1.

4. ASYMPTOTIC THEORY

In this section, we establish the asymptotics of jump diffusion models reducible
to local martingales by their scale transformations under positive and null recur-
rences.

4.1. Asymptotics Under Positive Recurrence

For the positive recurrent jump diffusions reducible to local martingales by their
scale transformations, we have the following limit theorems.

Theorem 4.1. Let X be positive recurrent and define π(x) = m(x)/m(D). If f,
g1g′

1 and λg2g′
2 are π -integrable, then we have

12For instance, the normalizing sequences in our subsequent asymptotics are defined as explicit functions of the
sample span T depending on r, which would be impossible without our assumption here.
13Recall that ms is integrable if and only if m is integrable.
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1

T

∫ T

0
f (Xt)dt →a.s. π(f ),

1√
T

∫ T

0
g1(Xt)dWt →d N1

(
0,π(g1g′

1)
)
,

1√
T

∫ T

0
g2(Xt−)

[
υ(Zt)dNt

(
λ(Xt−)

)−φ(υ)λ(Xt)dt
]→d N2

(
0,φ(υ2)π(λg2g′

2)
)

jointly as T → ∞, where N1 and N2 denote two independent multivariate normal
distributions and υ : R → R is any function such that φ(υ4) < ∞.

Theorem 4.1 establishes the asymptotics for the additive functionals and the
martingale transforms of positive recurrent jump diffusions, which yield the usual
law of large numbers and the standard central limit theory with normal limit
distributions. This is well expected. In fact, our asymptotics here are known to
hold for all positive recurrent Markov processes satisfying the Feller property, as
long as the required integrability conditions are satisfied. The reader is referred to,
for example, Maruyama and Tanaka (1959) and Küchler and Sørensen (1999) for
more details.

Though they are already well known, our asymptotics here are meaningful for
at least two reasons. First, we show that they can be derived in parallel with the
asymptotics for nonstationary jump diffusions within a single unified framework.
Second and more importantly, our asymptotics show that the speed density m
defined in the previous section indeed defines the invariant measure. The invariant
measures of jump diffusion models are generally not available in any closed-forms,
except in some special cases. For instance, the invariant distribution of the OU
jump diffusion in Example 2.1 is already well known to be a self-decomposable
distribution (see, e.g., Applebaum, 2009, Thm. 4.3.17). Moreover, Theorem 2.4 of
Zhang (2011) characterizes the invariant distribution of the affine jump diffusion
in Example 2.3 in terms of its Fourier transformation. Of course, it is possible to
simulate the invariant distributions of any jump diffusions under stationarity. See
Panloup (2008) for the conditions needed to obtain the invariant distribution of a
stationary jump diffusion by simulating its sample paths.

4.2. Asymptotics Under Null Recurrence

For the null recurrent jump diffusions reducible to local martingales by their scale
transformations, we establish an invariance principle and use it to derive their
additive functional and martingale transform asymptotics.

4.2.1. Invariance Principle. In our subsequent discussions, we let the jump
diffusion X be in natural scale, by redefining if necessary s(X) as X, and say that it
is regular with index r > −1 if its speed density m is regularly varying with index
r > −1 and satisfies Assumption 3.3. Moreover, we denote by C[0,1] the space of
continuous functions defined on [0,1].
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Proposition 4.2. Let X be regular with index r > −1, and define XT on [0,1]
for each T by XT

t = T−1/(r+2)XTt. Then we have

XT →d X◦ (15)

in C[0,1] as T → ∞, where X◦ is defined as X◦ = B◦ Ā from the standard Brownian
motion B with local time L and

Āt = inf

{
u

∣∣∣∣
∫
R

m̄(x)L(u,x)dx > t

}
for 0 ≤ t ≤ 1.

The invariance principle established in Proposition 4.2 for the null recurrent
jump diffusions is essentially the same as that of the null recurrent continuous
diffusions without jumps previously obtained in Jeong and Park (2013). The limit
process X◦ in (15) is a generalized diffusion process called the skew Bessel process.

To derive our limit theorems, the following assumption is introduced.

Assumption 4.1. We assume that (a) there exists p > 1 such that E
∣∣XT

1

∣∣p is
bounded uniformly in T, and (b) λ is regularly varying with an index greater than
or equal to −min(r+2,p) at ±∞.

Assumption 4.1 does not appear to be stringent. In fact, the limit process X◦
obtained in Proposition 4.2 has finite moments to the infinite order, and Jeong
and Park (2013) show that all the moments of XT are uniformly bounded for null
recurrent continuous diffusions without jumps.

Under these additional assumptions, we obtain the following proposition, which
further decomposes and characterizes the limit process X◦. This decomposition
of X◦ plays an important role in characterizing the limit distributions in Theo-
rem 4.4(b).

Proposition 4.3. Let X be regular with index r > −1, and let Assumption 4.1
hold. Then, for WT, NT, and ZT defined by

WT
t = 1√

T
WTt,

NT
t = 1√

T

∫ Tt

0

[
1

λ1/2(Xu−)
dNu
(
λ(Xu−)

)−λ1/2(Xu)du

]
,

ZT
t = 1√

T

∫ Tt

0

Zu

λ1/2(Xu−)
dNu
(
λ(Xu−)

)
,

we have

WT →d W◦, NT →d N◦, ZT →d Z◦

in C[0,1] jointly with XT →d X◦ in (15) as T → ∞, where W◦, N◦ and Z◦ are
mutually independent standard Brownian motions. Furthermore, X◦ is given in
terms of W◦, N◦ and Z◦ as
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m̄1/2(X◦
t )dX◦

t =
(√

pc1{X◦
t ≥ 0}+√

qc1{X◦
t < 0}

)
dW◦

t

+
(√

1−pc1{X◦
t ≥ 0}+√1−qc1{X◦

t < 0}
)

dJ◦
t (16)

with

dJ◦
t =
(√

pz1{X◦
t ≥ 0}+√

qz1{X◦
t < 0}

)
dN◦

t

+
(√

1−pz1{X◦
t ≥ 0}+√1−qz1{X◦

t < 0}
)

dZ◦
t ,

where pc, qc, and pz, qz are constants defined by

σ 2

σ 2 + (ν2 + τ 2)λ
(x) → pc,qc,

ν2

ν2 + τ 2
(x) → pz,qz

as x approaches the right and the left boundaries of D, respectively.

Proposition 4.3 shows that the limit process X◦ of X is defined as a generalized
diffusion driven by three mutually independent Brownian motions W◦, N◦, and
Z◦. Note that W◦ is the limit of the Brownian motion driving the diffusive
part of X, while N◦ and Z◦ are the Brownian motions representing the limit
behaviors of the mean and volatility components, respectively, of the jump part
in X. The limit fractions pc and qc denote the proportion of X◦ generated by the
diffusive limit Brownian motion W◦, and the limit fractions pz and qz designate
the proportions of the limit Brownian motion of the jump part J◦ contributed by
its mean component N◦.

In general, X◦ is dependent on all of the three Brownian motions W◦, N◦, and Z◦.
However, there are special cases in which X◦ becomes independent of some subsets
of the Brownian motions. If, for instance, pc,qc = 1, then X◦ is driven only by W◦,
and it becomes independent of N◦ and Z◦. This happens if σ 2 � (ν2 + τ 2)λ at
the boundaries of D and the diffusive part of X asymptotically dominates its jump
part. Likewise, if σ 2 � (ν2 + τ 2)λ at the boundaries of D and the jump part of X
dominates its diffusive part asymptotically, then pc,qc = 0 and X◦ is driven entirely
by N◦ and Z◦ and becomes independent of W◦. On the other hand, depending upon
whether the mean or the volatility component of jumps dominates, that is, ν2 � τ 2

or ν2 � τ 2 at the boundaries of D, then pz,qz = 1 or pz,qz = 0, and therefore, X◦
becomes independent of Z◦ or N◦.

Example 4.1. As a simple illustration, we consider the jump diffusion in natural
scale given by

dXt = −ν(Xt)dt +σ(Xt)dWt + [ν(Xt−)+ τ(Xt−)Zt]dNt.

If σ 2 ∼ ν2 ∼ τ 2 ∼ 1 at boundaries ±∞ of D = R, then

XT
t = 1√

T

∫ Tt

0
σ(Xt)dWt + 1√

T

[∫ Tt

0
ν(Xu−)(dNu−du)+

∫ Tt

0
τ(Xu−)ZudNu

]
→d X◦

t = W◦
t +N◦

t +Z◦
t
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as T → ∞. However, if σ 2 ∼ 1 � ν2,τ 2 at ±∞, then X◦ = W◦ and X◦ is
independent of N◦ and Z◦. Likewise, if σ 2 ∼ ν2 ∼ 1 � τ 2 at ±∞, then X◦ =
W◦ + N◦ and X◦ is independent of Z◦. Finally, if σ 2 ∼ τ 2 ∼ 1 � ν2 at ±∞, then
X◦ = W◦ +Z◦ and X◦ is independent of N◦.

Remark 4.1. For the models with more general jumps in (3), Proposition 4.3 is
expected to hold with the same limits, where the asymptotes pc, qc, and pz, qz are
defined similarly with ν(x) and τ 2(x) replaced by

∫
R

	(x,z)φ(z)dz,
∫
R

	 2(x,z)φ(z)dz−
(∫

R

	(x,z)φ(z)dz

)2

,

respectively.

4.2.2. Asymptotics for Additive Functional and Martingale Transforms.
Clearly, we may write f (X) = fs(Xs) with Xs = s(X) and fs = f ◦ s−1 for any
function on D. Therefore, without loss of generality, we assume in what follows
that X is already in natural scale.

Definition 4.1. We say that f is m-asymptotically homogeneous if f is not
m-integrable, and

f (λx) = κ(f,λ)h(f,x)+ δ(f,λ,x)

with

|δ(f,λ,x)| ≤ a(f,λ)p(f,x)+b(f,λ)q(f,λx)

as λ → ∞, where (i) h(f,·), p(f,·), and q(f,·) are locally bounded on R\{0},
locally integrable in measures m and m̄, (ii) κ(f,λ) is nonsingular for all large
λ, (iii) q(f,·) is vanishing at infinity, and (iv)

limsup
k→∞

∥∥κ(f,λ)−1a(f,λ)
∥∥= 0, limsup

k→∞

∥∥κ(f,λ)−1b(f,λ)
∥∥< ∞.

We call κ(f,·) and h(f,·) the asymptotic order and the limit homogeneous function
of f, respectively. If (i)′ h(f,·), p(f,·), and q(f,·) are locally square integrable in
measures m and m̄ in place of (i), then f is said to be m-square asymptotically
homogeneous.

Our main asymptotics are given in the following theorem.

Theorem 4.4. Let X be regular with index r > −1, and let Assumption 4.1 hold.
Moreover, let υ : R → R be any function such that φ(υ4) < ∞.
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(a) If f is m-integrable and g1 and
√

λg2 are m-square integrable, then

1

T1/(r+2)

∫ T

0
f (Xt)dt →d Km(f )E1/(r+2),

1√
T1/(r+2)

∫ T

0
g1(Xt)dWt →d

√
Km(g1g′

1)
1/2B1 ◦E1/(r+2),

1√
T1/(r+2)

∫ T

0
g2(Xt−)

[
υ(Zt)dNt

(
λ(Xt−)

)−φ(υ)λ(Xt)dt
]

→d

√
Kφ(υ2)m

(
λg2g′

2

)1/2
B2 ◦E1/(r+2),

jointly as T → ∞, where E1/(r+2) is the Mittag-Leffler process with index 1/(r +2)

at time 1, and B1 and B2 are mutually independent standard vector Brownian
motions independent of E1/(r+2), and

K = �((r +1)/(r +2))

�((r +3)/(r +2))

(r +2)2/(r+2)(
a1/(r+2) +b1/(r+2)

),
where a and b are from (14) and � is the gamma function.

(b) Let f be m-asymptotically homogeneous, and let g1 and
√

λg2 be m-square
asymptotically homogeneous, with their asymptotic orders smaller than |x|p at the
boundaries of R. Then

1

T
κ
(
f,T1/(r+2)

)−1
∫ T

0
f (Xt)dt →d

∫ 1

0
h
(
f,X◦

t

)
dt,

1√
T

κ
(
g1,T

1/(r+2)
)−1
∫ T

0
g1(Xt)dWt →d

∫ 1

0
h
(
g1,X

◦
t

)
dW◦

t ,

1√
T

κ
(√

λg2,T
1/(r+2)

)−1
∫ T

0
g2(Xt−)

[
υ(Zt)dNt

(
λ(Xt−)

)−φ(υ)λ(Xt)dt
]

→d

√
φ(υ2)

∫ 1

0
h
(√

λg2,X
◦
t

)
dV◦

t

jointly as T → ∞ in the notations defined in Definition 4.1 and Proposition 4.2,
where V◦ is a standard Brownian motion defined jointly as a multidimensional
Brownian motion with W◦,N◦, and Z◦ introduced in Proposition 4.3 such that
EW◦

t V◦
t = 0, EN◦

t V◦
t = tφ(υ)/

√
φ(υ2) and EZ◦

t V◦
t = tφ(ιυ)/

√
φ(υ2).

Remark 4.2. (a) Our asymptotics in Theorem 4.4(a) may be viewed as special
cases of more general asymptotics in Theorem 3.1 of Höpfner and Löcherbach
(2003). However, in our asymptotics, the invariant measure m is explicitly given in
terms of the functional parameters μ, σ , ν, τ , λ, and φ of the jump diffusion model.
In contrast, the invariant measure m is not specified in their asymptotics, and it is
generally impossible to compute the actual limit distributions derived from their
asymptotics. Note that the invariant measure of a null recurrent jump diffusion
cannot be obtained by the usual simulation method.
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(b) In Theorem 4.4(b), we have non-degenerate limit distributions only if the
limit homogeneous functions of f, g1 and g2 have supports that have nonempty
intersections with the support of m̄ defined in Assumption 3.3.14 The asymptotics
for such degenerate cases can also be readily developed as in Kim and Park (2017),
though the details are not reported in the paper.

The distributions of B1 ◦ E1/(r+2) and B2 ◦ E1/(r+2) appearing in the martingale
transform asymptotics in Theorem 4.4(a) are mixed normal. However, the distri-
butions of

P =
∫ 1

0
h
(
g1,X

◦
t

)
dW◦

t and Q =
∫ 1

0
h
(√

λg2,X
◦
t

)
dV◦

t

representing the martingale transform asymptotics in Theorem 4.4(b) are generally
not normal mixtures, and reduce to be mixed normal only when X◦ is independent
of W◦ and V◦, respectively. As shown in Proposition 4.3, X◦ is driven by three
Brownian motions W◦,N◦, and Z◦. Therefore, X◦ and W◦ become independent
if and only if X◦ is driven only by N◦ and Z◦, which requires σ 2 � (ν2 + τ 2)λ

at the boundaries of D so that pc,qc = 0, and in this case, the distribution of P
becomes mixed normal. For the independence of X◦ and V◦, on the other hand,
we may consider three cases. First, if X◦ is driven entirely by W◦, which requires
σ 2 � (ν2 +τ 2)λ at the boundaries of D so that pc,qc = 1, X◦ becomes independent
of V◦, since V◦ is independent of W◦. Second, if ν2 � τ 2 at the boundaries of D so
that pz,qz = 1 and X◦ is driven by W◦ and N◦, then X◦ becomes independent of V◦ as
long as φ(υ) = 0 so that N◦ is independent of V◦, and if ν2 � τ 2 at the boundaries
of D so that pz,qz = 0 and X◦ is driven by W◦ and Z◦, then X◦ becomes independent
of V◦ as long as φ(ιυ) = 0 so that Z◦ is independent of V◦. Finally, if φ(υ) = 0
and φ(ιυ) = 0, then X◦ and V◦ will always become independent regardless of the
values of pc,qc, and pz,qz.

Example 4.2. Let X be the Lévy process with jumps in Example 2.2 with γ > 0
and the recurrence condition α+γ η = 0. Clearly, X is in natural scale, and its speed
measure is given by the Lebesgue measure. In this simple case, we may directly
obtain

X◦
t = βW◦

t +γ
√

ηN◦
t + δ

√
ηZ◦

t ,

which also follows from Propositions 4.2 and 4.3 as a special case. For this model,
we may explicitly obtain the distributions of P and Q with g1 = g2 = ι. In fact, it
follows that

P = β

∫ 1

0
W◦

t dW◦
t +√

η

∫ 1

0

(
γ N◦

t + δZ◦
t

)
dW◦

t ,

where the distribution of the first term is essentially non-normal, though the
distribution of the second term is mixed normal. On the other hand, we have

14Since X is assumed to be in natural scale, we denote m̄s from Assumption 3.3 as simply m̄ here.
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Q = √
ηβ

∫ 1

0
W◦

t dV◦
t +η

∫ 1

0

(
γ N◦

t + δZ◦
t

)
dV◦

t ,

where the distribution of the first term is mixed normal, but the distribution of the
second term becomes mixed normal only when φ(υ) = 0 and φ(ιυ) = 0.

