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ABSTRACT 

The impact of relativistic theories of space, time and 
gravitation on the problem of reference systems is reviewed. 

First, the concept of inertial systems is discussed from 
the point of view of the special and the general theory of rela­
tivity. Then, relativistic corrections of Doppler, laser and VLBI, 
and similar effects are reviewed; they are usually on the order 
of 10 . Finally, the problem of a possible variation of the 
gravitational constant G (on the order of 10 /year) is out­
lined; such a variation does not occur in special and general rel­
ativity, but is implied by certain generalized field theories 
which are less commonly accepted. 

1 . INTRODUCTION 

We all know that the special theory of relativity is a re­
finement of classical mechanics for the case that we are dealing 
with very high velocities, and that the general theory of relativ­
ity provides a refinement of the Newtonian theory of gravitation, 
relevant for very strong gravitational fields such as the fields 
of black holes, and for problems of cosmology. For the gravita­
tional field of the Earth and for satellite motion in this field, 
as well as for terrestrial reference systems, classical mechanics 
is sufficient; relativistic effects are negligible or can be taken 
into account by very small corrections . 
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This well-known fact will, of course, be confirmed by the 
present paper, but conceptually the situation is not always ob­
vious at first sight. The following example will certainly strike 
us as paradoxical: The most accurate means for practically 
establishing an inertial system is VLBI using quasars; however, 
quasars are a typical phenomenon of an expanding universe which 
must be described by general relativity and for which, therefore, 
rigorously no inertial systems exist! 

We shall come back to this paradox later on. It already in­
dicates that an understanding of the basic principles of reference 
systems from a relativistic point of view is of conceptual signif­
icance . 

The present paper attempts a review of the impact of rela­
tivity on the problem of reference systems. We shall first discuss 
the concept of inertial system from the point of view of both the 
special and the general theory of relativity, then give a review 
of relativistic corrections and similar effects by which relativ­
istic geometry and mechanics differ from the classical situation, 
and finally discuss the problem of a possible variation of the 
gravitational constant G which, however, goes beyond Einsteinian 
relativity. 

There are a number of excellent textbooks on the theory of 
relativity. The most elegant presentation is perhaps (Synge, 1960, 
1972) , the most comprehensive and modern text is certainly (Misner 
et al., 1973), and a very readable and useful recent book is 
(Ohanian, 1976). An excellent review article on applications to 
space science is (Dicke and Peebles, 1965). In a previous work 
(Moritz, 1967) , the author has treated in some detail the question 
of inertial systems from a relativistic standpoint, especially 
with a view to separation of gravitation and inertia which is not 
usually considered in standard textbooks (except Synge, 1960 ). 
The present paper partly follows (Moritz, 1979) . 

Like all great and deep theories, Einstein's theory admits 
of various, often controversial, interpretations. It has even been 
argued that the name, general relativity, is not entirely appro­
priate since the essence of this theory is not the general "rela­
tivity" of all reference systems but rather the fact that the the­
ory provides a mathematical description of "absolute" curved space-
time. This point of view seems to be rather widely accepted at 
present (e.g. Fock, 1959 ; Synge, 1960 ; Misner et al., 1973 • 
Ohanian, 1976); it is also favored in the present article. 

2. INERTIAL SYSTEMS AND RELATIVITY 

Inertial systems in special relativity. In the special the-
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ory of relativity, inertial systems play a basic role as privi­
leged coordinate systems in space-time: in such a system, the four-
dimensional line element has the simple form 

ds2 = dx2 + dy2 + dz2 - c2dt2 = dx2 + dx2 + dx2 + dx2 . (1) 
1 2 3 4 

Here x = x^, y = X2, and z = X3 denote rectangular coordinates 
in space, t designates the time, and c denotes the constant 
velocity of light in a vacuum; we have to put X4 = ict, where 
i = -1. As in classical mechanics, a reference system moving 
with constant velocity with respect to an inertial system, is 
again an inertial system. 

Transformations between inertial systems are such as to 
leave the line element (1) invariant (unchanged); the set of such 
"Lorentz transformations" form a group, the Lorentz group, which 
describes the symmetry of the space-time of special relativity. 

