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Thixotropic fluids with a non-monotonic flow curve display viscosity bifurcations at
certain stresses. It has been proposed that these transitions can introduce interfaces (or
shear bands) into thin films that can destabilize inertialess flows over inclined planes. This
proposition is confirmed in the present paper by formulating a thin-film model, then using
this model to construct sheet-like base flows and test their linear stability. It is also found
that viscosity bifurcations, and the associated interfaces, are not necessary for instability,
but that the time-dependent relaxation of the microstructure responsible for thixotropy
within the bulk of the film can promote instability instead. Computations with the thin-
film model demonstrate that instabilities saturate supercritically into steadily propagating
nonlinear waves that travel faster than the mean flow.
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1. Introduction
The dynamics of unstable waves developing on a viscous film flowing down an inclined
plane is a classical problem in fluid mechanics, often referred to as the Kapitza problem
(e.g. Chang 1994). The instability features in a number of everyday settings, including
water flow down roads and windscreens on rainy days. Analogous instabilities appear on
flowing films of complex fluids, and thereby used to rationalize natural phenomena such as
mud surges (e.g. Ng & Mei 1994; Coussot 1997). In this latter context, the instability has
been used to illustrate some of the novelties introduced by non-Newtonian behaviour, such
as inertialess elastic instability (Shaqfeh, Larson & Fredrickson 1989), stabilization by a
yield stress (Balmforth & Liu 2004) and discontinuous shear thickening (Darbois Texier
et al. 2023; Balmforth 2025). Worded differently, the wavy instabilities on a falling film
of complex fluids offer a probe into material behaviour: the spatiotemporal dynamics of
the film provides a different setting than simple rheometric flows, and can be compared
with relatively straightforward laboratory experiments. A similar vein has been mined for
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granular media (Edwards & Gray 2015). A goal of the current paper is to extend these
ideas to thixotropic fluids.

Thixotropic fluids have a time-dependent microstructure that builds up when the fluid
is at rest, leading to an increase in effective viscosity, but is reversibly broken down by
flow, thereby lowering the fluid’s resistance (Mewis & Wagner 2009). This behaviour
can lead to pronounced hysteresis, or ‘thixotropic loops’, in rheometers when stresses or
strain rates are cycled up and down. A wide range of fluids exhibit thixotropic behaviour,
including natural clay suspensions, industrial drilling fluids and cements, printing inks and
paints, oils and grease, and food products such as mayonnaise and ketchup (Barnes 1997;
Mewis & Wagner 2009).

Thixotropic hysteresis can be particularly pronounced when the material behaviour
features so-called ‘viscosity bifurcations’ (e.g. Coussot et al. 2002; Dullaert & Mewis
2006; Møller et al. 2006; Alexandrou, Constantinou & Georgiou 2009; Wachs, Vinay &
Frigaard 2009; Dimitriou & McKinley 2014). One such transition arises when the fabric
of the fluid evolves relatively slowly towards a structured state that is highly viscous or
‘jammed’ (solid-like), but collapses abruptly under shear. Dramatic failure events can then
occur at the initiation of flow. A second type of viscosity bifurcation arises once motion is
underway and the microstructure broken down, if that structure is able to swiftly recover
and jam again below a critical shear rate. This behaviour has been observed in a number of
fluids, and implies that, should stresses decline sufficiently to permit shear rates to descend
below the critical shear rate, the viscosity abruptly increases and flow becomes arrested.

Hewitt & Balmforth (2013) previously explored the dynamics of thixotropic fluids with
viscosity bifurcations for inertialess gravity currents (see also Oishi, Martins & Thompson
2017). In this setting, the sudden release and collapse of a reservoir seeds the runout of the
current towards a final deposit. During runout, the thixotropic rheology of the material
leads to a characteristic two-layer structure to the flow, with lower-lying destructured
material conveying along a structured top layer. Under certain conditions, Hewitt &
Balmforth (2013) observed that the interface between the layers developed what looked
like wavy instabilities. This observation was rationalized by drawing an analogy with the
instabilities that appear in multilayer, viscously stratified or non-Newtonian flows (e.g.
Loewenherz & Lawrence 1989; Loewenherz, Lawrence & Weaver 1989; Chen 1993, 1995;
Charru & Hinch 2000; Balmforth, Craster & Toniolo 2003; Ern, Charru & Luchini 2003).
The idea that instability can be triggered by the deformation of rheologically induced
interfaces has also featured in the discussion of other shear flows of complex fluids (e.g.
Renardy 1995; Fielding 2005, Wilson & Fielding 2006; Fielding 2007; Nghe et al. 2010;
Cromer, Cook & McKinley 2011; Nicolas & Morozov 2012; Renardy & Renardy 2017;
Castillo & Wilson 2020).

