CIRCULAR SLIT DISK WITH INFINITE RADIUS
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To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

Introduction

1. Let W be a plane domain such that coW. Given a point ¢€W and a
boundary component C of W, consider the family §,c=%,.¢(W) consisting of all
the functions f satisfying the following conditions: f is regular and univalent
in W, f(a)=0, f’(a)=1, and the image f(C) of C under f is the outer boundary
component of the image domain f(W). Set

M[fl=sup| f(2)|
zZEW
and
7’a0=ra0(W)= inf M[f].
SEFac

In the present paper we shall call 7,¢ the mapping radius of W with respect
to @ and C.

If 7,¢ is finite, it is now classical that there exists a function minimizing
M[f] within &,c and that it maps W onto a circular slit disk. If 7,. is
infinite, however, to the best knowledge of the authors, no one has studied this
kind of conformal mappings.

The purpose of the present paper is to show that a considerable part of the
results for finite 7, is extended to the case of infinite 7,.

2. Standard known results for r,o << oo.

(I)  If roc << oo, there exists a function 9 EF,c with Mlel=r,c. It is determined
uniquely.

This function ¢ will be denoted by ¢, or 4"?; .

We mean by a circular slit disk with radius Q(< o) a domain 4 such that
Osdc{w| |w|< @}, and {w| |w|=Q} is a boundary component, and further
every other boundary component is a single point or a circular arc on |w| =const.
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(II)  The image of W under ¢ is a circular slit disk with radius roc. The total area
(=2 dimensional measure) of slits vanishes.

This property does not in general characterize ¢,c. For this reason the
following is introduced: A circular slit disk 4 with radius Q(< ) is said to

be minimal if ¢ir(w)=w with respect to I'={w| |w|=Q}.

(III)  The image of W under ¢,¢ is a minimal circular slit disk with radius 7.c.
Conversely, an f&F,0 such that f(W) is a mimimal circular slit disk (with a certain
radius) is necessarily ¢, c.

Consider an exhaustion €W ,+W in the ordinary sense. Let C, be the
boundary contour of W, which separates C from a. Put 7,=74.,(W,) and
Pa=por .

(IV) 7, increases with n and roc=limr,. Further o,c=1lim ¢, uniformly on every
compact set in W.

Proofs of the above are found in, e.g., Reich-Warschawski [7] , which con-

tains also a list of literatures.

3. Lemma 1. A domain 4 with Ocdc{w| |w|< Q}, @ <, is a minimal
circular slit disk with radius Q if and only if

rOT(A): Q7

where I" is the outer boundary of 4.
It is a direct consequence of (I) and the proof may be omitted.

4. Main result. If 7,o=o0, the counterpart of (I) is meaningless. Indeed,
M[f]=o for all f€F,,, that is, all the f are extremal functions. It is known
also that the first half of (IV) is valid for 7,,=c. Our main result is that (II),
(IIT), and the latter half of (IV) are true for r,,=c. It may be summarized
as follows:

TuEOREM 1. Under the assumption of r,c=oco, there exists a uniquely determined
Sunction ¢ =F 0 such that, for every exhaustion ac W, tW,

¢=lim g,
Nn—>00

uniformly on every compact set in W. The image ¢(W) is a circular slit disk with
infinite radius, and the total area of the slits vanishes.
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The function ¢ will be denoted by ¢,¢ or ¢Z"; . A circular slit disk 4 with

infinite radius will be called minimal if ¢gr(w)=w with respect to I'={c0}. Then
it would be clear that the counterparts of (II)-(IV) are derived from Theorem
1.

Let us sketch how the proof of Theorem 1 will be carried out. For any
exhaustion, the sequence {¢,} is normal and, therefore, it contains a subsequence
which converges to a ¢E&,¢ uniformly on every compact set in W. We
shall show, first, that ¢(W) is a circular slit disk with infinite radius, which
satisfies a certain condition enjoyed by minimal ones with finite radii
(Theorem 2). This latter property implies that the total area of slits vanishes.
Besides, it is satisfied by at most one function in &,¢ (Theorem 3). Thus
the proof of Theorem 1 will be complete.