5. NUMERICAL COMPUTATION

For a wide class of jump diffusion models, the exact scale function may be
obtained numerically. If the integral operator A introduced in Lemma 3.1 is a
contraction and has a fixed point, we may numerically compute the scale function
s by iteratively solving for a fixed point of A until convergence. It is natural
to use the asymptotic scale function in Lemma 3.3 obtained by the method of
dominant balance as an initial function needed to start iterations. To demonstrate
the numerical computation of the exact scale function, we consider two classes
of jump diffusion models, the affine jump models and the GHK jump models
introduced, respectively, in Examples 2.3 and 2.5, with parameter values obtained
from the real data. The affine jump model is fitted with the term spread of interest
rates, defined by the 10-year treasury constant maturity rate minus the 2-year
treasury constant maturity rate (from January 1985 to June 2015). The GHK jump
model is fitted with the logs of the USD/GBP exchange rates (from January 1974
to June 2015) and the USD/EUR exchange rates (from January 1999 to June 2015).
For the former, we consider both normal and uniform jumps to see the effect of
the jump distribution on the scale function. For the latter, jumps are generated as
normals.

In sum, we have four fitted models, labeled Models I–IV. Models I and II are
the affine jump models with (α1,α2,β1,β2,δ,η1) = (0.01, −0.1,0.14,0.1,0.08,16)

and γ = η2 = 0, respectively, with normally and uniformly distributed Z,
Models III and IV are the GHK jump models with (α1,α2,β1,β2,β3,δ,η) =
(−0.009,0.02,0.02,0.08,0.0002,0.01,20) and (α1,α2,β1,β2,β3,δ,η) = (−0.005,
0.004,0.07,0.11,0.002,0.01,15), respectively, with γ = 0 and normally dis-
tributed jumps. From our asymptotic theory, we may readily show that the jump
diffusions generated from Models I to III are positive recurrent, while those from
Model IV are null recurrent.15

The exact scale functions of Models I–IV are numerically computed and pre-
sented, together with their asymptotic scale functions introduced in (8), in Figure 1.
The exact and asymptotic scale functions become identical at the boundaries of
D = R, which shows that the method of dominant balance works for all of the
models considered here. In fact, the exact and asymptotic scale functions are quite
close to each other over the entire domain, as well as at the boundaries of, D = R.
Our iterative procedure, started at the asymptotic scale function, converges rather
quickly and almost instantly finds the exact scale function in all models.

15This implies, in particular, that the log of the USD/GBP exchange rates are stationary, while the log of the USD/EUR
exchange rates are nonstationary.
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(a) Model I (b) Model II

(c) Model III (d) Model IV

Figure 1. Exact and asymptotic log-scale densities.
Note: The exact and asymptotic log-scale densities defined as (logs)· = s··/s· are presented,
respectively, by the solid and the dotted lines in Models I—IV.

Once the exact and asymptotic scale functions are computed, we may use them
and obtain the exact and asymptotic speed densities defined in (13). The exact
and asymptotic speed densities are defined with the exact and asymptotic scale
densities, respectively. Figure 2 presents the exact and asymptotic speed densities
for Models I–IV. It is easy to see that Models I–III are positive recurrent, whereas
Model IV is null recurrent. All the speed densities are normalized so that they
integrate up to unity.16 The exact and asymptotic speed densities are the most
distinctive around the origin and, as expected, they tend to converge at ordinates
away from the origin.

For any given functions f,g1, and g2 on D, we may use the computed speed
densities to obtain π(f ),π(g1g′

1), and π(λg2g′
2), and m(f ),m(g1g′

1), and m(λg2g′
2),

which are needed to fully specify the limit distributions in Theorem 4.1 and Part
(a) of Theorem 4.4, respectively, for the positive recurrent and null recurrent
jump diffusion models. This is in contrast to the corresponding asymptotics for

16We also normalize the speed densities for Model IV, although the normalization is only meaningful for Models
I–III.

https://doi.org/10.1017/S0266466624000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000069


AN ASYMPTOTIC THEORY FOR JUMP DIFFUSION MODELS 23

(a) Model I (b) Model II

(c) Model III (d) Model IV

Figure 2. Exact and asymptotic invariant densities.
Note: The invariant densities obtained from the exact and asymptotic scale functions are presented,
respectively, by the solid and dotted lines for Models I–IV. Normalizations are made so that their
integrals are unity. For Model IV, the invariant density is not integrable and, strictly speaking, our
normalization is not meaningful.

the general Markov processes available in the literature, from which the limit
distributions are not obtainable explicitly for the jump diffusion models considered
here. Our asymptotics are therefore more directly useful for statistical inference in
these and other jump diffusion models.

6. ILLUSTRATIVE APPLICATION

To show how to apply our asymptotic theory, we consider a variance ratio-type test
in continuous time. In this section, we suppose that a sample of size n is collected
from a jump diffusion X at interval � over time T, that is, X�,X2�, . . . ,Xn� with
T = n� and initial value X0. We define a statistic

Qn,� =
∑n

i=1(Xi� −X0)
2

n
∑n

i=1(Xi� −X(i−1)�)2
.

https://doi.org/10.1017/S0266466624000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000069


24 MINSOO JEONG AND JOON Y. PARK

Clearly, Qn,� may be viewed as a high frequency version of the variance ratio
statistic used to test for random walk and martingale hypothesis in economics and
finance. Note that Qn,� compares the variances of X over the time intervals [0,i�]
and [(i−1)�,i�].

Let X be regular and null recurrent with index r > −1. We assume that s(x) ∼ ax
and ms(x) ∼ b|x|r for some a,b > 0 as x approaches ±∞, and that s· is bounded
away from zero and 1/ms is ms-asymptotically homogeneous. If � → 0 fast
enough relative to T → ∞, we have

�

n∑
i=1

X2
i� ≈

∫ T

0
X2

t dt +op(1) and
n∑

i=1

(Xi� −X(i−1)�)2 ≈ [X]T .

The proofs of the continuous time approximations here and the precise conditions
required for their validity are provided in the Appendix. Furthermore, it follows
from Theorem 4.4 (b) that

1

T1+2/(r+2)

∫ T

0
X2

t dt = 1

T1+2/(r+2)

∫ T

0

(
s−1(Xs

t )
)2

dt →d
1

a2

∫ 1

0
X◦2

t dt (17)

and

1

T2/(r+2)
[X]T = 1

T2/(r+2)

∫ T

0
σ 2(Xt)dt + 1

T2/(r+2)

∫ T

0

(
ν(Xt−)+τ(Xt−)Zt

)2
dNt
(
λ(Xt−)

)
= 1

T2/(r+2)

∫ T

0
σ 2(Xt)dt + 1

T2/(r+2)

∫ T

0

(
ν2(Xt−)+ τ 2(Xt−)Z2

t

)
dNt
(
λ(Xt−)

)+op(1)

= 1

T2/(r+2)

∫ T

0

[
σ 2 + (ν2 + τ 2)λ

]
(Xt)dt

+ 1

T2/(r+2)

∫ T

0

[(
ν2(Xt−)+ τ 2(Xt−)Z2

t

)
dNt
(
λ(Xt−)

)− ((ν2 + τ 2)λ
)
(Xt)dt

]
+op(1)

= 1

T2/(r+2)

∫ T

0

[
σ 2 + (ν2 + τ 2)λ

]
(Xt)dt +op(1)

= 1

T2/(r+2)

∫ T

0

1

(s·2 ◦ s−1)(Xs
t )

1

ms(Xs
t )

dt +op(1) →d
1

a2b

∫ 1

0
|X◦

t |−rdt (18)

as T → ∞ and � → 0. Note that f = (s−1)2 is ms-asymptotically homogeneous
with κ(f,λ) = λ2 and h(f,x) = x2/a2 for (17), and that

1/ms = σ 2
s +ω2

s λs ∼ (σ s·)2 ◦ s−1 + [(ν2 + τ 2)s·2 ◦ s−1
]
(λ◦ s−1)

= ([σ 2 + (ν2 + τ 2)λ
]

s·2)◦ s−1

and f = 1/[(s·2 ◦ s−1)ms] is ms-asymptotically homogeneous with κ(f,λ) = λ−r

and h(f,x) = |x|−r/(a2b) for (18). The limit process X◦ is a generalized diffusion
given by dX◦

t = b−1/2|X◦
t |−r/2dWt.
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Figure 3. Limit distributions of Qn,� under the null and alternatives.

Let X◦ = b−1/(r+2)X∗ so that X∗ is the generalized diffusion given by
dX∗

t = |X∗
t |−r/2dWt. Then we may deduce from (17) and (18) that

Qn,� →d

∫ 1
0 X∗2

t dt∫ 1
0 |X∗

t |−rdt
(19)

as T → ∞ and � → 0. If, in particular, r = 0, the generalized diffusion X∗ reduces
to Brownian motion, and we have

Qn,� →d

∫ 1

0
W2

t dt

as T → ∞ and � → 0. The limit distribution of Qn,� are provided in Figure 3 for
some selected values of r.

If X is positive recurrent and has finite second moment, we may easily show
that TQn,� converges almost surely to a well-defined positive random variable as
T → ∞ and � → 0. Of course, this implies that Qn,� →p 0 as T → ∞ and � → 0,
and the statistic Qn,� can be used to test for random walk and martingale hypothesis
in continuous time framework. If X is a mean zero Ornstein–Uhlenbeck process
given by dXt = −κXtdt +σdWt with κ > 0 and if we set X0 = 0 in the definition
of Qn,�, then we have TQn,� →p 1/2κ . The limit of TQn,� is solely determined by
the mean reversion parameter κ .

We apply our variance ratio test to the logs of the daily USD/GBP exchange
rates (from January 1974 to June 2015) and the daily CBOE volatility index (from
January 1990 to June 2015). The values of the statistic Qn,� are given by 0.296
and 0.0047 for the exchange rate and volatility index, respectively. If we take the
limit Brownian motion as the null hypothesis, the asymptotic critical values of
the test are 0.0343, 0.0563, and 0.0762 for the 1%, 5%, and 10% left tail tests.
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Consequently, we are in favor of the null hypothesis of asymptotic Brownian
motion for the USD/GBP exchange rates, while we unambiguously reject the null
hypothesis of asymptotic Brownian motion for the volatility index. According to
our variance ratio test, the volatility index is clearly distinguishable from Brownian
motion in the limit.

7. CONCLUSION

This paper defines scale functions and speed densities for jump diffusion models,
in parallel with their definitions for diffusion models without jumps. Unlike
diffusion models without jumps, scale functions and speed densities may not exist
for jump diffusion models. However, when they do exist, they play exactly the same
roles for jump diffusion models as they do for diffusion models without jumps: the
scale functions transform jump diffusions into martingales and the speed densities
represent the invariant measures of jump diffusions. Moreover, the scale functions
and the speed densities fully characterize the asymptotics of the general additive
functionals and the martingale transforms of jump diffusion models, exactly as
they do in the case of diffusion models without jumps. Indeed, assuming that
scale functions and speed densities exist, we develop the additive functional and
the martingale transform asymptotics of jump diffusion models and present them
explicitly in terms of their scale functions and speed densities. They are applicable
for a wide variety of jump diffusion models including null recurrent as well as
positive recurrent jump diffusion models, and for a very general class of additive
functionals and martingale transforms. We also provide some sufficient conditions
for the existence of scale functions and speed densities for jump diffusion models.

Appendix A. Useful Lemmas

Throughout, we write f ∈ RVk if f : D → R is regularly varying with index k at the
boundaries of D. The reader is referred to, for example, Bingham, Goldie, and Teugels
(1989) for the notion and properties of regularly varying functions.

A.1. Lemmas

Lemma A1. Let Assumptions 2.1, 3.1, and 3.3 hold, and define Bt = (Xs ◦ A−1)t with
dAt = [1/ms(Xs

t )
]
dt. If we let BT

t = T−1
r BT2

r t and denote its local time as LT , where Tr = T

or Tr = T1/(r+2) depending upon whether ms is integrable or regularly varying with index
r > −1, then there exists a standard Brownian motion B◦ with local time L◦ such that
BT →d B◦ in C[0,1] and

sup
t∈[0,K]

sup
x∈[−K,K]

∣∣LT (t,x)−L◦(t,x)
∣∣→p 0

for any 0 < K < ∞ as T → ∞.
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Lemma A2. Let Assumptions 2.1, 3.1, and 4.1 hold. Moreover, let X be regular with index
r > −1, and let WT be defined as WT

t = T−1/2WTt. If we define VT as

VT
t = 1√

T

∫ Tt

0

[
v(Xu−,Zu)√

v2λ(Xu)
dNu
(
λ(Xu−)

)−
√

λv1√
v2

(Xu)du

]

for v : D × R → R with supx∈D
(
v4/v2

2

)
(x) < ∞ jointly with WT , where vk(x) =∫

R
vk(x,z)φ(z)dz for k > 0, then VT →d V◦ in C[0,1] jointly with WT →d W◦ as T → ∞,

where V◦ is a standard Brownian motion independent of W◦.

A.2. Proofs of Lemmas

A.2.1. Proof of Lemma A1. Convergence of BT It follows from Itô’s lemma and
(5) that

dXs
t = −(νsλs)(X

s
t )dt +σs(X

s
t )dWt

+
(

s
[
s−1(Xs

t−)+ (ν ◦ s−1)(Xs
t−)+ (τ ◦ s−1)(Xs

t−)Zt
]−Xs

t−
)

dNt
(
λ(Xt−)

)
, (A.1)

where

νs(x) =
∫
R

(
s
[
s−1(x)+ (ν ◦ s−1)(x)+ (τ ◦ s−1)(x)z

]− x
)
φ(z)dz.

We note that

dA−1
t = ms(Bt)dt, (A.2)

and redefine W and N, up to the distributional equivalence, as

d(W ◦A−1)t =d A−1/2
t dWt (A.3)

d(N ◦A−1)t

(
λ(X ◦A−1)t

)
=d dN

(
(msλs)(Bt−)

)
. (A.4)

Under the change of variable t �→ A−1
t , the stochastic differential equation in (A.1)

reduces to

dBt = −(msνsλs)(Bt)dt + (m1/2
s σs)(Bt)dWt

+
(

s
[
s−1(Bt−)+ (ν ◦ s−1)(Bt−)+ (τ ◦ s−1)(Bt−)Zt

]−Bt−
)

dNt
(
(msλs)(Bt−)

)
,

(A.5)

up to the distributional equivalence, due to (A.2), (A.3), and (A.4). Furthermore, we may
write the stochastic differential equation in (A.5) in terms of BT

t as

dBT
t = −Tr(msνsλs)(TrBT

t )dt + (m1/2
s σs)(TrBT

t )dWt + 1

Tr

(
s
[
s−1(TrBT

t−)+ (ν ◦ s−1)(TrBT
t−)

+ (τ ◦ s−1)(TrBT
t−)Zt

]−TrBT
t−
)

dNt
(
T2

r (msλs)(TrBT
t−)
)
, (A.6)

again up to the distributional equivalence.
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Denote by AT the infinitesimal generator of BT . To deduce the stated result, it suffices
to show that

AT f (x) → 1

2
f ··(x) (A.7)

as T → ∞ locally uniformly in x ∈ K for all f ∈ C2(K), the set of twice continuously
differentiable functions vanishing outside K, for an arbitrary compact subset K of R. This
implies that AT converges to the infinitesimal generator of standard Brownian motion (see,
e.g., Jacod and Shiryaev, 2003, Thm. IX.4.8 and Rem. IX.4.13). However, it follows from
(A.6) that

AT f (x) = −Tr(msνsλs)(Trx)f ·(x)+ 1

2
(msσ

2
s )(Trx)f ··(x) (A.8)

+T2
r (msλs)(Trx)

∫
R

[
f
(
T−1

r s
[
s−1(Trx)+(ν◦s−1)(Trx)+(τ◦s−1)(Trx)z

])−f (x)
]
φ(z)dz

on x ∈ K for any f ∈ C2(K). Moreover, we have

f
(

T−1
r s
[
s−1(Trx)+ (ν ◦ s−1)(Trx)+ (τ ◦ s−1)(Trx)z

])− f (x) (A.9)

= f ·(x)
(

T−1
r s
[
s−1(Trx)+ (ν ◦ s−1)(Trx)+ (τ ◦ s−1)(Trx)z

]− x
)

+ 1

2
f ··T (x,z)

(
T−1

r s
[
s−1(Trx)+ (ν ◦ s−1)(Trx)+ (τ ◦ s−1)(Trx)z

]− x
)2

,

where

f ··T (x,z) = f ··
[

x− δT

(
1

Tr
s
[
s−1(Trx)+ (ν ◦ s−1)(Trx)+ (τ ◦ s−1)(Trx)z

]− x

)]
(A.10)

for some 0 ≤ δT ≤ 1. Note that we have∫
R

(
s
[
s−1(Trx)+ (ν ◦ s−1)(Trx)+ (τ ◦ s−1)(Trx)z

]−Trx
)
φ(z)dz = νs(Trx)∫

R

(
s
[
s−1(Trx)+ (ν ◦ s−1)(Trx)+ (τ ◦ s−1)(Trx)z

]−Trx
)2

φ(z)dz = ω2
s (Trx).