No inertial systems in general relativity. The special the­
ory of relativity holds only in the absence of a gravitational 
field. Gravitational fields are treated by the general theory of 
relativity. Here the line element has the form 

h 4 

ds2 = £ J g . d x W = g dxadx3 (2) 

where x denotes coordinates x 1, x , x , x in space-time, 
which will in general be curvilinear rather than rectangular. The 
g are functions of these coordinates. Indices such as a and 
3 run from 1 to 4 ; lower indices are called covariant, and 
upper indices, contravariant. The Einstein summation convention, 
which will be used in this section, prescribes summation with re­
spect to any index that occurs in both an upper and a lower posi­
tion, as shown in eq. (2). The coordinates xa now have upper in­
dices because the differentials dx a form a "contravariant vector", 

The line element (2) relates to (1) in much the same way as 
a line element on a curved surface, 

ds 2 = Edu2 + 2Fdudv + Gdv2, (3) 

relates to a line element in the plane, 

ds 2 = dx 2 + dy2. (4) 

Here, u, v are curvilinear coordinates and E, F, G form the 
"metric tensor" 
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E F 

F G 

In space-time, the metric tensor [gag] is a 4x4 matrix, so 
that there is full analogy between the general forms (2) and (3) 
on the one hand, and between the "inertial forms" (1) and (4) 
on the other hand. In a way, the general theory of a relativity is 
nothing else but an extension of the theory of two-dimensional sur­
faces to four-dimensional space-time. 

This analogy will help understand an important point. On a 
curved surface one can introduce coordinates which, in an infini­
tesimal neighborhood of a point, give a line element 

ds2 = du2 + dv2 (6) 

which has the same form as the plane element (4) . Geometrically, 
this means that, in a small neighborhood of this point, the surface 
is approximated by its tangent plane. However, it will not be pos­
sible, in general, to introduce coordinates in such a way that the 
"inertial form" (6) holds on the whole surface (or even in a 
finite part of it). 

Transferred to four dimensions, this reasoning shows that, in 
a curved space-time, it will be possible to introduce coordinates 
which correspond to an inertial system in an infinitesimal neighbor­
hood of a point; but it is not possible to introduce an inertial 
system that is valid for the whole space-time. 

In this sense, there are no inertial systems in general re­
lativity. All possible coordinate systems are, in principle, equi­
valent; there are no privileged systems. This is Einstein's Prin­
ciple of General Covariance, or General Relativity. 

Another important principle in this theory is the Principle 
of Equivalence, according to which gravitational and inertial 
forces (such as the centrifugal or Coriolis force) are basically 
identical: both are effects of a deviation of the coordinate sys­
tem of line element (2) from an inertial system of line element 
(1) . Thus gravitation is interpreted geometrically as an effect 
of the curvature of space-time. 

Both the Principle of Equivalence and the Principle of Gen­
eral Covariance have played a fundamental heuristic role in Ein­
stein's considerations leading to his theory of gravitation around 
1915 because these principles provide a natural transition from 
the flat space-time of special relativity to the curved space-time 
of general relativity. Einstein's heuristic procedure is still the 

g g 
11 12 

g g 
12 22 J 

(5) 
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best way for understanding this theory; hence it is strongly 
emphasized in almost every textbook on general relativity. 

The relativistic treatment of reference systems, however, 
requires some subtler distinctions which show that, after all, 
privileged systems can be introduced which serve as practically 
satisfactory approximations to inertial systems, both on a local 
and on a global level. 

Local inertial systems. Just as a curved surface can be 
approximated locally by a tangent plane, so curved space-time can 
be approximated, in the neighborhood of a certain point, by a tan­
gent "plane" space-time in which an inertial system can be intro­
duced. Thus, in a certain "small" region, inertial systems are 
possible even in general relativity. Since our space-time is only 
very slightly curved, the gravitational field in the solar system 
being very weak, the "small" region just mentioned certainly covers 
the solar system and even extends well beyond. According to 
Eddington (1924, pp.99) a local inertial system will deviate from 
a global system by about 2 seconds of arc in a century. 

Global nearly-inertial systems. The application of the re­
lativistic theory of gravitation to the region of our solar system 
requires boundary conditions at infinity: with increasing dis­
tance from the attracting masses the effect of gravitation vanishes, 
and the curved space-time becomes flat at infinity. This fact per­
mits the introduction of uniquely defined privileged systems, the 
harmonic coordinate systems. These systems rigorously refer to 
curved space-time. At infinity they reduce to inertial systems of 
form (1) , and within the solar system they approximate inertial 
systems practically very well. 