§8 5-11 are devoted to the preparation, a part of which is contained in
[6, 11]. In §§ 1620 is discussed the corresponding case of mappings onto
circular slit annuli.

Circular slit disk with finite radius

5.  The lincar operator method. We shall present several particular results for
the case of finite 7,, which are needed later. To this end the linear operator
method developed by Sario [9] will be used. Let us review the definition
and basic properties of the operator L, in Ahlfors-Sario [1].

Let W be an open Riemann surface, let V be the union of a finite number of
regularly imbedded non-compact subdomains with compact relative boundary.
For any real analytic function f on a, the relative boundary of V, consider the
problem of constructing a harmonic function # on VUe such that #=7f on a.

If V is the interior of the union of a finite number of compact bordered
surfaces, we require u to satisfy the following conditions so that it may be
determined uniquely:

u=const and Sdu*zO

on every contour of (border of V)—a. The correspondence f—u is denoted
by L,. Note that it is the (P)L, in Ahlfors-Sario’s book with respect to the
canonical partition P (See [1, p. 160]).

If V is arbitrary we define u=L, f by means of exhaustion acW,tW. Let L,,
be the above defined operator L, acting from « into VNW,. The sequence

https://doi.org/10.1017/50027763000012356 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012356

60 KOTARO OIKAWA AND NOBUYUKI SUITA

L,.f converges to a harmonic function uniformly on every compact set in VU .
The limiting function is independent of the exhaustion, which will be denoted
by L,f:

L.f=limL,,f.

If V is the interior of the union of a finite number of compact bordered
surfaces, this definition coincides with the previous.
We shall need the following properties:

Linearié)’) Li(cifitrefo)=ciLifi4c, L. fy
Maximym-principle, min f<L,f< max f inV.

6. It is not difficult to derive the following Consistency of L,:
(a) Ifv’cV, then
Liyy(Lwwf)=Liwf on V'

for every f on «. Here subscripts V/ and V represent the domains where L,
is considered.

(b) Conversely, let V, ,..., V,CcV be mutually disjoint and such that
V— U¥_V,is relatively compact. Given fon «, suppose # is harmonic on VUa,
coincides with f on a, and satisfies

u=L1V‘u on V,; (l:]. 5 ey k).
Then
u=L,f onV.

7. Properties of @qc in terms of L,. Let W, a, and C be asin §1. Suppose
VcW is as in §5 and is such that

agV,VnC=¢;
by the closure we do not mean the one in the relative topology on W.

LemMA 2. If roe<oo, then

() L(log|¢acl)=logleacl

on every V. If, further, C is a simple closed analytic curve isolated from oW ~C, then

¢ =0qc 15 conversely characterized by (1) and the following: ¢ E&Foc, regular on WUC,
and || =const on C.
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Proof. Consider an exhaustion {a}UacCW,tW. Put u=logl¢.c! and
Up = loglgofé’;l. Clearly

Upo=L, %, on VNw,,
n=1,2,.... Then

l#n—Lywt|<|Lyqtty— Lyt +|Liu—Lin| < max |u,~u|+|Liau—Lu|—0

as n—>oo. Accordingly Lu=u.

To prove the latter half, let ¢ and & satisfy the conditions. Then
v=log|¢|—log|@| is harmonic on WUC and satisfies L;yv=v on every V. By
the Consistency of L, we have Ly=v on W, where L, acts from C into W.
Since v=const on C, we obtain v=const in W and, therefore, ¢=¢. q.e.d.

From the latter half of Lemma 2 we can easily derive the following proposi-
tion:

Suppose 4 is a circular slit disk with radius @ < co and I'={w| |w|=Q} is
isolated from a4—I". Then it is minimal if and only if

L,(log|w|)=log|w|

holds on every subdomain V such that a & V, WNaV consists of a simple closed
analytic curve @, and V=4N(Inte). Here Int « means the interior of «.