(A.11)

Therefore, we deduce from (A.8), (A.9), and (A.11) that

AT f (x) = 1

2
f ··(x)+RT (x), (A.12)

where

RT (x)= 1

2
(msλs)(Trx)

∫
R

[
f ··T (x,z)−f ··(x)](s[s−1(Trx)+(ν◦s−1)(Trx)+(τ◦s−1)(Trx)z

]−Trx
)2

φ(z)dz

for any f ∈ C2(K), from which (A.7) follows if we show that

RT (x) → 0 (A.13)

as T → ∞ uniformly in x ∈ K for all f ∈ C2(K).
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To show (A.13), we write RT (x) = (msλs)(Trx)
(
R1T (x)+R2T (x)

)
, where

R1T (x) = 1

2

∫
R\[−c,c]

[
f ··T (x,z)−f ··(x)](s[s−1(Trx)+(ν◦s−1)(Trx)+(τ◦s−1)(Trx)z

]−Trx
)2

φ(z)dz,

R2T (x) = 1

2

∫
[−c,c]

[
f ··T (x,z)−f ··(x)](s[s−1(Trx)+(ν◦s−1)(Trx)+(τ◦s−1)(Trx)z

]−Trx
)2

φ(z)dz

for c > 0.
We first consider (msλs)(Trx)R1T (x). Due to the boundedness of f ·· on K, there exists

M1 > 0 such that

sup
z∈R\[−c,c]

sup
x∈K

∣∣f ··T (x,z)− f ··(x)∣∣< M1 (A.14)

for any given c > 0, any given f ∈ C2(K), and all large T. Moreover, we can find M2 > 0
such that

(msω
2
s λs)(Trx) ≤ M2 (A.15)

uniformly in x ∈ K for all large T. Therefore, for any ε > 0, we can find a large enough c > 0
such that

1

2
(msλs)(Trx)

∫
R\[−c,c]

(
s
[
s−1(Trx)+(ν◦s−1)(Trx)+(τ◦s−1)(Trx)z

]−Trx
)2

φ(z)dz ≤ ε

(A.16)

uniformly in x ∈ K for all large T. Consequently, it follows from (A.14) and (A.16) that, for
any ε > 0,∣∣(msλs)(Trx)R1T (x)

∣∣≤ M1ε (A.17)

uniformly in x ∈ K for some M1 > 0 and all large T.
For (msλs)(Trx)R2T (x), recall that we have s−1(x) ∈ RVκ for κ > 0, and ν(x) ∈ RVκ1

and τ(x) ∈ RVκ2 for κ1,κ2 < 1. Therefore, we may deduce that

s−1(Trx)

s−1(Tr)
+ (ν◦s−1)(Trx)

s−1(Tr)
+ (τ◦s−1)(Trx)

s−1(Tr)
z → xκ (A.18)

as T → ∞ locally uniformly in x ∈ R for any given z, due to the local boundedness and
the asymptotic monotonicity of ν ◦ s−1 and τ ◦ s−1, and the uniform convergence property
of regularly varying function with positive index (see, e.g., Bingham et al., 1989, Thm.
1.5.2). Moreover, due to (A.18) and the uniform convergence property of regularly varying
functions, it follows that

s[s−1(Trx)+(ν◦s−1)(Trx)+(τ◦s−1)(Trx)z]

Tr

= (s◦ s−1)(Tr)

Tr

s[s−1(Trx)+(ν◦s−1)(Trx)+(τ◦s−1)(Trx)z]

(s◦ s−1)(Tr)
→ x

as T → ∞ uniformly in x ∈ K for any given z. This implies that for any ε > 0, we have

sup
x∈K

∣∣∣∣ s[s−1(Trx)+(ν◦s−1)(Trx)+(τ◦s−1)(Trx)z]

Tr
− x

∣∣∣∣≤ ε (A.19)
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uniformly in z ∈ [−c,c] for all large T. Therefore, from (A.10), (A.19), and the continuity
of f ·· on K, we obtain that for any ε > 0,

sup
z∈[−c,c]

sup
x∈K

∣∣f ··T (x,z)−f ··(x)∣∣≤ ε (A.20)

for any given c > 0, any given f ∈ C2(K), and all large T. Consequently, we deduce from
(A.11), (A.15), and (A.20) that for any ε > 0,∣∣(msλs)(Trx)R2T (x)

∣∣≤ (msω
2
s λs)(Trx)ε ≤ M2ε (A.21)

uniformly in x ∈ K for some M2 > 0 and all large T.
Now (A.13) follows from (A.17) and (A.21), which establishes (A.7) from (A.12). The

proof is therefore complete.

Convergence of LT Let BT →a.s. B◦ in C[0,1] by changing the underlying probability
space if necessary. Due to the Meyer–Itô theorem (see, e.g., Protter, 2005, Thm. IV.70), we
have

LT (t,x) = |BT
t − x|− |BT

0 − x|−
∫ t

0
sgn(BT

u− − x)dBT
u (A.22)

−
∑

0≤u≤t

[
|BT

u − x|− |BT
u− − x|− sgn(BT

u− − x)�BT
u

]

for t ≥ 0 and x ∈R, where sgn(x) = 1{x > 0}−1{x ≤ 0} and �BT
u = BT

u −BT
u−. Clearly, we

have

|BT
t − x| →a.s. |B◦

t − x| and |BT
0 − x| →a.s. |B◦

0 − x| (A.23)

as T → ∞ locally uniformly in t ≥ 0 and x ∈ R.
Write∫ t

0
sgn(BT

u−− x)dBT
u =

∫ t

0
sgn(B◦

u − x)dBT
u +RT

t (x), (A.24)

where

RT
t (x) =

∫ t

0
sgn(BT

u−− x)dBT
u −
∫ t

0
sgn(B◦

u − x)dBT
u .

It follows from Theorem 2.2 of Kurtz and Protter (1991) that∫ t

0
sgn(B◦

u − x)dBT
u →p

∫ t

0
sgn(B◦

u − x)dB◦
u (A.25)

as T → ∞ locally uniformly in t ≥ 0 and x ∈R. In fact, we may readily show that BT satisfies
C2.2(i) of Kurtz and Protter (1991). We use their notations for Y, δ, J, M, and A, and let
YT = BT . If we choose δ = ∞, then Jδ(x)(t) = 0 for all x ∈ R and t ≥ 0, and consequently,
Yδ

T = YT . Moreover, we have Aδ
T = 0, since BT is a martingale. Also, since E[BT ]t = t for

all t ≥ 0, we may deduce that

E[Mδ
T ]t = E[YT ]t = E[BT ]t = t < ∞

for all t ∈ [0,K] uniformly in T > 0.
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Now we show that RT
t (x) in (A.24) is asymptotically negligible locally uniformly in t ≥ 0

and x ∈ R. Note that it is a martingale, and

sup
x∈[−K,K]

sup
t∈[0,K]

[RT (x)]t = sup
x∈[−K,K]

sup
t∈[0,K]

∫ t

0

[
sgn(BT

u − x)− sgn(B◦
u − x)

]2d[BT ]u

≤ 4 sup
x∈[−K,K]

∫ K

0
1
{
sgn(BT

u − x) �= sgn(B◦
u − x)

}
d[BT ]u.

However, since BT
t →a.s. B◦

t uniformly in t ∈ [0,K], we can find a sequence aT → 0 such
that{

sgn(BT
u −x) �=sgn(B◦

u−x)
}

⊂ {|B◦
u−x| < aT

}
for all large T. Moreover, since [BT ]t →p t locally uniformly in t ≥ 0, we can find a sequence
bT → 0 such that

∫ K

0
1
{|B◦

u−x| < aT
}

d[BT ]u ≤
∫ K

0
1
{|B◦

u−x| < aT
}

du+bT

for all large T. Therefore,

sup
x∈[−K,K]

∫ K

0
1
{
sgn(BT

u − x) �= sgn(B◦
u − x)

}
d[BT ]u ≤ sup

x∈[−K,K]

∫ K

0
1
{|B◦

u−x| < aT
}

du+bT,

where aT → 0 and bT → 0 as T → ∞, and upon noting that

sup
x∈[−K,K]

∫ K

0
1
{|B◦

u−x| < aT
}

du ≤ MaT

(
sup

x∈[−K,K]
L(K,x)+ cT

)

for a sequence cT → 0 and some M > 0, we may deduce that

sup
x∈[−K,K]

sup
t∈[0,K]

[RT (x)]t →a.s. 0 (A.26)

locally uniformly in t ≥ 0 and x ∈ R. Consequently, it follows from (A.24), (A.25), and
(A.26) that∫ t

0
sgn(BT

u− − x)dBT
u →a.s.

∫ t

0
sgn(B◦

u − x)dB◦
u (A.27)

uniformly in t ∈ [0,K] and x ∈ [−K,K] as T → ∞.
Last, we show the asymptotic negligibility of

ST
t (x) = −

∑
0≤u≤t

[
|BT

u − x|− |BT
u− − x|− sgn(BT

u− − x)�BT
u

]
.

Let aT and bT be increasing sequences of T such that aT supt∈[0,K] |BT
t −B◦

t | →a.s. M1 and

bT supt∈[0,K] |�BT
t | →a.s. M2 for any K > 0 and some M1,M2 > 0 as T → ∞. Then we

have
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ST
t (x) ≤ 2

∑
0≤u≤t

∣∣�BT
u
∣∣1{|BT

u− − x| < |�BT
u |}

≤ 2 sup
0≤u≤t

∣∣�BT
u
∣∣∫ T

0
1
{|B◦

v− − x| ≤ 1/aT
}
dNv
(
T2

r (msλs)(TrBT
v−)
)
, (A.28)

where the second inequality is due to{|BT
u− − x| < |�BT

u |}⊆ {|B◦
u− − x| ≤ 1/aT

}
for all u such that �BT

u �= 0 and all large T. The number of jumps in {BT
t } on a unit interval

t ∈ [0,1] is increasing at an order smaller than or equal to b2
T , since otherwise there arises a

contradiction to the local uniform convergence of [BT ]t →p t. Therefore, we have

∫ T

0
1
{|B◦

v− − x| ≤ 1/aT
}
dNv
(
T2

r (msλs)(TrBT
v−)
)
,

that is, the number of jumps of {BT
t } on t ∈ {v : |B◦

v− − x| ≤ 1/aT
}
, is of the order

O(b2
T a−2+ε

T ) uniformly in x ∈ [−K,K] as T → ∞, due to the uniform convergence order of

BT →a.s. B◦ and the modulus of continuity of B◦. We also have sup0≤u≤t |�BT
u | = O(b−1

T )

as T → ∞, and bT/aT < ∞ for all large T. Therefore, it follows that

sup
t∈[0,K]

sup
x∈[−K,K]

ST
t (x) →a.s. 0 (A.29)

as T → ∞.
Consequently, we deduce from (A.22), (A.23) (A.27), and (A.29) that

LT (t,x) →a.s. |B◦
t − x|− |B◦

0 − x|+
∫ t

0
sgn(B◦

u − x)dB◦
u = L◦(t,x)

as T → ∞ locally uniformly in t ≥ 0 and x ∈ R. This completes the proof.

A.2.2. Proof of Lemma A2. Let Tt be an integer for notational simplicity, and write

VT
t = 1√

T

∫ Tt

0

[
v(Xu−,Zu)√
λv2(Xu−)

dNu
(
λ(Xu−)

)−
√

λv1√
v2

(Xu)du

]

= 1√
T

Tt∑
i=1

∫ i

i−1

[
v(Xu−,Zu)√
λv2(Xu−)

dNu
(
λ(Xu−)

)−
√

λv1√
v2

(Xu)du

]
.

It follows from Jeanblanc et al. (2009, Sect. 8.8.4 and Prop. 8.8.6.1) that

E

∫ i

i−1

[
v(Xu−,Zu)√
λv2(Xu−)

dNu
(
λ(Xu−)

)−
√

λv1√
v2

(Xu)du

]
= 0,

E

(∫ i

i−1

[
v(Xu−,Zu)√
λv2(Xu−)

dNu
(
λ(Xu−)

)−
√

λv1√
v2

(Xu)du

])2
= 1

(A.30)

for all 1 ≤ i ≤ Tt. Furthermore, we may also deduce from Jeanblanc et al. (2009, Sect. 8.8.4
and Prop. 8.8.6.1) that
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E

(∫ i

i−1

[
v2(Xu−,Zu)

(λv2)(Xu−)
dNu
(
λ(Xu−)

)−du

])2
= E

(∫ i

i−1

v2(Xu−,Zu)

(λv2)(Xu−)
dNu
(
λ(Xu−)

))2
−1

= E

∫ i

i−1

v4(Xu)

(λv2
2)(Xu)

du ≤ cE
∫ i

i−1

1

λ(Xu)
du

for all 1 ≤ i ≤ Tt and some c > 0. Moreover, note that T−1+ε supt∈[0,T]E
(
1/λ(Xt)

)
<

∞ for some ε > 0 and all large T, due to Assumption 4.1. Therefore, it follows from the
Burkholder–Davis–Gundy inequality that

1

T
E

(∫ i

i−1

[
v(Xu−,Zu)√
λv2(Xu−)

dNu
(
λ(Xu−)

)−
√

λv1√
v2

(Xu)du

])4

≤ 1

T
E

(∫ i

i−1

v2(Xu−,Zu)

(λv2)(Xu−)
dNu
(
λ(Xu−)

))2

= c

T
E

(∫ i

i−1

1

λ(Xu)
du

)
+ 1

T
→ 0 (A.31)

as T → ∞ for all 1 ≤ i ≤ Tt and some c > 0. Consequently, we obtain from (A.30), (A.31),
and the functional CLT in, for example, Theorem 4.1 of Hall and Heyde (1980) that

VT →d V◦, (A.32)

where V◦ is standard Brownian motion.
To show the independence between W◦ and V◦, let

MT
t = 1√

T

∫ Tt

0
PudWu

for an arbitrary bounded predictable process P. We haveE(MT
t )2 < ∞ andE(VT

t )2 < ∞ for
all T > 0 and t ∈ [0,1], due to Jeanblanc et al. (2009, Section 8.8.4). Therefore, we deduce
from the covariance extension of the Itô isometry that

E
(
MT

t VT
t
)= E[MT,VT ]t = E

1

T

∫ Tt

0
Pud
[
W,V

]
u = 0 (A.33)

for all T > 0 and t ∈ [0,1], where

Vt =
∫ t

0

[
v(Xu−,Zu)√
λv2(Xu−)

dNu(λ(Xu−))−
√

λv1√
v2

(Xu)du

]
,

since [W,V]t = 0 for all t ≥ 0. Consequently, the independence between W◦ and V◦ follows
from (A.32), (A.33), and Exercises IV.2.22 and V.4.25 of Revuz and Yor (1999), which
completes the proof.

Appendix B. Proofs of Main Theorems

For f,g : D → R, we redefine f ∼ g if g(x)/f (x) → c for some c �= 0 as x approaches
the boundaries of D. Moreover, we write f � g if g(x)/f (x) → 0 as x approaches the

https://doi.org/10.1017/S0266466624000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000069


34 MINSOO JEONG AND JOON Y. PARK

boundaries of D. If either f � g or f ∼ g, we write f � g. We also let Tr = T1/(r+2) and

ζk(x) = ∫
R

[
s
(
x−ν(x)− τ(x)z

)− s(x)
]k

φ(z)dz for k > 0.17

B.1. Proof of Proposition 3.2

To avoid unnecessary complications in dealing with the case of D �= R, we let all functions
in this proof take zero values outside of D, and we also let 0/0 = 0.