In this sense, the harmonic coordinates form a privileged 
coordinate system, which is a natural generalization of an inertial 
system to curved space-time. This has been particularly emphazised 
by Fock (1959); see also (Weinberg, 1972, p. 162). 

Quasi-inertial systems and Fermi propagation. Let us intro­
duce the concept of quasi-inertial systems. They are three-dimen­
sional cartesian systems whose origin is moving arbitrarily but 
whose axes remain always parallel; a physical realization is by 
means of axes whose direction is stabilized by means of gyroscopes. 
The underlying principle is that the axis of a freely spinning 
gyroscope maintains its direction even if its frame is accelerated 
or rotated; furthermore, the axis is unaffected by gravity. 

Quasi-inertial systems differ from inertial systems in the 
strict sense by the fact that they can be in nonuniform (acceler­
ated) motion with respect to each other, as long as the coordinate 
axes remain parallel. Inertial systems are always in uniform motion, 
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that is, they move with a constant velocity vector with respect to 
each other. A geocentric system of which the axes have a constant 
direction in space is an example of a quasi-inertial system: the 
origin (the geocenter) moves along an ellipse around the sun, rather 
than along a straight line with constant velocity. 

This concept of a quasi-inertial frame can be defined also 
in general relativity. The relevant concept is Fermi propagation, 
or Fermi-Walker transport, which is considered in detail and used 
extensively in (Synge, 1960). It is also treated in (Misner et al., 
1973, p. 170), but hardly elsewhere in standard textbooks. There­
fore we shall briefly consider it here, following (Moritz, 1967). 

The equation of Fermi-Walker transport may be written 

6Aa , ,6u6 a 6ua g. 
OS p OS OS 

ct 
(Synge, 1960, p. 13). Here X (or AR) are the contravariant 
(or covariant) components of the vector undergoing Fermi propagation, 
related by 

Ct 

The vector u is the four-velocity 

uK = ^ , (9) 
ds 

the unit vector of the tangent to the world line of the particle 
to which the vector Aa is attached. The symbol 6 denotes co-
variant differentiation: 

IT- = f~ + vt A Y • (10) 

6s ds gy 

where T are the Christoffel symbols, and analogously for <Su /6s. 
PY 

ct 
In our case, the vector A represents the spin axis of the 

gyroscope. It lies in the instantaneous three-dimensional space of 
the spinning particle and is therefore orthogonal to ua : 

uaA = 0 . (11) 
a 

https://doi.org/10.1017/S0252921100081094 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100081094


RELATIVISTIC EFFECTS IN REFERENCE FRAMES 49 

Hence (7) reduces to 

oA , 6u a 
T— = A

D 7
 u - 12 

6s 3 os 

This equation holds for Fermi-Walker transport of a space-like 
vector satisfying (11) . It expresses the fact that the change 
5Xa/6s has the direction of ua and has no component in the 
instantaneous three-space of the observer. Thus the change \ a is 
purely in time: the vector Xa remains unchanged in space, it is 
transported parallelly. This shows that Fermi propagation is related 
to spatial parallelism. 

Consider now a system of three mutually orthogonal space­
like vectors Xa , each of which is represented by the axis of a 
freely spinning gyroscope. In this way the axes of a rectangular 
xyz system which is transported parallelly in space, may be reali­
zed physically. 

It can be shown (Moritz, 1967, p. 47) that the change 5Xa/5s 
is small of order c~ , c being the velocity of light. To this 
accuracy, the direction of Fermi-propagated axes remains constant 
in space; it furthermore is practically unaffected by the gravita­
tional field. 

This shows that gyroscopically stabilized "quasi-inertial 
systems" are possible even in the context of general relativity. 

Separation of gravitation and inertia. After this discussion 
of "privileged" coordinate systems which seem to contradict the 
Principle of General Covariance, let us now briefly remark on the 
separation of gravitational and inertial forces, which seems to 
violate the Principle of Equivalence. This question is related to 
the problem of reference systems only indirectly? it has been dealt 
with rather fully in two reports (Moritz, 1967, 1971). 