8. DeriniTiOoN. A set E in the w-plane with 0, co € E is called a
minimal set of circular slits if, for every simple closed analytic curve a such that
0, o & @ and EN (Int«) is compact, E°N (Int )=V is a domain and

L,(loglw|)=log|w| onV,

where L, acts from « into V.

In view of the last paragraph of the previous section, it may be characterized
as follows: Given a set E with 0, & E, let « be, as is mentioned in the
Definition, a simple closed analytic curve such that 0, o&a and EN (Inta)=E,
is compact; if E is a minimal set of circular slits, then, for every (or equivalently
some) @ < oo with E;c{w| |w|< @}, the domain {w| |w|< Q}—E, is a minimal
circular slit disk with radius @; conversely, this property is sufficient for E to
be a minimal set of circular slits.

Every component of a minimal set of circular slits is either a single point or
an arc on |w|=const. It has vanishing area.
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9. In the last paragraph of §7, the assumption for I can be removed as
follows:

LemMma 3. A domain 4 with Ocdc{w| |w|< Q}, Q < o, is a minimal circular
slit disk with radius Q if and only if

4°N{w| |wl< Q}

is a minimal set of circular slits.
Proof. The necessity is a direct consequence of the first half of Lemma 2.
To prove the sufficiency, let I be the outer boundary of 4. Because of
Lemma 1 and (IV) in §2, it suffices to find an exhaustion 04, % 4 such that

limr,=Q,

where 7,=7,r_(4,).
It is clear that I" coincides with the circle |w|=Q. Therefore it is possible to
find a simple closed analytic curves I',, n=1,2,... in 4N{w|Q—1/n < |w|<Q}

separating I" from 0 and such that (Int I',)c (Int I",,,). By the assumption,
E,=(Int I",) N 4° has the property that

Z’n:{wl |w|< Q}—En

is a minimal circular slit disk with radius @. As a consequence Fo=ror(dy)
coincides with Q.

Exhaust 4, by 0€4,, ,%4, (mt o). The mapping radius 7, =%, (dm.n)
satisfies

TmaTPn  (mtoo).

We may assume I',C4,.,, m=1,2,.... Since 4, is a minimal circular slit
disk, the sequence gom,,,(w)=<pf~;:':(w) converges to w uniformly on I",, as m — oo,

Thus it is possible to find m=m(n) such that ¢, .(",) is contained in
Q—-1/n<|w|< Q.
Take m=m(n) sufficiently large so that

Anz(Int Fn)nAm(n),n. n:]’ 2,

satisfy 4,c4,., and U,2,4,=4. Then they are what we wish to get. In fact,
first

Vn = Ym(n),n = 77n=Q
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holds.  Second, ¢,.(n.4(4,) has only a finite number of slits and contains
@ min),nldn) N{w| [w]|< Q—1[n}, which is a minimal circular slit disk with radius
Q—1/n. Hence, by (I) in §2,

Q'_—érn-

S |-

As a consequence lim 7,=@Q.

10. Extension of One-Quarter-Theorem. The following has essentially been
obtained by Grétzsch [3]:

LeEMMA 4. If v,0 < oo, then

. 7
min el fl=-"5¢,
FEFac

where my[f]l= min |w]|.
wef(C)

Proof. Consider the Koebe function

F,(w)z—(r—_f—%)z— lw] < 7.

Put Fre(w)=¢®F,(e-%w), 0 <6< 2z. With respect to »=r,,, the function
Frop,s belongs to F,e and has me equal to /4. Thus inf m[f]1<7ac/4.
Suppose, next, there exists an f,EF,c with me[f,] <r,e/4. If f4(C) is not a
half-line on the ray arg w=const, a simple application of One-Quarter-Theorem
shows the existence of f,€&,¢ with mefil<me[f,]. Accordingly, we may
assume from the beginning that f(C) is a half-line on the ray arg w=6. With
respect to r=4mf,] the function f,=F;jof, belongs to &, and has
M[f,]=r <r,e. This contradiction denies the existence of f,, showing
infmel f1=7qc/4.