Let s be a solution to the integro-differential equation

(s·μ)(x)+ 1

2
(s··σ 2)(x) = −λ(x)

∫
R

(
s
[
x+ν(x)+ τ(x)z

]− s(x)
)
φ(z)dz. (B.34)

Changing the order of integrals, we have∫ ∞
0

∫ x+ν(x)+τ(x)z

x
s·(y)dyφ(z)dz =

∫ ∞
x

∫ ∞
y−x−ν(x)

τ (x)

s·(y)φ(z)dzdy

=
∫ ∞

x
s·(y)

[
1−�

(
y− x−ν(x)

τ (x)

)]
dy

= τ(x)
∫ ∞

0
s·(x+ν(x)+ τ(x)y

)(
1−�(y)

)
dy. (B.35)

Similarly, we may deduce that∫ 0

−∞

∫ x+ν(x)+τ(x)z

x
s·(y)dyφ(z)dz = −τ(x)

∫ ∞
0

s·(x+ν(x)+ τ(x)y
)
�(y)dy. (B.36)

Therefore, we may rewrite the integro-differential equation in (B.34) as

(μs·)(x)+ 1

2
(σ 2s··)(x) = −(τλ)(x)

∫
R

s·(x+ν(x)+ τ(x)z
)
ϕ(z)dz (B.37)

due to (B.35) and (B.36).
For f : R→R, let s·(x) = exp[F(x)], where F(x) = ∫ x

−∞ f (z)dz. The integro-differential
equation in (B.37) reduces to

μ(x)exp[F(x)]+ 1

2
(σ 2f )(x)exp[F(x)] = −(τλ)(x)

∫
R

exp[F(x+ν(x)+ τ(x)z)]ϕ(z)dz

(B.38)

if we replace s·(·) and s··(·) with exp[F(·)] and f (·)exp[F(·)], respectively. Dividing both
sides of (B.38) by exp[F(x)], we have(

μ+ 1

2
σ 2f

)
(x) = −(τλ)(x)

∫
R

exp

(∫ x+ν(x)+τ(x)z

x
f (y)dy

)
ϕ(z)dz. (B.39)

Therefore, we may see that there exists a strictly positive solution s· to (B.37), as long as
there exists a solution f to (B.39).

17Note that we have ζ2(x) = ω2(x).
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To show the existence of a solution to (B.39), define a functional operator A as

(Af )(x) = −2μ

σ 2
(x)− 2τλ

σ 2
(x)
∫
R

exp

(∫ x+ν(x)+τ(x)z

x
f (y)dy

)
ϕ(z)dz. (B.40)

Clearly, a fixed point f of A, that is, f satisfying f = Af , is a solution to (B.39). We define Fc
as a space of functions that are bounded by c > 0 in absolute value, that is, supx∈R |f (x)| ≤ c
for c > 0. Also let Fc be endowed with the sup metric ρ. For any f ∈ Fc, we have

|F(x+ z)−F(x)| ≤ c|z| (B.41)

for all x,z ∈ R, due to the mean value theorem. It follows that

sup
x∈R

∣∣∣∣
∫
R

exp

(∫ x+ν(x)+τ(x)z

x
f (y)dy

)
ϕ(z)dz

∣∣∣∣≤
∫
R

exp
[
c(ν̄ + τ̄ |z|)]|ϕ(z)|dz = Pc,ν̄,τ̄ ,

which yields, together with |(μ/σ 2)(x)| ≤ μ̄σ , (τλ/σ 2)(x) ≤ τ̄ λ̄σ , and μ̄σ + τ̄ λ̄σ Pc,ν̄,τ̄ ≤
c, that supx∈R |(Af )(x)| ≤ c for all f ∈ Fc. Therefore, A is a well-defined operator on Fc.

Due to the contraction mapping theorem, it suffices to show that there exists 0 ≤ α < 1
such that

sup
x∈R
∣∣(Af1)(x)− (Af2)(x)

∣∣= ρ(Af1,Af2) ≤ αρ(f1,f2) = α sup
x∈R
∣∣f1(x)− f2(x)

∣∣ (B.42)

for any f1,f2 ∈ Fc. It follows from the mean value theorem that∫
R

[
exp

(∫ x+ν(x)+τ(x)z

x
f1(y)dy

)
− exp

(∫ x+ν(x)+τ(x)z

x
f2(y)dy

)]
ϕ
(
z
)
dz (B.43)

=
∫
R

∫ x+ν(x)+τ(x)z

x

(
f1(y)− f2(y)

)
dyexp

(∫ x+ν(x)+τ(x)z

x
f̃ (v)dv

)
ϕ
(
z
)
dz

for some f̃ ∈Fc such that
∫ x+ν(x)+τ(x)z

x f̃ (v)dv takes a value between
∫ x+ν(x)+τ(x)z

x f1(v)dv

and
∫ x+ν(x)+τ(x)z

x f2(v)dv. Furthermore, we have

∫ ∞

0

∫ x+ν(x)+τ(x)z

x

(
f1(y)− f2(y)

)
dyexp

(∫ x+ν(x)+τ(x)z

x
f̃ (v)dv

)
ϕ
(
z
)
dz (B.44)

=
∫ ∞

x

(
f1(y)− f2(y)

)∫ ∞
y−x−ν(x)

τ (x)

exp

(∫ x+ν(x)+τ(x)z

x
f̃ (v)dv

)
ϕ
(
z
)
dzdy

=
∫ ∞

x

(
f1(y)− f2(y)

)∫ ∞
y−x−ν(x)

τ (x)

exp
(
F̃(x+ν(x)+ τ(x)z)

)
exp(F̃(x))

ϕ
(
z
)
dzdy

= τ(x)
∫ ∞

0

(
f1(x+ν(x)+τ(x)y)− f2(x+ν(x)+τ(x)y)

)∫ ∞

y

exp
(
F̃(x+ν(x)+τ(x)z)

)
exp(F̃(x))

ϕ
(
z
)
dzdy,

where F̃(x) = ∫ x
−∞ f̃ (z)dz. Therefore, it follows from (B.40), (B.43), and (B.44) that

(Af1 −Af2)(x) = 2τ2λ

σ 2
(x)
∫
R

(
f1(x+ν(x)+ τ(x)y)− f2(x+ν(x)+ τ(x)y)

)
�x(y)dy,

(B.45)
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where

�x(y) = 1{y ≥ 0}
∫ ∞

y
exp
[
F̃
(
x+ν(x)+ τ(x)z

)− F̃(x)
]
ϕ(z)dz

−1{y < 0}
∫ y

−∞
exp
[
F̃
(
x+ν(x)+ τ(x)z

)− F̃(x)
]
ϕ(z)dz.

Since F̃ satisfies the Lipschitz condition in (B.41), we have |�x(y)| ≤ |�(y)| for all y ∈ R,
where �(y) = Pc,ν̄,τ̄ 1{y ≥ 0}− ∫ y

−∞ exp[c(ν̄ + τ̄ |z|)]|ϕ(z)|dz. We also have that

sup
x∈R
∣∣f1(x+ν(x)+ τ(x)y)− f2(x+ν(x)+ τ(x)y)

∣∣= sup
x∈R
∣∣f1(x)− f2(x)

∣∣ (B.46)

for all y ∈ R. Therefore, we deduce from (B.45) and (B.46) that

sup
x∈R

|Af1 −Af2|(x) ≤ 2τ̄ 2λ̄σ

∫
R

|�(y)|sup
x∈R

∣∣f1(x+ν(x)+ τ(x)y)− f2(x+ν(x)+ τ(x)y)
∣∣dy

= 2τ̄ 2λ̄σ sup
x∈R

∣∣f1(x)− f2(x)
∣∣∫

R

|�(y)|dy = 2τ̄ 2λ̄σ Qc,ν̄,τ̄ sup
x∈R

∣∣f1(x)− f2(x)
∣∣,

which yields (B.42), since 2τ̄2λ̄σ Qc,ν̄,τ̄ < 1.

B.2. Proof of Lemma 3.3

We consider the following cases separately:

(i) σ 2 � (ν2 + τ 2)λ, and μ � νλ,
(ii) σ 2 ∼ (ν2 + τ 2)λ, ν2 ≺ τ 2, and μ ≺ νλ,

(iii) σ 2 � (ν2 + τ 2)λ, and μ ≺ νλ,
(iv) σ 2 ≺ (ν2 + τ 2)λ, ν2 � τ 2, and μ � νλ,
(v) σ 2 ≺ (ν2 + τ 2)λ, ν2 ≺ τ 2, and μ � νλ,

(vi) σ 2 ≺ (ν2 + τ 2)λ, ν2 ≺ τ 2, and μ ≺ νλ,
(vii) σ 2 � (ν2 + τ 2)λ, ν2 � τ 2, and μ � νλ.

Here, we only provide the proofs of Cases (i), (ii), and (vii), since the proofs of other cases
are analogous.

Proof of Case (i). In this case, we consider the differential equation

(s·μ)(x)+ 1

2
(s··σ 2)(x) = −(s·νλ)(x)− 1

2
[s··(ν2 + τ2)λ](x), (B.47)

which is a simplified version of the integro-differential equation in (5) ignoring the
remainder term λ(x)

∫
R

s···(x̃)[ν(x) + τ(x)z]3φ(z)dz, where x̃ = x + αz[ν(x) + τ(x)z] for
some αz ∈ [0,1]. We will show that the solution to the differential equation in (B.47), which
is given by

s·(x) = exp

(
−
∫ x

w

2(μ+νλ)

σ 2 + (ν2 + τ2)λ
(u)du

)
,

indeed guarantees that the remainder term is asymptotically negligible, in the sense that it
is of smaller order than all four terms appearing in the differential equation in (B.47) at the
boundaries of D.
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To compare the asymptotic orders of λ(x)
∫
R

s···(x̃)[ν(x)+ τ(x)z]3φ(z)dz and (s·μ)(x)
at the boundaries of D, we consider their ratio

λ(x)

(s·μ)(x)

∫
R

s···(x̃)[ν(x)+ τ(x)z]3φ(z)dz

= (ν + τ)λ

μ
(x)

xs··(x)
s·(x)

xs···(x)
s··(x)

∫
R

s···(x̃)
s···(x)

[ν(x)+ τ(x)z]3

x2(ν + τ)(x)
φ(z)dz. (B.48)

Similarly as in (B.61) and (B.67), we can show that

xs··(x)
s·(x) → κ,

xs···(x)
s··(x) → κ −1,

∫
R

s···(x̃)
s···(x)

[ν(x)+ τ(x)z]3

x2(ν + τ)(x)
φ(z)dz → 0 (B.49)

as x approaches the boundaries of D. Moreover, we have μ(x)x � (τ2λ)(x), since otherwise
we cannot have s· ∈ RVr for r > −1, due to the Karamata representation of regularly varying
functions. Therefore, it follows from μ(x)x � (τ2λ)(x) and x � τ(x) that

μ(x) � (τλ)(x). (B.50)

Therefore, we deduce from (B.48), (B.49), and (B.50) that

λ(x)
∫
R

s···(x̃)[ν(x)+ τ(x)z]3φ(z)dz ≺ s·μ(x) (B.51)

at the boundaries of D.
To compare λ(x)

∫
R

s···(x̃)[ν(x)+ τ(x)z]3φ(z)dz with (s··σ 2)(x), we look at their ratio

(ν2 + τ2)λ

σ 2
(x)
∫
R

s···(x̃)
s··(x)

[ν(x)+ τ(x)z]3

(ν2 + τ2)(x)
φ(z)dz (B.52)

= − (ν2 + τ2)λ

σ 2
(x)

xs···(x)
s··(x)

∫
R

s···(x̃)
s···(x)

[ν(x)+ τ(x)z]3

x(ν2 + τ2)(x)
φ(z)dz.

It follows from (B.49) and (B.52) that

λ(x)
∫
R

s···(x̃)[ν(x)+ τ(x)z]3φ(z)dz ≺ (s··σ 2)(x) (B.53)

at the boundaries of D. The asymptotic negligibility of λ(x)
∫
R

s···(x̃)[ν(x)+τ(x)z]3φ(z)dz

relative to the other terms (s·νλ)(x) and [s··(ν2 + τ2)λ](x) is easily obtained from (B.51)
and (B.53), given that μ � νλ and σ 2 � (ν2 + τ2)λ. Therefore, the proof for Case (i) is
complete.

Proof of Case (ii). For this case, we consider the differential equation

1

2
(s··σ 2)(x) = −(s·νλ)(x)− 1

2
[s··(ν2 + τ2)λ](x), (B.54)

whose omitted remainder terms are λ(x)
∫
R

s···(x̃)[ν(x)+ τ(x)z]3φ(z)dz and (s·μ)(x). The
solution to the differential equation in (B.54) is given by

s·(x) = exp

(
−
∫ x

w

2νλ

σ 2 + (ν2 + τ2)λ
(u)du

)
. (B.55)
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To compare the asymptotic orders of λ(x)
∫
R

s···(x̃)[ν(x) + τ(x)z]3φ(z)dz and [s··(ν2 +
τ2)λ](x), we consider their ratio

∫
R

s···(x̃)
s··(x)

[ν(x)+ τ(x)z]3

(ν2 + τ2)(x)
φ(z)dz = xs···(x)

s··(x)
∫
R

s···(x̃)
s···(x)

[ν(x)+ τ(x)z]3

x(ν2 + τ2)(x)
φ(z)dz. (B.56)

This ratio is asymptotically negligible due to (B.49), from which we deduce that
λ(x)

∫
R

s···(x̃)[ν(x) + τ(x)z]3φ(z)dz ≺ [s··(ν2 + τ2)λ](x). We may similarly show that
λ(x)

∫
R

s···(x̃)[ν(x)+ τ(x)z]3φ(z)dz ≺ (s··σ 2)(x).
To show λ(x)

∫
R

s···(x̃)[ν(x) + τ(x)z]3φ(z)dz ≺ (s·νλ)(x), note that we cannot have
s· ∈ RVr for r > −1 if ν(x)x ≺ τ2(x). This is because, if ν(x)x ≺ τ2(x), then
(νλ)(x)x/[σ 2 + (ν2 + τ2)λ](x) → 0 as x approaches the boundaries of D, which implies
that s(x) = ∫ x

w s·(z)dz is slowly varying. Therefore, we may conclude that ν(x)x � τ2(x),

from which it follows that λ(x)
∫
R

s···(x̃)[ν(x)+ τ(x)z]3φ(z)dz ≺ (s·νλ)(x). Similarly, we
should have

s··σ 2 � s·νλ and s··(ν2 + τ2)λ � s·νλ, (B.57)

since otherwise, we cannot have s· ∈ RVr for r > −1. Therefore, we may deduce that s··σ 2 �
s·μ and s··(ν2 + τ2)λ � s·μ from (B.57). Furthermore, s·νλ � s·μ directly follows from
νλ � μ, from which the proof for Case (ii) is complete.

Proof of Case (vii). In this case, we consider the differential equation

(s·μ)(x)+ 1

2
(s··σ 2)(x) = −(s·νλ)(x)− 1

2
[s··(ν2 + τ2)λ](x),

whose omitted remainder term is λ(x)
∫
R

s···(x̃)[ν(x)+ τ(x)z]3φ(z)dz. The solution to this
differential equation is given by

s·(x) = exp

(
−
∫ x

w

2(μ+νλ)

σ 2 + (ν2 + τ2)λ
(u)du

)
.

For s(x) = ∫ x
w s·(z)dz to be regularly varying, we must have [νλ/(ν2λ)](x)x → c for some

|c| < ∞ as x approaches the boundaries of D, due to the Karamata representation of
regularly varying functions. However, this is impossible due to Assumption 2.1(c), which
implies ν(x)x � ν2(x). Therefore, Case (vii) does not arise under our assumption.

B.3. Proof of Proposition 3.4

By the mean value theorem, we have

ω2

s·2(ν2 + τ 2)
(x) = 1+

∫
R

s··(x̃)
s·(x)

[ν(x)+ τ(x)z]3

(ν2 + τ 2)(x)
φ(z)dz+ 1

4

∫
R

s··2(x̃)
s·2(x)

[ν(x)+ τ(x)z]4

(ν2 + τ 2)(x)
φ(z)dz

= 1+R1(x)+R2(x) (B.58)

with x̃ = x+αz[ν(x)+ τ(x)z] for some 0 ≤ αz ≤ 1.
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We will show that R1(x) is asymptotically negligible as x approaches the right boundary
of D. Define

f (x,z) = [ν(x)+ τ(x)z]3

x(ν2 + τ2)(x)
,

and rewrite R1(x) as

R1(x) = xs··(x)
s·(x)

∫
R

s··(x̃)
s··(x) f (x,z)φ(z)dz. (B.59)

However, since

s··(x) = −2s·μ
σ 2

(x)− 2λ

σ 2
(x)
∫
R

(
s
[
x+ν(x)+ τ(x)z

]− s(x)
)
φ(z)dz (B.60)

and s·, μ, σ 2, λ, ν, and τ are all asymptotically monotonic, s·· is asymptotically monotone.
Therefore, due to the monotone density theorem (see, e.g., Lamperti, 1958, Thm. 2), we
have

xs··(x)
s·(x) → κ+ (B.61)

as x approaches the right boundary of D, if s· ∈ RVκ+ at the right boundary of D.
Let ν ∈ RVκν and τ ∈ RVκτ for some κν,κτ < 1, and φ(ι3) < ∞. In this case, we may

write∣∣∣∣
∫
R

f (x,z)φ(z)dz

∣∣∣∣≤ g(x)
∫
R

|z|3φ(z)dz

for some function g such that g(x) → 0 as x approaches the right boundary of D, and
therefore, it follows that∫
R

f (x,z)φ(z)dz → 0 (B.62)

as x approaches the right boundary of D.
For s·· ∈ RVκ−1 with κ −1 < 0, it follows immediately from (B.59), (B.61), and (B.62)

that R1(x) → 0, since s·· is bounded. Therefore, in what follows, we will only consider the
case s·· ∈ RVκ−1 with κ −1 ≥ 0.