The Principle of Equivalence states that, because of the 
identity of gravitational and inertial mass (shown experimentally 
by R. Eotvos around 1900 to an accuracy of 5xlO-9 !) the resul­
tant of gravitational and inertial forces acting at one point can­
not be separated into a gravitational and an inertial part; both 
are equivalent and cannot be distinguished. 

Matters are different if we consider, not only one point, 
but a region in space, which may be arbitrarily small. In the 
theory of surfaces, the Gaussian curvature K provides a criterion 
for distinguishing a curved surface from a plane, depending on 
whether K is nonzero or zero. The generalization of the Gaussian 
curvature to four dimensions is the Riemannian curvature tensor 
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R „ „ ; again, space-time is flat if R „ . = 0 and curved other-
aBy<5 . ' • ^ c .. a6Y<5. . . . . . 

wise. Now, curvature of space-time is an objective criterion 
for the presence of a genuine gravitational field, so that, accord­
ing to (Synge, 1960, p. 109), we may write 

R . . = gravitational field . (13) 
aBy<5 

The Riemann curvature thus provides a criterion for the pre­
sence of a gravitational field, but not yet a means for the sepa­
ration of gravitational and inertial effects. In flat space-time, 
inertial forces have an objective significance since they are due 
to the deviation of the observer's coordinate system from an in­
ertial system. Similarly in a weak gravitational field, a separa­
tion of gravitation and inertia is feasible if we succeed in intro­
ducing a privileged coordinate system similar to an inertial system. 
In this way, the separation of gravitation and inertia is intimately 
connected with the question of an "almost" inertial reference 
system, such as the harmonic system mentioned above. 

We finally point out that in such a system there is approxi­
mately (Moritz, 1967, p. 43) 

c2R = 8 2 V (14) 
Ki4j4 3x.8x. { ' 

i J 

where i and j are spatial indices running from 1 to 3 . 
Thus, second-order gradients of the potential V are purely gravi­
tational. In (Moritz, 1971) we have shown that using a combination 
of accelerometers, measuring first-order gradients, and gradiome-
ters, measuring second-order gradients, a separation of the gra­
vitational signal from inertial disturbances can be effected even 
with first-order gradients, that is, in the gravitational force. 

Cosmological questions. For a homogeneous and isotropic 
universe, the line element (2) has the form (Bondi, 1960, p. 102) 

9 9 9 
, 9 , 9 r , , 19 dx + dy + dz , „ ,_, 

ds2 = dt2 - [R(t)]2 {1 + ( k / 4 ) ( j + y2 + Z2)V, • d5) 

Here R(t) is a time-dependent scale factor by means of which the 
expansion of the universe can be described. The constant k may 
have the values +1, 0, or -1 . For k = 0 , space is Euclidean; 
for k = 1 , space has constant positive curvature, and for k = -1, 
constant negative curvature. The space-time described by (15) is 
called the Robertson-Walker model. (For k = 0 and R = c , (15) 
reduces to (1) , apart from the irrelevant factor (-c ).) 

This model appears well suited to describe mathematically 
the large-scale space-time structure of the universe, apart, of 
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course, from "local" gravitational irregularities such as caused 
by our solar system. On the basis of present observational data 
it is not possible to decide clearly whether k is positive, ne­
gative or zero, although there is some indication that space may 
have negative curvature (cf. Ohanian, 1976, p. 416). 

At any rate, Robertson-Walker space-time will not in general 
be the flat space-time of special relativity (1) . Thus, strict­
ly speaking, inertial systems in the usual sense will not exist. 
This leads us to the paradox already mentioned in the introduction: 
The most accurate means of practically establishing an inertial 
system is VLBI using quasars; however, quasars are a typical 
phenomenon of an expanding universe which is described by the 
curved space-time (15) for which no inertial system exists! 

This paradox, however, is a theoretical curiosity rather 
than a fact of particular significance. Indeed, as we have seen 
above, all our practical inertial systems are nonrigorous in the 
sense of general relativity but still perfectly useful. For the 
region of our galaxy, we may easily consider space-time to be 
essentially flat, apart from local gravitational irregularities. 
The same holds a forteriori for our solar system. Furthermore, it 
is possible to study cosmology within the frame of special rela­
tivity and even of classical mechanics (Bondi, 1960, Chapters XI 
and IX). 