Weak boundary components

11. The mapping radius 7,¢ is infinite if and only if f(C)={co} for every
SE€Fqac. This is equivalent to the fact that, for every univalent function F on
W, the image F(C) consists of a single point; note that the validity of this is
independent of the reference point @. In this case the boundary component C
is called vollkommenpunktférmig by Grotzsch [4], and weak by Sario [10].

Sario and others have generalized the concept of weakness for boundary
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components of open Riemann surfaces. A number of properties of parabolic
Riemann surfaces are generalized for surfaces having weak boundary com-
ponents. We need the maximum-principle due to Constantinescu [2, p. 55].
In the statement of the result he assumed that the function is positive. But
it is seen easily from his proof that this assumption is unnecessary as long as the
present operator L, concerns. We shall state it for plane domains.

LemMa 5. Suppose roo=c0. Let V be a subdomain such that W—V is compact
and a=W N3V consists of a finite number of simple closed analytic curves. Let u be a
harmonic function on VUe. If u is bounded above in V and satisfies

Lu=u
in every V'CV with V. NC=¢, then

u<maxu mV.
o

Circular slit disk with infinite radius

12. Let W, a, and C be as in §1, and consider an exhaustion acW ,1 W as
in §2. The functions ¢,=¢hz (1,2,...) form a normal family, so that it

contains a subsequence {¢, } for which
lim (P”jz(ﬁ (S %ag

holds uniformly on every compact set in W.
By exactly the same argument as in the Proof of Lemma 2, we see that

(2) L,(logl¢])=log|¢|

is satisfied on every VoW with a&V and VNC=¢. Ifr,s=c0, then ¢(C)={co}.
Thus we immediately obtain the following:

THEOREM 2. If r,o=00, every limiting function ¢ maps W onto a circular slit
disk with infinite radius. (W )—{0} is a minimal set of circular slits and, therefore,
has vanishing area.

13. TuroreM 3. If r,c=oo0, then Foc contains at most one function satisfying
(2).

Proof. Suppose there are two, say ¢ and ¢,. It suffices to show that the
function #=log|¢/¢,|, harmonic in W, reduces to constant.

Let us first prove that it is bounded above. For n=1,2,..., 4,
=¢(W)N{w| |w]< n} is a minimal circular slit disk with radius » (Lemma
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3). On applying Lemma 4 for the function ¢,o¢~! on 4,, we observe that the
image of |w|=#x, a boundary component of 4, under this, lies outside the disk
|w|< n/4. It is not difficult to find a simple closed curve in ¢(W)N{w|n <|w|
<n+ 1}-separating |w]=n from |w|=n+1. It may be assumed to be an analytic
curve. On denoting its counterimage under ¢ by C,, we obtain |¢| < n+1
and |¢,|=n/4 on C,, so that # <log 4(n+1)n-* on C,.

C, divides W into two subdomains. Let W, be the one containing a. By
the assumption (2) and by the Consistency of L,, we have L,u=u on W ,, where
the operator acts from C, into W,. The maximum-principle implies u <
log 4(n+1)n~' on W,. On letting n — oo, we conclude that

u <log 4 inW.

Now let N be a relatively compact parametric disk about a. Apply Lemma
5tou on W—N. The function # is dominated by max u in W—N, so is in

W. We conclude #=const.

14. As a trivial consequence of Theorems 2 and 3, we obtain the following
extension of Lemma 3:

TueorREM 4. A4 circular slit disk 4 with infinite radius is minimal if and only if
4°—{o} is a mimimal set of circular slits.

15. If 7,c=c0 and C is isolated from aW —C, then C coincides with {0}, In
this case W=W U{»} is also a domain. The function on W obtained by
Theorem 1 coincides with the well-known extremal function which maps W
onto a circular slit plane.