By a change of variables, we have∫
R

s··(x̃)
s··(x) f (x,z)φ(z)dz

= x

αzτ(x)

∫
R

s··(x+ xu)

s··(x) f

(
x,

xu−αzν(x)

αzτ(x)

)
φ

(
xu−αzν(x)

αzτ(x)

)
du

= x

αzτ(x)

∫ ∞
−1

s··(x(1+u)
)

s··(x) f

(
x,

xu−αzν(x)

αzτ(x)

)
φ

(
xu−αzν(x)

αzτ(x)

)
du

+ xs··(−x)

αzτ(x)s··(x)
∫ −1

−∞
s··(− x|1+u|)

s··(−x)
f

(
x,

xu−αzν(x)

αzτ(x)

)
φ

(
xu−αzν(x)

αzτ(x)

)
du.

(B.63)

Let s· ∈ RVκ+ and s· ∈ RVκ− at the right and the left boundaries of D, respectively. Then,
due to the Karamata theorem, we have s·· ∈ RVκ+−1 and s·· ∈ RVκ−−1 at the right and the
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left boundaries of D, respectively, from which we deduce that∣∣∣∣ s··(xu)

s··(x)
∣∣∣∣≤ c+uκ++ε−1,

∣∣∣∣ s··(−xu)

s··(−x)

∣∣∣∣≤ c+uκ−+ε−1

for some c > 0, any u,ε > 0 and all large x. Therefore, the sum of the last two terms in
(B.63) is bounded by

x

αzτ(x)

∫ ∞
−1

(
c+ (1+u)κ++ε−1)f(x,

xu−αzν(x)

αzτ(x)

)
φ

(
xu−αzν(x)

αzτ(x)

)
du

+ xs··(−x)

αzτ(x)s··(x)
∫ −1

−∞
(
c+|1+u|κ−+ε−1)f(x,

xu−αzν(x)

αzτ(x)

)
φ

(
xu−αzν(x)

αzτ(x)

)
du

(B.64)

for some c > 0, any ε > 0 and all large x.
Using a change of variables again, we may write (B.64) as∫ ∞

−[x/αz+ν(x)]/τ(x)

(
c+
(

1+ αz[ν(x)+ τ(x)z]

x

)κ++ε−1)
f (x,z)φ(z)dz

+ s··(−x)

s··(x)
∫ −[x/αz+ν(x)]/τ(x)

−∞

(
c+
∣∣∣∣1+ αz[ν(x)+ τ(x)z]

x

∣∣∣∣κ−+ε−1)
f (x,z)φ(z)dz.

(B.65)

It follows from (B.63), (B.64), and (B.65) that∣∣∣∣
∫
R

s··(x̃)
s··(x) f (x,z)φ(z)dz

∣∣∣∣≤ c
∫ ∞
−[x+ν(x)]/τ(x)

(
1+ |z|k+

x1−κτ +k+

)
1

xk
φ(z)dz

+ c
s··(−x)

s··(x)
∫ −[x+ν(x)]/τ(x)

−∞

(
1+ |z|k−

x1−κτ +k−

)
1

xk
φ(z)dz

(B.66)

for some c > 0, any k+ > κ+ − 1, any k− > κ− − 1, any 0 < k < 1 − κν ∨ κτ , and
all large x, since ν ∈ RVκν and τ ∈ RVκτ for some κν,κτ < 1. Moreover, we have∫
R

|z|κ+∨κ−−1+εφ(z)dz < ∞ for any small ε > 0. Therefore, the right-hand side of (B.66)
is bounded by

1

x1−κν∨κτ −ε

(
a+b

s··(−x)

s··(x)
∫ −[x+ν(x)]/τ(x)

−∞
φ(z)dz

)

= 1

x1−κν∨κτ −ε

(
a+b

s··(−x)

s··(x) �

(
− x+ν(x)

τ (x)

))

≤ 1

x1−κν∨κτ −ε

(
a+b

s··(−x)

s··(x) �(−x1−κτ +ε)

)
→ 0

for some a,b > 0 and any ε > 0 as x approaches the right boundary of D, where
�(x) = ∫ x

−∞ φ(z)dz, from which it follows that∫
R

s··(x̃)
s··(x) f (x,z)φ(z)dz → 0 (B.67)

as x approaches the right boundary of D.
As was to be shown, we obtain from (B.59), (B.61), and (B.67) that R1(x) → 0 as x

approaches the right boundary of D. The asymptotic negligibility at the left boundary can
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be shown similarly. The proof of the asymptotic negligibility of R2(x) is entirely analogous,
and therefore, it is omitted.

B.4. Proof of Theorem 4.1

The proof is omitted, since it is essentially the same as the proof of Theorem 4.4(a).

B.5. Proof of Proposition 4.2

Write XT = BT ◦AT , where

AT
t = T−2

r

∫ Tt

0
1/m(Xu)du

and BT is defined in Lemma A1. As in the proof of Lemma A1, we may assume without
loss of generality that BT →a.s. B◦ as T → ∞. To derive the stated result, it suffices to show
that

sup
t∈[0,K]

∣∣∣∣ 1

Tr
r

∫ t

0
m
(
TrBT

u
)
du−

∫
R

m̄(x)L◦(t,x)dx

∣∣∣∣→a.s. 0 (B.68)

as T → ∞ for any K < ∞. Once (B.68) is established, we have AT →a.s. Ā, where

Āt = inf

{
v

∣∣∣∣
∫
R

m̄(x)L◦(v,x)dx > t

}
,

as shown in Lemma A.1 of Kim and Park (2017).
To derive (B.68), we write

1

Tr
r

∫ t

0
m
(
TrBT

u
)
du−

∫
R

m̄(x)L◦(t,x)dx

= 1

Tr
r

∫ t

0

[
m
(
TrBT

u
)−m

(
TrB◦

u
)]

du+
[∫ t

0

m
(
TrB◦

u
)

Tr
r

du−
∫
R

m̄(x)L◦(t,x)dx

]
= PT

t +QT
t .

As shown in Lemma A.4 of Kim and Park (2017), we have supt∈[0,K] |QT
t | →a.s. 0 as

T → ∞ for arbitrary finite K > 0.
To obtain the asymptotics of PT

t , define for any given ε > 0

mε
T (x) = m(Trx)

Tr
r

1{|x|>ε}+ m̃T (x)1{|x| ≤ ε},

where we let m̃T be a nonnegative and differentiable function such that

m̃T (±ε) = m(±ε Tr)

Tr
r

and m̃·
T (±ε) = Trm·(±ε Tr)

Tr
r
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for all T, and sup|x|<ε |m̃T (x)| < Mε , sup|x|<ε |m̃·
T (x)| < Mε for some Mε > 0 and all large

T.18 Then we have from the occupation times formula that

|PT
t | = 1

Tr
r

∣∣∣∣
∫
R

m(Trx)
[
LT (t,x)−L◦(t,x)

]
dx

∣∣∣∣≤ P1T
t +P2T

t +P3T
t ,

where

P1T
t = sup

|x|≤ε

∣∣LT (t,x)−L◦(t,x)
∣∣ 1

Tr
r

∫
|x|≤ε

m(Trx)dx,

P2T
t =

∣∣∣∣
∫ t

0

[
mε

T (BT
u )−mε

T (B◦
u)
]
du

∣∣∣∣,
P3T

t = sup
|x|≤ε

∣∣LT (t,x)−L◦(t,x)
∣∣∫

|x|≤ε
m̃T (x)dx.

For P2T
t , we obtain from the mean value theorem that

P2T
t ≤ t sup

u∈[0,t]

∣∣BT
u −B◦

u
∣∣(Tr sup|x|∈[ε,M]

∣∣m·(Trx
)∣∣

Tr
r

+ sup
|x|≤ε

∣∣m̃·
T (x)

∣∣) (B.69)

for some M > 0 such that supu∈[0,t] |B◦
u| < M. Moreover, we have

Tr sup|x|∈[ε,M]
∣∣m·(Trx

)∣∣
Tr

r
< ∞ (B.70)

for all large T, due to the monotone density theorem (see, e.g., Soulier, 2009, Thm. 1.20).
Therefore, we obtain from (B.69), (B.70), Lemma A1, and the uniform boundedness of m̃·

T ,

that supt∈[0,K] P2T
t →a.s. 0 as T → ∞.

For P1t,T and P3t,T , we have from Lemma A1 that

sup
t∈[0,K]

sup
|x|≤ε

∣∣LT (t,x)−L◦(t,x)
∣∣→a.s. 0

for any K > 0 and all large T. Also, we have

1

Tr
r

∫
|x|≤ε

m(Trx)dx →
∫
|x|≤ε

m̄(x)dx < ∞

as T → ∞, due to the Karamata theorem and the Potter theorem (see, e.g., Soulier, 2009,
Prop. 1.18). Therefore, we deduce that supt∈[0,K] P1T

t →a.s. 0 and supt∈[0,K] P3T
t →a.s. 0

as T → ∞. Consequently, we have (B.68), and the proof is complete.

B.6. Proof of Proposition 4.3

In the first part of the proof, we show the joint convergence to X◦, W◦, and J◦. In the second
part, we further decompose J◦ into N◦ and Z◦. For clarity, here we put the superscript and
subscript “s” in X, m, m̄, σ 2, ω2, and λ, and write them as Xs, ms, m̄s, σ 2

s , ω2
s , and λs,

respectively.

18The existence of such mε
T is guaranteed by the regular variation of m and the monotone density theorem.
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Joint Convergence to X◦, W◦, and J◦ Rewrite the SDE in (A.1) as

dXs
t = σs(X

s
t )dWt +

(
ωsλ

1/2
s
)
(Xs

t−)
√

TdJT
t/T, (B.71)

where

JT
t = 1√

T

∫ Tt

0

[
s[Xu−+ν(Xu−)+τ(Xu−)Zu]−s(Xu−)

(ωλ1/2)(Xu−)
dNu
(
λ(Xu−)

)− ζ1λ1/2

ω
(Xu)du

]
.

(B.72)

Multiplying m1/2
s (Xs

t−) on both sides of (B.71), we have

1√
T

∫ Tt

0
m1/2

s (Xs
u−)dXs

u =
∫ t

0

(
m1/2

s σs
)
(TrXT

u )dWT
u +

∫ t

0

(
m1/2

s ωsλ
1/2
s
)
(TrXT

u−)dJT
u .

(B.73)

It follows from Lemma A2 that JT →d J◦ as T → ∞ for some Brownian motion J◦
independent of W◦. As in the proof of Proposition 3.4, we may show that (ζ4/ζ 2

2 )(x) ≤ M
for some M > 0 and all x ∈ D, which is required in Lemma A2. Moreover, we have(

msσ
2
s
)
(x) ∼ pc1{x ≥ 0}+qc1{x < 0},(

msω
2
s λs
)
(x) ∼ (1−pc)1{x ≥ 0}+ (1−qc)1{x < 0}

as x approaches the boundaries of R, and msσ
2
s and msω

2
s λs are locally bounded. Therefore,

it follows that∫ t

0

(
m1/2

s σs
)
(TrXT

u )dWT
u →d

∫ t

0

(√
pc1{X◦

u ≥ 0}+√
qc1{X◦

u < 0}
)

dW◦
u,∫ t

0

(
m1/2

s ωsλ
1/2
s
)
(TrXT

u−)dJT
u →d

∫ t

0

(√
1−pc1{X◦

u ≥ 0}+√1−qc1{X◦
u < 0}

)
dJ◦

u

(B.74)

as T → ∞ for t ≥ 0. See the proof of Theorem 4.4(b) for more details.
Now we show that∫ t

0
m̄1/2

s (XT
u−)dXT

u →d

∫ t

0
m̄1/2

s (X◦
u)dX◦

u (B.75)

as T → ∞. Let∫ t

0
m̄1/2

s (XT
u−)dXT

u =
∫ t

0
m̄1/2

s (X◦
u)dXT

u +UT
t , (B.76)

where

UT
t =

∫ t

0

[
m̄1/2

s (XT
u )− m̄1/2

s (X◦
u)
]
dXT

u .

We have∫ t

0
m̄1/2

s (X◦
u)dXT

u →d

∫ t

0
m̄1/2

s (X◦
u)dX◦

u (B.77)

as T → ∞, due to Jacod and Shiryaev (2003, Cor. IX.5.18).
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As before, we may assume without loss of generality that XT →a.s. X◦. Note that UT is
a martingale whose quadratic variation is given by

[UT ]t =
∫ t

0

[
m̄1/2

s (XT
u−)− m̄1/2

s (X◦
u)
]2d[XT ]u. (B.78)

Moreover, it follows from (A.1) that

d[XT ]t = T

T2
r
σ 2

s (TrXT
t )dt

+ 1

T2
r

(
s
[
s−1(TrXT

t−)+ (ν◦s−1)(TrXT
t−)+(τ◦s−1)(TrXT

t−)Zt
]−TrXT

t−
)2

dNt
(
Tλs(TrXT

t−)
)

= T

T2
r

1

ms(TrXT
t )

dt+
√

T

T2
r

(ζ4sλs)
1/2(TrXT

t−)dVT
t , (B.79)

where ζ4s = ζ4 ◦ s−1 and

VT
t =
∫ t

0

((
s
[
s−1(TrXT

u−)+(ν◦s−1)(TrXT
u−)+(τ◦s−1)(TrXT

u−)Zu
]−TrXT

u−
)2

√
T(ζ4sλs)1/2(TrXT

u−)
dNu
(
Tλs(TrXT

u−)
)

−
√

T(ω2
s λs)(TrXT

u )

(ζ4sλs)1/2(TrXT
u )

du

)

= 1√
T

∫ Tt

0

((
s
[
Xu−+ν(Xu−)+τ(Xu−)Zu

]−s(Xu−)
)2

(ζ4λ)1/2(Xu−)
dNu
(
λ(Xu−)

)− (ω2λ1/2)(Xu)

ζ
1/2
4 (Xu)

du

)
.

Therefore, we have

[UT ]t = PT
t +QT

t , (B.80)

where

PT
t = T

T2
r

∫ t

0

[
m̄1/2

s (XT
u )− m̄1/2

s (X◦
u)
]2 1

ms(TrXT
u )

du

QT
t =

√
T

T2
r

∫ t

0

[
m̄1/2

s (XT
u−)− m̄1/2

s (X◦
u)
]2

(ζ4sλs)
1/2(TrXT

u−)dVT
u ,

from (B.79).
For PT , we have

PT
t =

∫ t

0

[
m̄1/2

s (XT
u )− m̄1/2

s (X◦
u)
]2 Tr

r

ms(TrXT
u )

du

→d

∫ t

0

[
m̄1/2

s (X◦
u)− m̄1/2

s (X◦
u)
]2 1

m̄s(X◦
u)

du = 0

as T → ∞ for all t ≥ 0. See the proof of Theorem 4.4(b) for more details. For QT , we
may readily establish that QT

t →p 0 as T → ∞ for all t ≥ 0. In fact, we may show that
(ζ8/ζ 2

4 )(x) ≤ M for some M > 0 and all x ∈ D, similarly as in the proof of Proposition

3.4, and therefore, it follows from Lemma A2 that VT →d V◦ as T → ∞ for some standard
Brownian motion V◦. Also, we note that ζ4s is locally bounded, due to the local integrability
of s and the local boundedness of s−1, ν and τ , and deduce from Assumptions 2.1(c), 3.1,
and 4.1(b) that ζ4sλs ∼ [s·4(ν4 + τ4)λ]◦ s−1 ∈ RVk for some k < −r +2 as in the proof of
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Proposition 3.4. Therefore, ζ4sλs satisfies the conditions in Definition 4.1, and as a result,
it follows that

κ
(
(ζ4sλs)

1/2,Tr
)−1
∫ t

0

[
m̄1/2

s (XT
u−)−m̄1/2

s (X◦
u)
]2

(ζ4sλs)
1/2(TrXT

u−)dRT
u

→d

∫ t

0

[
m̄1/2

s (X◦
u)−m̄1/2

s (X◦
u)
]2h
(
(ζ4sλs)

1/2,X◦
u
)
dR◦

u = 0 (B.81)

as T → ∞ for t ≥ 0. See the proof of Theorem 4.4(b) for more details. Furthermore, we
have
√

T

T2
r

κ
(
(ζ4sλs)

1/2,Tr
)→ 0 (B.82)

as T → ∞, since ζ4sλs ∈ RVk for some k < −r +2. Therefore, we deduce from (B.81) and
(B.82) that QT

t →p 0 as T → ∞ for all t ≥ 0.
The asymptotic negligibility of PT and QT implies that UT

t →p 0 as T → ∞, from which,
together with (B.76) and (B.77), we establish (B.75). Consequently, we obtain (16) from
(B.73), (B.74), and (B.75).