3. RELATIVISTIC CORRECTIONS 

The mathematical description of geometry and gravitational 
field around the Earth (geodesy, geodynamics, satellite dynamics) 
and in the solar system (celestial mechanics, classical astronomy) 
uses Euclidean geometry and classical mechanics. Such a description 
is valid to an accuracy of about 1 part in 10 . For higher 
precisions, the special and general theories of relativity must be 
taken into account. This is best done by applying small "relativ-
istic corrections" to the classical formulas. 

Post-Newtonian approximation. Let us formulate the equa­
tions of general relativity in an approximate form which is suf­
ficiently accurate for one purpose and, at the same time, comes 
close to classical potential theory. Such "nearly-Newtonian gravi­
tational fields" or post-Newtonian approximations" to Einstein's 
theory are treated in almost every text on relativity; cf. (Misner 
etal., 1973, pp. 445, 1068) and (Boucher, 1979). 

For this case the general line element reduces to 
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ds2 = (1 + 2 T ) (dx2 + dy2 + dz2) - (1 - 2 \ ) c2dt2 . (16) 
c^ c 

Here x, y, z are rectangular spatial coordinates as usual, and 
t is a time coordinate; it will be called coordinate time. The 
symbol V denotes the classical Newtonian gravitational potential, 
defined in the "geodetic" way (everywhere positive and tending to 
zero at infinity; physicists frequently use the opposite sign) 
and c is the velocity of light as usual. This equation is linear 
in V/c ; higher powers are consistently neglected in this theory. 

What is the order of magnitude of v/c ? The gravity poten­
tial W at the surface of the earth is approximately 

W = 6.3 x 107m2s_2 ; 

cf. the value UQ given in (Heiskanen and Moritz, 1967, p. 80); 
for the present purpose, the gravitational potential V and the 
gravity potential W (including the centrifugal force) are 
nearly equal. Then 

V . W . 6.3 x 107m2s 2 
9 

(3 x lO^s^F = °-? X 10"3 " (17) 

Thus, V/c is a dimensionless quantity of order 10~° at the 
earth's surface (and smaller at higher elevations). If we neglect 
this small quantity, then the line element (16) reduces to the 
simple line element (1)) of special relativity. 

Time. Since time can be measured by means of atomic clocks 
far more accurately (to order 10- 1 3 or better) than any other 
relevant quantity, relativistic effects show here quite well and 
must be taken into account. Atomic time which an atomic clock 
measures, has the character of a proper time and will be denoted 
by T . The element of proper time, dx , is proportional to the 
element ds , given by (16) , of the world line of the atomic 
clock: 

ds = icdx , dx = ds/ic . (18) 

Hence, for a clock at rest (dx = dy = dx = 0) , 

]_ 
dx = (1 - 2 X ) 2 dt = (1 - ^r ) dt . (19) 

c c 
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If the atomic clock is fixed to the rotating Earth, then the 
gravitational potential V in (19) must be replaced by the grav­
ity potential W which is the sum of V and of the centrifugal 
potential. Thus atomic clocks depend on the potential in a similar 
way as the old pendulum clocks depend on gravity, through incom­
parably less. Just as gravity, or better gravity differences, can 
be measured by means of pendulums, so the potential, or better 
potential differences, can, in principle, be measured by atomic 
clocks. (It would, however, be premature to hope for a new geodetic 
instrument measuring potential differences in this way: 1 cm in 

1 o 

elevation would correspond to 10_1° in time!) 

Of such nature is the experiment by Pound and Rebka de­
scribed in (Misner et al., 1973, p. 1057) and (Ohanian, 1976, p.212), 
which measures the gravitational redshift of y-rays using the 
Mossbauer effect and hence the potential difference. (Redshift 
occurs if the "clock" represented by the emitting source is slower.) 

Related phenomena are the time delay of radar echoes from 
Mercury, Venus and Mars due to their gravitational fields as mea­
sured by Shapiro and others (Ohanian, 1976, p. 128), and time 
dilation experiments measuring the redshift of different spectral 
lines of the sun and other stars, (ohanian, 1976,p.214). We shall con­
sider such an effect below when discussing laser distance measure­
ments . 