Circular slit annulus

16. Introduction. Let W be a plane domain having more than one boun-
dary components. Assign two of them, ¢’ and C. Consider the family
Seic=Fcc(W) consisting of all the functions f satisfying the following conditions:
f is regular and univalent, f(z) % 0 in W, f(C’) is the inner and f(C) is the
outer boundary component of f(W). It would be convenient not to give
further restrictions.

Set

M fl=sup | f(2)|, m[fl=inf | f(2)],
zeWw zeW

https://doi.org/10.1017/50027763000012356 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012356

66 KOTARO OIKAWA AND NOBUYUKI SUITA

and

- — inf MlS]
reie=rcic(W) feli‘?cf:c mlfl

We shall call 7, the modulus of W with respect to ¢’ and C.

If the modulus is finite, then the function minimizing M][f]/m[f] within
e is known to exist. It is determined uniquely up to a constant factor.
It maps W onto a circular slit annulus the ratio of whose outer and inner
radii is equal to 7¢c. Inspite of the ambiguity of the constant factor, we shall
denote this function by ¢, or <pcvf;. Further results analogous to (II)—(IV)
in §2 are also well known (see, e.g., Reich-Warschawski [8]).

In the following we shall prove the analogue of Theorems 2 and 3.

17. Let us begin with the following remark:
LEMMA 6. 7cc=co0 if and only if C' or C is weak.

Proof. Take a point acW and an exhaustion acW,4W. Let C, and C,
be contours of W, separating a from C’ and C, respectively; they do not
coincide if n is sufficiently large. Let u,=log|¢.c.|, %, =10g|¢acl, and
vp=loglecrc.] on W,, where the last one is normalized so that |¢¢,/¢./=1 on
C,’. Compute the Dirichlet integral in two ways:

Dy, [tn—ttt, 0] =, n—w)dvi= vadlta—u')*.

oW, ow,

Use also the relation
Saw,,“"du"/* = Saw,,“"/du"'*
We obtain
log 74c,t10g 7acy=l0g 7c.rc.
from which we get the conclusion immediately.
18. With respect to the exhaustion W, 1+ W consider
Pn=@c cn n=1,2,...

If the constant factor is chosen suitably, this is a normal sequence. For example
if ¢n(a)=1,n=1,2,..., at a fixed point e W, then every ¢, omits threé¢ values
0, 1, and co on W—{a}. Take a subsequence which converges on every compact
set in W:
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lim O =¢EFcrc -
J—)OO

TueoreM 5. If C is weak and C’ is not weak then (W) is a circular slit annulus
with positive inner radius and infinite outer radius. If C and C’ are weak, then ¢(W)
ts a circular slit annulus with zero inner radius and infinite outer radius. In both cases

AP(W)—¢(C)—¢(C") is a minimal set of circular slits and, therefore, has vanishing area.

Proof. The proof is completely analogous to that of Theorem 2 except the
following fact: In the first case ¢(C’) is a circle with positive radius. We
only give its proof.

Take @, > 0 so that ¢(C’) is contained in the disk |w|< @,. Let

d=9gW)n{w!| |lw|< Qy}

and let 7 be the modulus of 4 with respect to ¢(C’) and |w|=Q,. For every
e>0 take a simple closed analytic curve C. in ¢(W)N{w|Q,—e <|w|< Q}
separating ¢(C’) from |w|=Q,. Let

d,=¢gW)n(Int C,)

and let 7, be the modulus of 4, with respect to ¢(C’) and C.. Since ¢(C’) is
not weak, 7 is finite and, by the analogue of (I) in §2,

Fe=T.

Denote by @," and @, the inner and outer radii, respectively, of the slit
annulus ¢,;(W,;). If j is sufficiently large, then @/ < @,< @,. Since ¢,; > ¢
is uniform on ¢~'(C.), the curve ¢,;(¢~*(C.)) is contained in Q,—e < |w|< @,
provided j is sufficiently large. It is not difficult to see

Qo:i < 7
Qj/ =7,

so that Q,/(j=1, 2, ...) are bounded away from zero. For a suitable
subsequence of {n;}, being expressed by the same notation, the following limit
exists:

lim Q,/=Q’ > 0.