Decomposition of J◦ into N◦and Z◦ In this part, we further decompose J◦ into N◦
and Z◦. Write

s[x+ν(x)+ τ(x)z]− s(x) = (s·ν)(x)+ (s·τ)(x)z+ r(x,z), (B.83)

where r(x,z) = s[x+ν(x)+τ(x)z]−s(x)−(s·ν)(x)−(s·τ)(x)z. Then it follows from (B.72)
and (B.83) that

JT
t = PT

t +QT
t +RT

t , (B.84)

where

PT
t = 1√

T

∫ Tt

0

s·ν
ω

(Xu−)

[
1

λ1/2(Xu−)
dNu
(
λ(Xu−)

)−λ1/2(Xu)du

]
=
∫ Tt

0

s·ν
ω

(Xu−)dNT
u/T,

QT
t = 1√

T

∫ Tt

0

s·τ
ω

(Xu−)
Zu

λ1/2(Xu−)
dNu
(
λ(Xu−)

)=
∫ Tt

0

s·τ
ω

(Xu−)dMT
u/T,

RT
t = 1√

T

∫ Tt

0

r1/2
2

ω
(Xu−)

[
r(Xu−,Zu)

(r2λ)1/2(Xu−)
dNu
(
λ(Xu−)

)− r1λ
1/2

r1/2
2

(Xu)du

]
=
∫ Tt

0

r1/2
2

ω
(Xu−)dVT

u/T,

where in turn r1(x) = ∫
R

r(x,z)φ(z)dz = ζ1(x)− (s·ν)(x), r2(x) = ∫
R

r2(x,z)φ(z)dz, and

VT
t = 1√

T

∫ Tt

0

[
r(Xu−,Zu)

(r2λ)1/2(Xu−)
dNu
(
λ(Xu−)

)− r1λ1/2

r1/2
2

(Xu)du

]
.

To derive the asymptotics of PT , QT , and RT , we first show that (s·τ/ω)◦s−1, (s·ν/ω)◦s−1

and (r1/2
2 /ω)◦s−1 satisfy the conditions in Definition 4.1. For (s·τ/ω)◦s−1, we have from

Proposition 3.4 that

s·2τ2

ω2
(x) ∼ τ2

ν2 + τ2
(x) ∼ (1−pz)1{x ≥ 0}+ (1−qz)1{x < 0} (B.85)

as x approaches the boundaries of D. For (s·ν/ω) ◦ s−1, we may similarly show that
(s·ν/ω)2(x) ∼ pz1{x ≥ 0} + qz1{x < 0} as x approaches the boundaries of D. Moreover,
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(s·τ)/ω and (s·ν)/ω are locally bounded from ω(x) > 0 for all x ∈D and the differentiability
of s·, ν and τ . Therefore, (s·τ/ω) ◦ s−1 and (s·ν/ω) ◦ s−1 satisfy the conditions in
Definition 4.1.

For (r1/2
2 /ω)◦ s−1, we write

r2(x)(
s··2(ν4 + τ4)

)
(x)

= 1

4

ν4 +6ν2τ2 +4z3ντ3 + z4τ4

ν4 + τ4
(x)+ r(x), (B.86)

where

r(x) = 1

6

∫
R

(
1

6

s···2(x̃)

s··2(x)

[ν(z)+ τ(x)z]6

(ν4 + τ4)(x)
+ s···(x̃)

s··(x)
[ν(x)+ τ(x)z]5

(ν4 + τ4)(x)

)
φ(z)dz,

zk = ∫
R

zkφ(z)dz for k = 3,4, and x̃ = x+αz[ν(x)+ τ(x)z] for some 0 ≤ αz ≤ 1. It follows
from (5) that

s···(x) = −2(s··μ+ s·μ·)
σ 2 (x)− 2s··σ ·

σ
(x)− 2λ·

σ 2 (x)
∫
R

(
s
[
x+ν(x)+ τ(x)z

]− s(x)
)
φ(z)dz

− 2λ

σ 2 (x)
∫
R

(
s·[x+ν(x)+ τ(x)z

]− s·(x)
)
φ(z)dz

− 2ν·λ
σ 2 (x)

∫
R

s·[x+ν(x)+ τ(x)z
]
φ(z)dz− 2τ ·λ

σ 2 (x)
∫
R

s·[x+ν(x)+ τ(x)z
]
zφ(z)dz.

Due to the differentiability and asymptotic monotonicity of s·, s··, μ, σ , λ, ν, and τ , we may
deduce that s··· is locally bounded and asymptotically monotone, which implies that r(x) is
asymptotically negligible as x approaches the boundaries of D (see the proof of Proposition
3.4 for the details). From (B.86) and the asymptotic negligibility of r(x), we deduce that
r2 ∼ cs··2(ν4 + τ4) for some c �= 0 as x approaches the boundaries of D. Therefore, we

have r1/2
2 /ω � f for some f : D → R such that f ∈ RVk with k = max{a − 1,b − 1},

where a and b are constants such that |ν| ∈ RVa and |τ | ∈ RVb, due to the monotone

density theorem. Moreover, we deduce that r1/2
2 /ω is locally bounded from ω(x) > 0 for all

x ∈ D and the differentiability of r2. Consequently, (r1/2
2 /ω)◦ s−1 satisfies the conditions

in Definition 4.1.
Now, we derive the asymptotics of PT , QT , and RT . For RT , we note that (r4/r2

2)(x) ≤ M

for some M > 0 and all x ∈ D, where r4(x) = ∫
R

r4(x,z)φ(z)dz, which can be shown as in
the proof of Proposition 3.4. Therefore, VT →d V◦ as T → ∞ for some standard Brownian
motion V◦, due to Lemma A2. However, since VT →d V◦ as T → ∞, and we have already

shown that (r1/2
2 /ω)◦ s−1 satisfies the conditions in Definition 4.1, we may deduce that

RT
t = κ(ξ,Tr)

1

κ(ξ,Tr)

∫ t

0

r1/2
2
ω

(XTu−)dVT
u = o(1)

(∫ t

0
h(ξ,X◦

u)V◦
u +op(1)

)
= op(1)

(B.87)

as T → ∞ for t ≥ 0, where ξ = (r1/2
2 /ω)◦s−1. See the proof of Theorem 4.4(b) for details.

For PT and QT , we first deduce from Lemma A2 that NT →d N◦ and ZT →d Z◦
as T → ∞. Moreover, we have (s·τ/ω) ◦ s−1(x) ∼ √

1−pz1{x ≥ 0} + √
1−qz1{x < 0}

and (s·ν/ω) ◦ s−1(x) ∼ √
pz1{x ≥ 0}+√

qz1{x < 0} at the boundaries of R, and we have
already shown that (s·τ/ω)◦ s−1 and (s·ν/ω)◦ s−1 satisfy the conditions in Definition 4.1.
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Therefore, we have

PT
t →d

∫ t

0

(√
pz1{X◦

u ≥ 0}+√
pz1{X◦

u < 0}
)

dN◦
u,

QT
t →d

∫ t

0

(√
1−pz1{X◦

u ≥ 0}+√1−qz1{X◦
u < 0}

)
dZ◦

u,

(B.88)

as T → ∞ for t ≥ 0. See the proof of Theorem 4.4(b) for the details. Now it follows from
(B.84), (B.87), and (B.88) that

J◦
t =
∫ t

0

(√
pz1{X◦

u ≥ 0}+√
pz1{X◦

u < 0}
)

dN◦
u (B.89)

+
∫ t

0

(√
1−pz1{X◦

u ≥ 0}+√1−qz1{X◦
u < 0}

)
dZ◦

u

for all t ≥ 0. Consequently, the statement of the proposition follows from (B.73), (B.74),
(B.75), and (B.89), which completes the proof.

B.7. Proof of Theorem 4.4

Proof of Part (a). In the sequel, we provide the proofs for the three asymptotics
presented in Part (a). We let Tr = T1/(r+2) in what follows.

Proof of First Asymptotics. We deduce from a change of variables and the occupa-
tion times formula that

1

Tr

∫ T

0
f (Xt)dt = T

Tr

∫ 1

0
f
(
Tr(B

T ◦AT )t
)
dt

= Tr

∫ AT
1

0
(mf )(TrBT

t )dt

=
∫
R

(mf )(x)LT
(

AT
1 ,

x

Tr

)
dx, (B.90)

where

AT
t = inf

{
u

∣∣∣∣Tr

T

∫
R

LT
(

u,
x

Tr

)
m(x)dx > t

}
= inf

{
u

∣∣∣∣
∫
R

LT (u,x)
m(Trx)

Tr
r

dx > t

}
,

and LT is the local time of BT . As before, we let BT →a.s. B◦. We already obtained
in the proof of Proposition 4.2 that AT

1 →a.s. Ā1 as T → ∞. Moreover, due to
Lemma A1 and the continuity of L◦(t,x) in both t ≥ 0 and x ∈ R, we deduce that
supt∈[0,a] supx∈[−a,a] LT (t,x) < ∞ for any a > 0 uniformly in all large T. Therefore,
we obtain from (B.90) and the dominated convergence theorem that

1

Tr

∫ T

0
f (Xt)dt →d L◦(Ā1,0)ms(fs) (B.91)

as T → ∞. Note that we have L◦(Ā1,0) =d KE1/(r+2), due to Remark 3.5 of Kim and Park
(2017). Therefore, we obtain the first asymptotics of Part (a) from (B.91).
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Proof of Second Asymptotics. We deduce from a change of variables, (A.2) and
(A.3) that

1√
Tr

∫ T

0
g1(Xu)dWu = 1√

Tr

∫ 1

0
g1
(
Tr(B

T ◦AT )u
)
dWTu

=
√

T

Tr

∫ AT
1

0
g1(TrBT

u )d(WT ◦A−1T )u

=d
√

Tr

∫ AT
1

0
(m1/2g1)(TrBT

u )dWu (B.92)

for all T > 0, where BT and W in the last line are defined in (A.6).
Then, we define

M1T
t =√Tr

∫ t

0
(m1/2g1)(TrBT

u )dWu (B.93)

and B1T
t = m(g1g′

1)−1/2M1T ◦ρt, where ρt = inf
{
u|L◦(u,0) > t

}
. We deduce from a change

of variables, the occupation times formula and Lemma A1 that

[B1T ]t = m(g1g′
1)−1/2Tr

∫ ρt

0
(mg1g′

1)(TrBT
u )dum(g1g′

1)−1/2

= m(g1g′
1)−1/2

∫
R

(mg1g′
1)(x)LT

(
ρt,

x

Tr

)
dxm(g1g′

1)−1/2

→p L◦(ρt,0)m(g1g′
1)−1/2m(g1g′

1)m(g1g′
1)−1/2 = tIg1 (B.94)

locally uniformly in t ≥ 0 as T → ∞, where Ig1 is the identity matrix which has the same
dimension as g1. Therefore, we deduce from (B.94) that

B1T →d B1 (B.95)

as T → ∞, where B1 is a standard vector Brownian motion which has the same dimension
as g1.

Next, to show the independence between B1 and B◦, we first deduce that

∥∥〈M1T,BT 〉t
∥∥=√Tr

∥∥∥∥
∫ t

0
(mσg1)(TrBT

u )du

∥∥∥∥≤ c
√

Tr

∫ t

0

(∣∣TrBT
u
∣∣+1

)−1/2−εdu (B.96)

uniformly in t ≥ 0 as T → ∞ for some c,ε > 0, where the equality is obtained from (A.6),
(B.93), Section III.5 of Protter (2005) and the covariance extension of the Itô isometry, and
the inequality from m = 1/(σ 2 +ω2λ) and the integrability of mg1g′

1. Then, we may deduce
that

T1/2+ε
r

∫ t

0

(∣∣TrBT
u
∣∣+1

)−1/2−εdu →d

∫ t

0
|B◦

u|−1/2−εdu (B.97)

as T → ∞ locally uniformly in t ≥ 0, from the uniform convergence of BT and the
asymptotic homogeneity of a function (|x| + 1)−1/2−ε (see the proofs of Theorem 3.5 of
Jeong and Park (2013) and Theorem 4.4(b) for more details). Therefore, we obtain from
(B.96) and (B.97) that

https://doi.org/10.1017/S0266466624000069 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000069


AN ASYMPTOTIC THEORY FOR JUMP DIFFUSION MODELS 49

∥∥〈M1T,BT 〉t
∥∥→p 0 (B.98)

uniformly in t ≥ 0 as T → ∞.
Due to (B.98) and Theorem I.4.2 of Jacod and Shiryaev (2003), M1T and BT are strongly

orthogonal in the limit as T → ∞. This implies that B1T and BT are also strongly orthogonal
in the limit, since arbitrary time changes of strongly orthogonal martingales are also strongly
orthogonal, due to Exercise IV.2.22 of Revuz and Yor (1999). Therefore, B1 and B◦ are
independent of each other, due to the strong orthogonality between B◦ and B1, and Exercise
V.4.25 of Revuz and Yor (1999).

Since the law of L◦(Ā1,0) is solely determined by B◦, and B◦ is independent of B1,
we deduce that L◦(Ā1,0) is independent of B1. Consequently, due to (B.92), (B.93), the
independence between L◦(Ā1,0) and B1, and L◦(Ā1,0) =d KE1/(r+2), we obtain that

1√
Tr

∫ T

0
g1(Xu)dWu =d M1T ◦AT

1 = m(g1g′
1)1/2B1T ◦L◦(AT

1 ,0)

→d m(g1g′
1)1/2B1 ◦L◦(Ā1,0) =d m(g1g′

1)1/2B1 ◦ (KE1/(r+2))

as T → ∞, which complete the proof of the second asymptotics of Part (a).

Proof of Third Asymptotics. We deduce from a change of variables, (A.2) and (A.4)
that

1√
Tr

∫ T

0
(g2λ

1/2)(Xu−)

[
υ(Zu)

λ1/2(Xu−)
dNu
(
λ(Xu−)

)−φ(υ)λ1/2(Xu)du

]
(B.99)

=d
1√
Tr

∫ AT
1

0

(
(mλ)1/2g2

)
(TrBT

u−)

[
υ(Zu)

(mλ)1/2(TrBT
u−)

dNu
(
T2

r (mλ)(TrBT
u−)
)− φ(υ)

T−1T2
r
(mλ)1/2(TrBT

u )du

]
,

where BT , Z and N
(
T2

r (mλ)(TrBT )
)

are defined in (A.6). We let

M2T
t = 1√

Tr

∫ t

0

(
(mλ)1/2g2

)
(TrBT

u−)×[
υ(Zu)

(mλ)1/2(TrBT
u−)

dNu
(
T2

r (mλ)(TrBT
u−)
)− φ(υ)

T−1T2
r

(mλ)1/2(TrBT
u )du

]
,

(B.100)

and B2T
t = m(g2g′

2λ)−1/2φ(υ2)−1/2M2T ◦ρt, where ρt = inf
{
u|L◦(u,0) > t

}
.

To show B2T →d B2 as T → ∞, where B2 is a standard vector Brownian motion which
has the same dimension as g2, we write

[B2T ]t = PT
t +QT

t , (B.101)

where

PT
t = m(g2g′

2λ)−1/2Tr

∫ ρt

0
(mg2g′

2λ)(TrBT
u )dum(g2g′

2λ)−1/2,

QT
t = m(g2g′

2λ)−1/2 1

Trφ(υ2)

(∫ ρt

0
(g2g′

2)(TrBT
u−)υ2(Zu)dNu

(
T2

r (mλ)(TrBT
u−)
)

−Trφ(υ2)

∫ ρt

0
(mg2g′

2λ)(TrBT
u )du

)
m(g2g′

2λ)−1/2.
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To show the asymptotic negligibility of QT
t , let

RT
t = 1

Tr

(∫ AT
t

0
(g2g′

2)(TrBT
u−)υ2(Zu)dNu

(
T2

r (mλ)(TrBT
u−)
)−Trφ(υ2)

∫ AT
t

0
(mg2g′

2λ)(TrBT
u )du

)
.