Another question is the relation between Atomic Time (AT) 
and Ephemeris Time (ET). Conceptually, AT is the time of quantum 
theory, and ET is the time of mechanics (classical or relativistic). 
If general relativity is correct, then AT = ET. On the other hand, 
(Duncombe et al., 1974, p. 2 32) state that empirical observations 
tend to indicate that these two time scales are not equivalent. As 
an explanation they suggest that the gravitational constant G 
decreases at the rate of about lO-1 * per year. We shall consider 
the question of temporal variability of G in sec. 4. For the 
time being, however, we shall limit ourselves to general relativity 
in the Einsteinian sense, for which G is constant. 

As a practical consequence we note that eq. (19) can be 
used to reduce atomic time x to coordinate time t . A more 
general expression is the well known formula 

dx v2 V 

dt = 1 " 2?" " P- ' (20) 

which is an immediate consequence of (16) and (18) , putting 
dx + dy + dz = v dt and neglecting the term Vv2/c1+ as 
being of higher order. Here v is the velocity of the clock in 
the basic system xyzt . 
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The term v2/c2 is a special-relativistic correction, and 
V/c represents a general-relativistic contribution. The orders 
of magnitude of these corrections are as follows: 

v2 

c^ 

V2 

c^ 

10 ° for the Earth's orbital speed (30 km/sec) 

= 10 12 for the Earth's rotational speed (0.46 km/sec 
at the equator) 

V . -a 
—^ = 10 for the Sun's gravitational potential at the c E a r t h ' s o r b i t 

V . _ Q 

—j- = 10 r for the geopo ten t i a l a t the E a r t h ' s sur face ; 
C cf. also (17) . 

The reduction from atomic time to coordinate time is thus given by 

t = / (1 + jpr + ^ ) dx . (21) 

This reduction permits us to get a uniform time scale which is not 
affected by motion and by gravitational irregularities (Thomas, 
1975) . 

Length. The present definition of the meter in terms of a 
certain multiple of the orange line of krypton will probably be 
given up in the near future. It will be redefined in terms of the 
atomic second and the velocity of light, of which the present 
accepted value is 

c = (299 792 458 ± 1.2)ms_1 (22) 

(Moritz, 1975). This indirect definition of length will be more 
accurate. 

In fact, since c is accurate to about 4 parts in 109 , 
the new definition of length will be as accurate (time being de­
fined with superior precision). Relativistic effects are below this 
level, so that the influence of these effects on length will be 
negligible still for some time. 

Doppler measurement. Doppler shift (changes in frequency) 
and aberration (changes of direction) of light or of another 
electromagnetic wave are fundamental phenomena in special relativ­
ity and are treated in almost all textbooks on relativity (for an 

https://doi.org/10.1017/S0252921100081094 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100081094


RELATIVISTIC EFFECTS IN REFERENCE FRAMES 55 

astronomical presentation cf. Schneider, 1979, ch. 11). Relativ-
istic Doppler shift and aberration differ from their classical 
counterparts by the factor (1-v /c ), which is very close to unity. 

If A is the wave length as omitted by the source, X' is 
the received wave length, and AA = A1 - A , then 

9 9 

A A Vv v — — . v~- v 
f = (l + ^> (1-^) 2 - 1 = -f+^ . (23) 

Here v is the radial component of the velocity vector v_ of 
the source with respect to the observer, and v is the norm of 
y_ . Eq. (2 3) differs from the classical Doppler shift vr/c by 
the "second order Doppler correction" v2/2c2 , which is a special-
relativistic effect. The latter is present even if the velocity 
vector y_ has no radial component vr . Therefore v2/2c is 
also called "transversal Doppler effect"; it is due to the apparent 
retardation of the moving clock (the source). 

If one considers also the effect of gravitation on the clock 
frequency by (20) , then (2 3) becomes 

9 V - V 

AA vr v2 S R , _ 
A c 2c c 

where Vs - VR is the potential difference between sender (source, 
clock) S and receiver R . 

If the sender is in a satellite and the receiver is at the 
Earth's surface, then (24) applies to geodetic Doppler observa­
tions. The second-order corrections (second and last term on the 
right-hand side) cancel partly since VR > Vg . For normal satellite 
heights, the general-relativistic correction is smaller by an order 
of magnitude; however, if the satellite height reaches half of the 
Earth's radius, then the two second-order corrections cancel comple­
tely (Weinberg, 1972, p. 84). For a satellite height of 1000 km , 
the second-order Doppler correction gives AA/A = v2/2c2 = 3 x 10 ° . 
It is also worth noting that in satellite Doppler positioning, 
second-order Doppler effects (from both special and general rela­
tivity) can be treated as constant frequency bias (Blais, 1977; 
Boucher, 1976, 1978) . 