Then, by a standard argument, we see that ¢(C’) lies exterior to the disk
|lwl<Q'. Thus

Qo_s <

g =T

and 7 g%} .
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On letting ¢ - 0 we get
=

From this relation and the fact Jc{w|Q’ <|w|< Q,} we see, by the analogue
of Lemma 1, that 4'is a minimal circular slit annulus with inner and outer radii
Q' and Q,, respectively. In particular we conclude that ¢(C’) is the circle
|w]=Q" > 0.

19. To obtain the analogue of Theorem 3 we need lemmas corresponding
to Lemma 4. We shall use, in place of One-Quarter-Theorem, extremal
domains of Grotzsch and Teichmiiller (Teichmiiller [12]). Since everything
is completely analogous to Lemma 4, we shall omit the proofs of Lemmas 7 and
8 below.

For fe@c., put

mc[f]=Wrglfr(1C)lwl and Mc[f] =, max [w].

LemMma 7. If roe << co, then
mo[ f1= 0~ (reic)
for every feFcc such that f(C') coincides with the circle |w|=1.

LemMmA 8. If o < oo, then

mel f] -1
W =V Yrere)

Sor every fegcec.

For the definitions of the functions @ and ¥ the reader is referred to [12].
We shall also need the following: They are increasing functions and satisfy

limgap =t limepy =16
20. TureoreM 6. If C is weak and C' is not weak, then Fc.c contains at most
one ¢, up to a constant factor, such that $(C') is a circle with positive radius and
op(W)—¢(C)—¢(C’") is a minimal set of circular slits. If C and C" are weak then Feic
contains at most one ¢, up to a constant factor, suchk that ap(W)—¢(C)—¢(C’) is a
minimal set of circular slits.

Proof. In the first case we normalize ¢ so that the radius of ¢(C’) is
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equal to one. The proof is similar to that of Theorem 3 if we substitute Lemma
4 by Lemma 7. It may be left to the reader.

To prove the second half, let ¢ and ¢; be functions in F. satisfying the
conditions. It suffices to show that #=log|¢/¢,] is constant.

Take a simple closed analytic curve C,CW separating C from C'. W-C,
consists of two components; let W, be the one between C and C,, and let W’
be the other. Suppose the following are satisfied on C,:

A=Z|¢()I<B, A él‘l’l(z)léBl-

By the analogue of Lemma 3, the domain 4,=¢(W)n{w|B <|w|< n} with
an integer » > B is a minimal circular slit annulus. Its modulus with respect
to lw| =B and |w]|=n is equal to n/B. Therefore, the modulus #, of

L,=¢(W,)n{w| |w|<n}>4,
with respect to ¢(C,) and |w|=n satisfies

n

-

1%

P

By Lemma 8 for 4, the image of |w|=x under ¢,0¢! lies exterior to the disk
|w|< B¥~(#,). On a simple closed analytic curve C,cW, which separates C
from C, and is such that ¢(C,) is in » <|w|< n+1,

[¢(2)| = n+1 and  |¢,(z)|= B,¥(n/B)
are satisfied. Further [¢(z)|< B and [¢,(z)|=A, hold on C,. Then the

maximum-principle for the operator L, yields

B n+1
u(z) < max(log A log —5r— BIn]B) )

for every z in W, lying between C, and C,. On letting n — o, we obtain

u(z)émax(log%, log 16B }
1

in W,. Thus « is bounded above in W, and, by Lemma 5, # < maxc, # in W,.

On the domain W, we consider 4,/=¢,(W)Nn{w|l/n<|w|< A,} and the
curve C,/ such that ¢,(C,’) is in 1/(n+1) <|w|<1/n. We see similarly, on
applying Lemma 8, that

u(z)gmax(log%, log_(_n_ I)A)
1
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at z in W’ lying between C, and C,’. Thus

.u(Z)émax<log£T’ log 121:1 )

in W, and, by Lemma 5, » < maxc,u in W'
Consequently # < maxc,« in W, showing that «=const.
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