Then RT
t is a martingale whose quadratic variation is bounded in the sense that

∥∥[RT ]t
∥∥≤ 1

T2
r

∫ AT
t

0
ḡ2

2(TrBT
u−)υ2(Zu)dNu

(
T2

r (mλ)(TrBT
u−)
)

(B.102)

for some locally bounded ḡ2 : R → R such that ‖g2(x)‖ ≤ ḡ2(x) for all x ∈ R and
m(ḡ2

2λ) < ∞. We deduce that

1

T2
r
E

∫ AT
t

0
ḡ2

2(TrBT
u−)υ4(Zu)dNu

(
T2

r (mλ)(TrBT
u−)
)= φ(υ4)

T2
r

E

∫ t

0
(ḡ2

2λ)(TrXT
u )du

(B.103)

≤ φ(υ4)

T2
r

E

∫ t

0
c
(
1+ ∣∣TrXT

u
∣∣)du → 0

locally uniformly in t ≥ 0 for some c > 0 as T → ∞, where we obtain the equality from a
change of variables, (A.2), (A.4), and Section 8.8.4 of Jeanblanc et al. (2009), the inequality
from the integrability of mḡ2

2λ, and the last convergence from Assumption 4.1(b). Due

to (B.103) and the Markov inequality, we deduce that [RT ]t →p 0 as T → ∞ locally
uniformly in t ≥ 0. Then, we deduce from this asymptotic negligibility and the local uniform
convergence A−1T →a.s. Ā−1, which is already shown in the proof of Proposition 4.2, that
[RT ]◦A−1T ◦ρt →p 0 as T → ∞ locally uniformly in t ≥ 0, which implies that QT

t →p 0
as T → ∞ locally uniformly in t ≥ 0.

We may also deduce similarly as in (B.94) that PT
t →p tIg2 as T → ∞ locally uniformly

in t ≥ 0, where Ig2 is the identity matrix which has the same dimension as g2. Therefore,
we obtain that

[B2T ]t = PT
t +QT

t = PT
t +op(1) →p tIg2 (B.104)

as T → ∞ locally uniformly in t ≥ 0. Consequently, we deduce from (B.104) that B2T →d
B2 as T → ∞, where B2 is a standard vector Brownian motion which has the same
dimension as g2.

For the independence between B2 and B◦, we deduce that

∥∥〈M2T,BT 〉t
∥∥= 1

T3/2
r

∥∥∥∥
〈∫ ·

0

(
s
[
s−1(TrBT

u−)+(ν◦s−1)(TrBT
u−)+(τ◦s−1)(TrBT

u−)Zu
]−TrBT

u−
)
×

g2(TrBT
u−)υ(Zu)dNu

(
T2

r (mλ)(TrBT
u−)
)〉

t

∥∥∥∥
≤
√

Trφ(υ2)

∫ t

0
(mω2λ)(TrBT

u−)du
∫ t

0
(mḡ2

2λ)(TrBT
u−)du →p 0 (B.105)

as T → ∞ locally uniformly in t ≥ 0, where we obtain the equality from (A.6), (B.100),
Section III.5 of Protter (2005), and the covariance extension of the Itô isometry, the
inequality from the Hölder inequality and Section 8.8.4 and Proposition 8.8.6.1 of Jeanblanc
et al. (2009), and the last convergence from m = 1/(σ 2 + ω2λ) and the integrability of
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mḡ2
2λ. Therefore, we obtain the independence between B2 and B◦ similarly as we obtained

the independence between B1 and B◦. Consequently, we deduce that

M2T ◦AT
1 = m(g2g′

2λ)1/2φ(υ2)1/2B2T ◦L◦(AT
1 ,0)

→d m(g2g′
2λ)1/2φ(υ2)1/2B2 ◦L◦(Ā1,0) =d m(g2g′

2λ)1/2φ(υ2)1/2B2 ◦ (KE1/(r+2))

as T → ∞.
For the independence between B1 and B2, we deduce from the covariance extension of

the Itô isometry and [W,V]t = 0 for t ≥ 0, that

E

(
M1T

t

∫ t

0
PudM2T′

u

)
=√Tr E

(∫ t

0

(
mg1g′

2λ1/2)(TrBT
u )Pud

[
W,V

]
u

)
= 0 (B.106)

for all t ≥ 0, all large T and any bounded predictable process P, where

Vt = 1

Tr

∫ t

0

(
υ(Zu)

(mλ1/2)(TrBT
u−)

dNu
(
T2

r (mλ)(TrBT
u−)
)−φ(υ)

T

T2
r

λ1/2(TrBT
u )du

)
.

Therefore, from (B.106) and Exercise IV.2.22 of Revuz and Yor (1999), we obtain the
independence between B1 and B2, which completes the proof.

Proof of Part (b). Below we provide the proofs for the three asymptotics presented
in Part (b).

Proofs of First and Second Asymptotics. Note that the asymptotics in (B.91)
follows from (B.90) because we have∫
R

(mf )(x)LT
(

AT
1 ,

x

Tr

)
dx = LT

(
AT

1 ,0
)∫

R

(mf )(x)dx+op(1) →d L◦ (Ā1,0
)∫

R

(mf )(x)dx

for m-integrable f. Clearly, these asymptotics do not apply to m-nonintegrable f. For m-
nonintegrable f, we require m-asymptotic homogeneity so that

f (λx) = κ(f,λ)h(f,x)
(
1+o(1)

)
for large λ and uniformly for all x in any compact interval. Then it follows that

1

T
κ(f,Tr)

−1
∫ T

0
f (Xt)dt = κ(f,Tr)

−1
∫ 1

0
f (XTt)dt

= κ(f,Tr)
−1
∫ 1

0
f (TrXT

t )dt

=
∫ 1

0
h(f,XT

t )dt +op(1) →d

∫ 1

0
h(f,X◦

t )dt,

where X◦ is the distributional limit of XT = (XT
t ) with XT

t = T−1
r XTt for t ∈ [0,1].

Subsequently, we develop this and other related asymptotics more rigorously.
The proofs of the first and second asymptotics are exactly the same as the proof of

Theorem 3.5(b) in Jeong and Park (2013), except for the weak convergences in (B.71) and
the equation right before (B.82) in their paper. Therefore, we only need to establish these
two weak convergences.
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For the first weak convergence, which is given by∫ Ā1

0
m̄(BT

t )h(f,BT
t )dt →d

∫ Ā1

0
m̄(B◦

t )h(f,B◦
t )dt (B.107)

as T → ∞ in our notation, we use the Vitali convergence theorem. We let BT →a.s. B◦ as
before. To apply the Vitali convergence theorem, it is required to establish the pointwise
convergence and uniform integrability. The pointwise convergence is easily obtained from
BT →a.s. B◦. On the other hand, the uniform integrability follows from∫ Ā1

0
m̄(B◦

t )h(f,B◦
t )dt =

∫
R

m̄(x)h(f,x)LT (Ā1,x)dx ≤
∫
R

m̄(x)h(f,x)L◦(Ā2 +1,x)dx < ∞

for all large T, where we use the local integrability of m̄(·)h(f,·) and Lemma A1. Therefore,
(B.107) follows from the Vitali convergence theorem.

The second weak convergence is given by∫ Ā1

0
h(g1,B

T
t )d(WT ◦ Ā−1)t →d

∫ Ā1

0
h(g1,B

◦
t )d(W◦ ◦ Ā−1)t (B.108)

as T → ∞ in our notation, and we write∫ Ā1

0
h(g1,B

T
t )d(WT ◦Ā−1)t = PT +QT, (B.109)

where

PT =
∫ Ā1

0

[
h(g1,B

T
t )−h(g1,B

◦
t )
]
d(WT ◦Ā−1)t,

QT =
∫ Ā1

0
h(g1,B

◦
t )d(WT ◦Ā−1)t,

which will be analyzed separately below.
For QT , note that

E
[
WT ◦ Ā−1]

t = EĀ−1
t = E

∫
R

m̄(x)L◦(t,x)dx < ∞

for any given t ≥ 0 and all T, since in particular WT is a Brownian motion for all T. Therefore,
the condition C2.2(i) of Kurtz and Protter (1991) holds, and it follows from their Theorem
2.2 that

QT →d

∫ Ā1

0
h(g1,B

◦
t )d(W◦ ◦ Ā−1)t (B.110)

as T → ∞. For PT , we may readily deduce that it is a martingale whose quadratic variation

∫ Ā1

0
m̄(Bt)

[
h(g1,B

T
t )−h(g1,B

◦
t )
][

h(g1,B
T
t )−h(g1,B

◦
t )
]′dt (B.111)

is asymptotically negligible (see the proof of Theorem 3.5 of Jeong and Park (2013) for
more details), which implies that PT →p 0 as T → ∞. Consequently, (B.108) follows from
(B.109) and (B.110).
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Proof of Third Asymptotics. We deduce from a change of variables that

1√
T

κ(
√

λg2,Tr)
−1
∫ T

0
g2(Xt−)d

[
υ(Zt)Nt

(
λ(Xt−)

)−φ(υ)λ(Xt)dt
]

= 1√
T

κ(
√

λg2,Tr)
−1
∫ 1

0
g2
(
Tr(B

T ◦AT )t−
)
d
[
υ(ZTt)NTt

(
λ(XTt−)

)−Tφ(υ)λ(XTt)dt
]

= κ(
√

λg2,Tr)
−1
√

φ(υ2)

∫ AT
1

0
(
√

λg2)
(
TrBT

t−
)
d(VT ◦A−1T )t, (B.112)

where

VT
t = 1√

Tφ(υ2)

∫ Tt

0

[
υ(Zu)

λ1/2(Xu)
dNu
(
λ(Xu−)

)−φ(υ)λ1/2(Xu)du

]
.

Furthermore, we write

κ(
√

λg2,Tr)
−1
∫ AT

1

0
(
√

λg2)
(
TrBT

t−
)
d(VT ◦A−1T )t = PT +QT, (B.113)

where

PT =
∫ AT

1

0
h
(√

λg2,B
T
t−
)
d(VT ◦A−1T )t

QT =
∫ AT

1

0

(
κ(

√
λg2,Tr)

−1(
√

λg2)(TrBT
t−)−h(

√
λg2,B

T
t−)
)

d(VT ◦A−1T )t,

which will be analyzed in the sequel.
For PT , we write

PT = P1T +P2T, (B.114)

where

P1T =
∫ 1

0

(
h(

√
λg2,X

T
t−)−h(

√
λg2,X

◦
t )
)
dVT

t ,

P2T =
∫ 1

0
h(

√
λg2,X

◦
t )dVT

t .

Note that P1T is a martingale whose quadratic variation is∫ 1

0

(
h(

√
λg2,X

T
t−)−h(

√
λg2,X

◦
t )
)(

h(
√

λg2,X
T
t−)−h(

√
λg2,X

◦
t )
)′d[VT ]t,

and we may readily establish (see the proof of Theorem 3.5 of Jeong and Park (2013) for
more details) that P1T = op(1) as T → ∞.

The weak convergence of P2T follows Theorem 2.2 of Kurtz and Protter (1991). To show
that the required condition C2.2(i) holds, we use their notations Y, J, δ, A, and M, and let
(YT )t = VT

t . We set δ = ∞, so that Jδ(x)(t) = 0 for all x and t ≥ 0. Then we have Yδ
T = YT

and Aδ
T = 0. However, we may deduce from Jeanblanc et al. (2009, Sect. 8.8.4 and Prop.

8.8.6.1) that
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E[Mδ
T ]t = E[YT ]t = 1

Tφ(υ2)
E

∫ Tt

0

υ2(Zu)

λ(Xu−)
dNu
(
λ(Xu−)

)= t < ∞

for all t ∈ [0,1], uniformly in T > 0. Therefore, it follows from Lemma A2 that

P2T →d

∫ 1

0
h(

√
λg2,X

◦
t )dV◦

t (B.115)

as T → ∞.
Next, we show that QT = op(1) as T → ∞. Note that QT is a martingale whose quadratic

variation is∫ AT
1

0

(
κ(

√
λg2,Tr)

−1(
√

λg2)(TrBT
t−)−h(

√
λg2,B

T
t−)
)
×

(
κ(

√
λg2,Tr)

−1(
√

λg2)(TrBT
t−)−h(

√
λg2,B

T
t−)
)′ dNt

(
T2

r (mλ)(TrBT
t−)
)

T2
r (mλ)(TrBT

t−)
,

and we may deduce that it is asymptotically negligible, as in the proof of Theorem 3.5 of
Jeong and Park (2013), if we establish the stochastic boundedness of

RT =
∫ AT

1

0

f (BT
t−)

T2
r (mλ)

(
TrBT

t−
)dNt

(
T2

r (mλ)(TrBT
t−)
)

(B.116)

for all large T, where f : R → [0,∞] is a function, which is locally bounded on R\{0} and
also locally integrable. In what follows, we let f be unbounded at the origin.

To show the stochastic boundedness of RT , we write

RT =
∫ ST

0

∑
i∈�

f (BT
ti−)1

{
t ∈ [ki−1,ki)

}
dt, (B.117)

where ti for i = 1, . . . ,NT (λ(XT )) is the ith jump time of BT , ST = ∑i∈� 1/
(
T2

r (mλ)

(TrBT
ti−)
)
, � = {1, . . . ,NT (λ(XT ))}, and

ki =
∑

1≤j≤i

1

T2
r (mλ)

(
TrBT

tj−
) .

Note that the partition{
0,k1,k2, . . . ,kNT (λ(XT ))

}
(B.118)

is used in (B.117), instead of
{
0,t1,t2, . . . ,tNT (λ(XT ))

}
, that is, the partition defined by the

actual jump times of BT . We let BT →a.s. B◦ as before.
First, we show that the partition defined in (B.118) and the partition defined by the actual

jump times of BT converge uniformly to each other. To be more specific, we let t0 = k0 = 0,
and define t̃u = tuNT (λ(XT )) and k̃u = kuNT (λ(XT )) for u ∈ [0,1], so that t̃u and k̃u are the
uNT (λ(XT ))th NT (λ(XT ))-quantiles of {ti} and {ki}, respectively. To simplify our proof,
here we let uNT (λ(XT )) be an integer. Then we may deduce that

sup
u∈[0,1]

∣∣t̃u − k̃u
∣∣→a.s. 0 (B.119)

as T → ∞. This will be shown below.
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To establish (B.119), note that N
(
T2

r (mλ)(TrBT )
)= N ◦ (Tλ(Tr)HT), where

HT
t = 1

Tr
r λ(Tr)

∫ t

0
(mλ)(TrBT

u )du, (B.120)

since T2
r = T/Tr

r . Also, let t∗i be the ith jump time of N
(
Tλ(Tr)

)
, and let k∗

i = i/
(
Tλ(Tr)

)
for i = 1, . . . ,NT (λ(XT )). Then we have

sup
u∈[0,1]

∣∣t̃u − k̃u
∣∣= sup

u∈[0,1]

∣∣∣(t̃ ◦H−1T ◦HT )
u − (k̃ ◦H−1T ◦HT)

u

∣∣∣
= sup

u∈[0,1]

∣∣∣(t̃∗ ◦HT)
u − (k̃∗ ◦HT)

u

∣∣∣, (B.121)

where t̃∗u = t∗uDT
, k̃∗

u = k∗
uDT

for DT = NT [λ(XT )]/HT
1 , and H−1T

t = inf
{
u
∣∣HT

u > t
}
.

Due to (B.121), it suffices to show that

sup
u∈[0,c]

|t̃∗u − k̃∗
u | →a.s. 0 (B.122)

as T → ∞ for any 0 < c < ∞, and

sup
t∈[0,c]

∣∣HT
t − H̄t

∣∣→a.s. 0 (B.123)

as T → ∞ for any 0 < c < ∞ and some continuous nondecreasing process H̄, to establish
(B.119). We may readily obtain (B.123) similarly as in the proof of Proposition 4.2. For
(B.122), we let uDT be an integer for simplicity. Since {t∗i } is a set of jump times of
N
(
Tλ(Tr)

)
, which is a constant intensity Poisson process, we have

t̃∗u = 1

Tλ(Tr)

uDT∑
i=1

ei = DT

Tλ(Tr)

1

DT

uDT∑
i=1

ei, k̃∗
u = DT

Tλ(Tr)
u, (B.124)

where {ei} is a sequence of i.i.d. exponential random variables with rate parameter 1.
Moreover, we have DT → ∞ and

DT

Tλ(Tr)
= N

(
Tλ(Tr)

)◦HT ◦AT
1

Tλ(Tr)HT
1

→a.s.
H̄ ◦ Ā1

H̄1
(B.125)

as T → ∞. Therefore, (B.122) follows from (B.124), (B.125), and the functional central
limit theorem for i.i.d. random variables. Consequently, we obtain (B.119) from (B.122)
and (B.123).