Laser distance measurements. The velocity of light in the 
presence of a gravitational field is not c but v = c(l - 2v/c2),-
this is an immediate consequence of (16) on putting ds = 0 for 
light and dx2 + dy2 + dz2 = v2dt2 . Thus the distance s computed 
by multiplying the travel time by c must be diminished by 
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9 S 

6s = — / Vdt 
C P 

Here P is the laser station and S is the reflecting satellite. 
To a sufficient accuracy we may put V = GM/r and integrate sim­
ply from r = R to r = R + H , where R is the Earth's radius 
and H is the satellite elevation, putting dt = dr/c . Thus 

R+H 
x 2GM r dr 2GMn R+h 
6s = — r / — = — 2 - i n — - 25 

c ' r c^ R ' 
R 

which reaches 1 mm for H = 1000 km and 4 cm for the moon.(For 
lunar laser ranging cf. Mulholland, 1977; Stolz, 1979.) 

Very-long- baseline interferometry. Here it is customary to 
reduce observed atomic time to coordinate time with respect to an 
inertial system with origin at the center of the solar system. The 
reduction formula, obtained by an appropriate evaluation of (21), 
has the principal term (Thomas, 1975; Robertson, 1975b) 

At = j - v • x , (26) 
c — — 

where v_ is the Earth's orbital speed and x_ is the clock's 
geocentric position vector. This term has a daily period and an 
amplitude of about 1.5 ys ; it can also be explained as a classi­
cal aberration effect. For a detailed discussion see (Thomas, 1975). 
Aberration effects in VLBI are considered from the standpoint of 
special relativity in (Robertson, 1975a). 

Deflection of light. Light rays can be regarded as straight 
except under unusual circumstances. Classical is the deviation of 
a light ray grazing the sun during an occultation. Modern results 
concerning this phenomenon and concerning analogous deflections 
of radio waves are given in (Ohanian, 1976, pp. 124-125); the 
order of magnitude is 1 - 2 seconds of arc. 

Gyroscopic effects. Above we have seen that gyroscopes 
undergoing Fermi-Walker transport behave very much as in classical 
mechanics. Small relativistic effects ("geodetic precession") are 
described in (Ohanian, 1976, pp. 292-298). 

Influence on planetary motion. The classical example is 
the precession of the perihelion of the orbit of the planet Mercury 
(about 40" per century). There are also periodic relativistic 
effects in earth-moon separation on the order of 1 m , which can 
be measured by lunar lasar ranging (Misner et al., 1973, p. 1048). 
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(For relativistic effects on satellite orbits, cf. Rubincam,1977.) 

4. IS THE GRAVITATIONAL CONSTANT CONSTANT? 

As an explanation of certain astronomical and geophysical 

phenomena, it has been suggested (Dicke, 1964; Dicke and Peebles, 

1965; Duncombe et al., 1974) that the gravitational constant G 

is decreasing by a few parts in 10 per year. The evidence is 

not clear, however; it seems to be difficult to separate a true 

change of G from other systematic influences (Ohanian, 1976, 

p. 188; Stephenson, 1978). The evidence on which the conclusions 

of Dicke and Peebles (1965) are based, is now superseded by recent 

data on the secular variation of the earth's rotation, summarized 

in (Lambeck, 1980, pp. 299-319). An experimental bound, |G/G|<4xlO~1 0 

has been obtained by Shapiro et al. (1971) by analyzing radar-echo 

time delays between Earth and Mercury (see also Williams et al.,1978). 

In Einstein's general theory of relativity, G is constant. 

A changing G requires a different theory; such theories have 

been proposed by Jordan, Brans, and Dicke (Misner et al., 1973, 

p.1070) and Treder (1977). Since Einstein's theory is of incompar­

able simplicity and perfection, most physicists would be willing 

to give it up only in the presence of very solid empirical evidence. 

For the purposes of reference systems and time scales it thus ap­

pears permissible at present to take a conservative attitude and 

remain within the frame of Einstein's theory. 
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