To show the stochastic boundedness of RT , we decompose RT into two parts: one
consisting only of locally bounded parts of f and the other involving locally unbounded parts
of f. To be more specific, we let aT be an increasing sequence such that aT supu∈[0,1] |t̃u −
k̃u| →a.s. C1 for some C1 > 0 as T → ∞. Also, we let bT be another increasing sequence
such that bT supu∈[0,1]

∣∣BT
u − B◦

u
∣∣ →a.s. C2 for some C2 > 0 as T → ∞, and define

cT = min
{
a1/2−ε

T ,bT
}

for some small ε > 0. Then we write

RT = R1T +R2T, (B.126)
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where

R1T =
∫ ST

0

∑
i∈�\�

f (BT
ti−)1

{
t ∈ [ki−1,ki)

}
dt,

R2T =
∑
i∈�

f (BT
ti−)

T2
r (mλ)

(
TrBT

ti−
) .

Here, we let � = �0 ∪·· ·∪�K , where

�j =
{

ti : ti ∈
[
δj − 1

cT
,δj + 1

cT

]}
for j = 0, . . . ,K,

δ0 = 0,

δj = inf
{

t : t > ξj−1, BT
t = 0 or sgn

(
BT

t−
) �= sgn

(
BT

t

)}
for j = 1, . . . ,K,

ξj = inf

{
t : t ≥ δj, BT

t �= 0, ∃ε > 0 s.t. inf
u∈[v,t+ε]

∣∣BT
u

∣∣> 0 for all t < v < t+ε

}
for j = 0, . . . ,K,

and K is the total number of δj’s such that 0 < δj < Ā1.
For R1T , we let

ST =
∑
i∈�

1

T2
r (mλ)(TrBT

ti−)
=
∫ AT

1

0

1

T2
r (mλ)(TrBT

t−)
dNt
(
T2

r (mλ)(TrBT
t−)
)= GT (AT

1 ).

(B.127)

To show the stochastic boundedness of ST = GT (AT
1 ), we deduce that

E sup
u∈[0,c]

GT (u) ≤ E

∫ c

0

1

T2
r (mλ)(TrBT

t−)
dNt
(
T2

r (mλ)(TrBT
t−)
)= c < ∞ (B.128)

for all large T and any c > 0, see Section 8.8.4 of Jeanblanc et al. (2009). However, it follows
from (B.128) and the Markov inequality that GT (u) = Op(1) as T → ∞ locally uniformly
in u > 0, which, together with AT

1 →a.s. Ā1, implies that GT (AT
1 ) = ST = Op(1) as T → ∞.

Furthermore, we may deduce that

∑
i∈�\�

f (BT
ti−)1

{
t ∈ [ki−1,ki)

}≤ c0

(
|t|−1+ε +

K∑
j=1

|t − cj|−1+ε +1

)
(B.129)

almost surely for all 0 ≤ t ≤ ST , all large T, and some ε,c0, . . . ,cK > 0, due to the
definitions of aT and bT , the modulus of continuity of B◦, the shrinking speed of each
�j for j = 0, . . . ,K, and the local integrability of f. Therefore, we obtain from (B.129) and
ST = Op(1) that

R1T ≤ c0

∫ ST

0

(
|t|−1+ε +

K∑
j=1

∣∣t − cj
∣∣−1+ε +1

)
dt = Op(1) (B.130)

as T → ∞.
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For R2T , we have

R2T ≤
K∑

j=0

(
max
i∈�j

f (BT
ti−)

∑
i∈�j

1

T2
r (mλ)

(
TrBT

ti−
)). (B.131)

Define

D1j = max
i∈�j

f (BT
ti−) and D2j =

∑
i∈�j

1

T2
r (mλ)

(
TrBT

ti−
)

for j = 0, . . . ,K. Note that D2j is the length of the interval given by �j for j = 0, . . . ,K, and
therefore, D2j = Op(1/cT ) as T → ∞ by the definition of �j, for j = 0, . . . ,K. To analyze

D1j, we let τj be the jump time of BT closest to δj for j = 0, . . . ,K. As T → ∞, f (BT
τj−)

becomes the largest value among
{
f (BT

ti−)
}

i∈�j
for j = 0, . . . ,K. By the definitions of 1/aT

and 1/bT and the modulus of continuity of B◦, we may therefore deduce that there exists a
subsequence of BT such that BT

τj− converges to zero at the speed of 1/cT for j = 0, . . . ,K. For

such a subsequence of BT , it follows from the local integrability of f that f (BT
τj−) diverges to

infinity at a rate slower than cT , which implies that D1j = Op(cT ) as T → ∞ for j = 0, . . . ,K.
Consequently, we have

R2T = Op(cT )Op(1/cT ) = Op(1) (B.132)

from (B.131) as T → ∞.
Now it follows from (B.126), (B.130), and (B.132) that RT = Op(1) as T → ∞.

Therefore, we may deduce that QT is a martingale whose quadratic variation is of order
op(1) as T → ∞, which implies that QT →p 0 as T → ∞. Finally, we may deduce from
(B.112), (B.113), (B.114), (B.115), P1T →p 0, and QT →p 0 that

1√
T

κ(
√

λg2,Tr)
−1
∫ T

0
g2(Xt−)d

[
υ(Zt)Nt(λ(Xt−))−φ(υ)λ(Xt)dt

]→d

√
φ(υ2)

∫ 1

0
h(

√
λg2,X

◦
t )dV◦

t

as T → ∞.

Covariances of Limit Brownian Motions. Write

ZT = φ(ιυ)√
φ(υ2)

VT +
√

φ(υ2
c )UT, (B.133)

where υc(z) = z−φ(ιυ)υ(z)/φ(υ2) and

VT
t = 1√

Tφ(υ2)

∫ Tt

0

[
υ(Zu)

λ1/2(Xu−)
dNu
(
λ(Xu−)

)−φ(υ)λ1/2(Xu)du

]
,

UT
t = 1√

Tφ(υ2
c )

∫ Tt

0

[
υc(Zu)

λ1/2(Xu−)
dNu
(
λ(Xu−)

)−φ(υc)λ
1/2(Xu)du

]
.

(B.134)
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We have VT →d V◦ and UT →d U◦ as T → ∞ from Lemma A2, where V◦ and U◦ are
standard Brownian motions. Moreover,

E

(
VT

t

∫ t

0
PudUT

u

)
= E

∫ t

0
Pu

(
φ(ιυ)− φ(ιυ)φ(υ2)

φ(υ2)

)
du = 0

for any bounded predictable process P and t ≥ 0, due to Section 8.8.4 and Proposition
8.8.6.1 of Jeanblanc et al. (2009). Therefore, V◦ and U◦ are independent of each other,
due to Revuz and Yor (1999, Exers. IV.2.22 and V.4.25). Furthermore, we have φ(υ2

c ) =
1 −φ(ιυ)2/φ(υ2). Consequently, it follows from (B.133) and the independence between
V◦ and U◦ that EZ◦

t V◦
t = tφ(ιυ)/

√
φ(υ2).

To complete the proof, we write

NT = φ(υ)√
φ(υ2)

VT +
√

φ(υ2
c )UT,

where υc(z) = 1−φ(υ)υ(z)/φ(υ2), and VT and UT are defined as in (B.134), from which
we may easily show that EN◦

t V◦
t = tφ(υ)/

√
φ(υ2) similarly as above.

Appendix C. Continuous Time Approximation

Here, we present the proofs of the continuous time approximations used in Section 6, and
provide the precise conditions required for their validity.

Assumption A1. (a) μ, σ 2, ν, τ2, and λ are piecewise infinitely differentiable and
regularly varying at the boundaries, and they and their derivatives are asymptotically
monotone at the boundaries and bounded by locally bounded regularly varying functions

with index p ≥ 1, (b) supt∈[0,T] |Xt| = Op(Tq) as T → ∞, (c) supt∈[0,T]
(
E|Xt|k

)1/k =
O(Tq) as T → ∞ for some k ≥ 4p, (d)

√
�T3pq+1 → 0 as T → ∞ and � → 0.

Lemma A3. Under Assumption A1, we have

�

n∑
i=1

X2
i� =

∫ T

0
X2

t dt +Op(�T2pq+1)

as T → ∞ and � → 0.

Proof. From Itô’s lemma, we have

�

n∑
i=1

X2
i� =

∫ T

0
X2

t dt −
n∑

i=1

∫ i�

(i−1)�
(X2

t −X2
(i−1)�)dt

=
∫ T

0
X2

t dt −AT −BT −CT,

(C.135)
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where

AT =
n∑

i=1

∫ i�

(i−1)�

∫ t

(i−1)�
fA(Xs)dsdt,

BT =
n∑

i=1

∫ i�

(i−1)�

∫ t

(i−1)�
fB(Xs)dWsdt,

CT =
n∑

i=1

∫ i�

(i−1)�

∫ t

(i−1)�

(
f
[
Xs−+ν(Xs−)+τ(Xs−)Zs

]− f (Xs−)
)

dNs
(
λ(Xs−)

)
dt,

and f (x) = x2, fA(x) = (μf · +σ 2f ··/2)(x) and fB(x) = (σ f ·)(x).
For AT , we have

AT ≤ n�2

2
sup

0≤t≤T
|fA(Xt)| = Op(�T2pq+1)

as T → ∞ and � → 0, and for BT , we have

EB2
T ≤ cn�3 sup

0≤t≤T
Ef 2

B(Xt) = O(�2T4pq+1)

as T → ∞ and � → 0 for some c > 0, from which we deduce that BT = Op(�T2pq+1/2).
Readers are referred to the proof of Lemma A1 in Jeong and Park (2013) for the details. For
CT , due to Jeanblanc et al. (2009, Prop. 8.8.6.1), we obtain that

E|CT | ≤ E

n∑
i=1

∫ i�

(i−1)�

∫ t

(i−1)�
g(Xs)λ(Xs)dsdt = O(�T2pq+1)

as T → ∞ and � → 0, where

g(x) =
∫
R

∣∣f (x+ν(x)+ τ(x)z
)− f (x)

∣∣φ(z)dz,

from which we deduce that CT = Op(�T2pq+1). Therefore, we obtain

�

n∑
i=1

X2
i� =

∫ T

0
X2

t dt +Op(�T2pq+1)

as T → ∞ and � → 0, which completes the proof. �

Lemma A4. Under Assumption A1, we have

n∑
i=1

(Xi� −X(i−1)�)2 =
∫ T

0
σ 2(Xt)dt +

∫ T

0

(
ν(Xt−)+τ(Xt−)Zt

)2
dNt
(
λ(Xt−)

)+Op(
√

�T3pq+1)

as T → ∞ and � → 0.
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Proof. We first write that

n∑
i=1

(Xi� −X(i−1)�)2

=
n∑

i=1

(∫ i�

(i−1)�
μ(Xt)dt +

∫ i�

(i−1)�
σ(Xt)dWt +

∫ i�

(i−1)�

(
ν(Xt−)+ τ(Xt−)Zt

)
dNt
(
λ(Xt−)

))2

= AT +BT +CT, (C.136)

where

AT =
n∑

i=1

(∫ i�

(i−1)�
σ(Xt)dWt

)2
,

BT =
n∑

i=1

(∫ i�

(i−1)�

(
ν(Xt−)+ τ(Xt−)Zt

)
dNt
(
λ(Xt−)

))2
,

and

CT =
n∑

i=1

(∫ i�

(i−1)�
μ(Xt)dt

)2
+2

n∑
i=2

∫ i�

(i−1)�
μ(Xt)dt

∫ i�

(i−1)�
σ(Xt)dWt

+2
n∑

i=1

∫ i�

(i−1)�
μ(Xt)dt

∫ i�

(i−1)�

(
ν(Xt−)+ τ(Xt−)Zt

)
dNt
(
λ(Xt−)

)

+2
n∑

i=1

∫ i�

(i−1)�
σ(Xt)dWt

∫ i�

(i−1)�

(
ν(Xt−)+ τ(Xt−)Zt

)
dNt
(
λ(Xt−)

)
.

To obtain the leading term of AT , we write that

n∑
i=1

(∫ i�

(i−1)�
σ(Xt)dWt

)2
=
∫ T

0
σ 2(Xt)dt +R1T,

where

R1T =
n∑

i=1

[(∫ i�

(i−1)�
σ(Xt)dWt

)2
−
∫ i�

(i−1)�
σ 2(Xt)dt

]
.

Due to Itô’s lemma, we have

R1T = 2
n∑

i=1

∫ i�

(i−1)�
σ(Xt)Ui,tdWt,
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where Ui,t = ∫ t
(i−1)�σ(Xs)dWs. Then we obtain from the Hölder inequality and the

Burkholder–Davis–Gundy inequality that

ER2
1T = 4E

n∑
i=1

∫ i�

(i−1)�
σ 2(Xt)U

2
i,tdt

≤
n∑

i=1

∫ i�

(i−1)�

(
E(i−1)�σ 4(Xt)E(i−1)�U4

i,t

)1/2
dt

≤ c
n∑

i=1

∫ i�

(i−1)�

(
E(i−1)�σ 4(Xt)E(i−1)�

[∫ t

(i−1)�
σ 2(Xs)ds

]2)1/2
dt

(C.137)

for some c > 0. We further deduce from (C.137) that

ER2
1T ≤ c

n∑
i=1

∫ i�

(i−1)�

(
E(i−1)�σ 4(Xt)E(i−1)�

∫ t

(i−1)�

∫ t

(i−1)�
σ 2(Xr)σ

2(Xs)drds

)1/2
dt

= O(�T2pq+1)

(C.138)

as T → ∞ and � → 0, from which R1T = Op(
√

�Tpq+1/2) follows. Consequently, we
obtain that

n∑
i=1

(∫ i�

(i−1)�
σ(Xt)dWt

)2
=
∫ T

0
σ 2(Xt)dt +Op(

√
�Tpq+1/2) (C.139)

as T → ∞ and � → 0.
For the leading term of BT , we write that

n∑
i=1

(∫ i�

(i−1)�

(
ν(Xt−)+τ(Xt−)Zt

)
dNt
(
λ(Xt−)

))2

=
∫ T

0

(
ν(Xt−)+τ(Xt−)Zt

)2
dNt
(
λ(Xt−)

)+R2T,

where

R2T =
n∑

i=1

[(∫ i�

(i−1)�

(
ν(Xt−)+ τ(Xt−)Zt

)
dNt
(
λ(Xt−)

))2

−
∫ i�

(i−1)�

(
ν(Xt−)+ τ(Xt−)Zt

)2dNt
(
λ(Xt−)

)]
.

We have

R2T = 2
n∑

i=1

∫ i�

(i−1)�

(
ν(Xt−)+ τ(Xt−)Zt

)
Vi,t−dNt

(
λ(Xt−)

)
,

where Vi,t = ∫ t
(i−1)�

(
ν(Xs−) + τ(Xs−)Zs

)
dNs
(
λ(Xs−)

)
. Furthermore, using analogous

techniques as in (C.137) and (C.138), we obtain from the Hölder inequality and the
Burkholder–Davis–Gundy inequality that

ER2
2T = 4E

n∑
i=1

∫ i�

(i−1)�

(
(ν2+τ2)λ

)
(Xt)V

2
i,tdt = O(�T4pq+1)
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as T → ∞ and � → 0, from which we deduce that R2T = Op(
√

�T2pq+1/2). Consequently,
we obtain that

n∑
i=1

(∫ i�

(i−1)�

(
ν(Xt−)+ τ(Xt−)Zt

)
dNt
(
λ(Xt−)

))2

=
∫ T

0

(
ν(Xt−)+ τ(Xt−)Zt

)2dNt
(
λ(Xt−)

)+Op(
√

�T2pq+1/2)

(C.140)

as T → ∞ and � → 0.
Finally, we may readily show that CT = Op(

√
�T3pq+1) as T → ∞ and � → 0, simply

by repeating what we did to establish (C.139) and (C.140). Therefore, it follows from
(C.136), (C.139), and (C.140) that

n∑
i=1

(Xi�−X(i−1)�)2 =
∫ T

0
σ 2(Xt)dt +

∫ T

0

(
ν(Xt−)+τ(Xt−)Zt

)2
dNt
(
λ(Xt−)

)+Op(
√

�T3pq+1)

as T → ∞ and � → 0, which completes the proof. �
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