Nevertheless, in order to attack the gravity current problem, Hewitt & Balmforth
(2013) significantly simplified the rheological model that they employed. In particular,
they assumed that the microstructure adapted instantaneously to local shear rates. As a
consequence, wherever stresses prompted a viscosity bifurcation, it was assumed that the
material instantaneously switched state. Without spatial diffusion, the border between
structured and destructured fluid then becomes a jump discontinuity that evolves as a
material interface. The limitations inherent in this approximation (which were necessary
to simplify the gravity current model), lead one to question whether interfacial instability
can arise in low-Reynolds-number thixotropic flows.

The purpose of the present article is to reconsider the linear stability of inertialess,
thin films of thixotropic material, with a view to addressing this question. We therefore
return to the original rheological model proposed by Hewitt & Balmforth (2013), which
aligns with many others used in the literature on complex fluids (Coussot et al. 2002;
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λ (x̂, ẑ, t̂ )

ẑ = ĥ (x̂, t̂ )
ẑ = Hz

x̂ = Lx

(2π/k)L

g
θ

H

Figure 1. Geometry of the thin-film model: a shallow layer of thixotropic fluid, with viscosity dictated by a
structure function λ(x̂, ẑ, t̂ ), flows down an incline of slope tan θ = ε=H/L, where H is the mean depth.

Dullaert & Mewis 2006; Møller et al. 2006; Alexandrou et al. 2009). We thereby
accommodate the time-dependent relaxation of the microstructure and also its spatial
diffusion, formulating a model suitable for a thin-film setting (§ 2). Armed with this
model, we construct steady base states corresponding to sheet-like flow down an inclined
plane (§ 3), and then test their linear stability (§ 4). We find that the instability detected
by Hewitt & Balmforth (2013) can indeed feature, and interrogate its dynamics more
thoroughly, including at the finite amplitudes where instability saturates (§ 5). For
completeness, Appendix A presents a summary of the Hewitt–Balmforth reduction and
its predictions for the current problem of the wavy instabilities on a falling fluid film.

2. Shallow flow model

2.1. Dimensional formulation
Consider a complex fluid flowing down a plane inclined at angle θ . The geometry is
described by a Cartesian coordinate system (x̂, ẑ), orientated such that the x-axis points
down the slope, see figure 1. The fluid velocity is û = (û, ŵ). The fluid is shallow, with a
mean depth H that is much smaller than the characteristic length scale for variations over
the plane, L. The slope angle is also taken to be relatively small, leading us to set

tan θ = ε= H
L � 1. (2.1)

In this setting, we consider waves evolving over spatially periodic domains of length
of 2πL/k, where k is an O(1) dimensionless wavenumber. The local fluid depth is
ẑ = ĥ(x̂, t̂ ).

Assuming that the fluid is incompressible and inertia is negligible, conservation of mass
and momentum demand that

∂ û

∂ x̂
+ ∂ŵ

∂ ẑ
= 0, (2.2)

and

0 = ρ g̃ − ∇ p̂ + ∇ · τ̂ . (2.3)

Here, g̃ = (g sin θ, 0,−g cos θ), with constant gravitational acceleration g, the pressure
is p̂ and the deviatoric stress is τ̂ = {τ̂ij}, which we relate to the rate of strains by the
generalized Newtonian fluid model,

τ̂ij = μ̂(λ) ˆ̇γij, (2.4)
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where

ˆ̇γ = { ˆ̇γij
} = ∇û + (∇û)T . (2.5)

The tensors have second invariants, ˆ̇γ =
√
(1/2)

∑
i, j

ˆ̇γij ˆ̇γij and τ̂ =
√
(1/2)

∑
i, j τ̂ijτ̂ij.

The viscosity μ̂(λ), is controlled by the parameter λ(x̂, ẑ, t̂ ), which gauges the degree
of microstructural order.

There is no slip at the base of the fluid and we assume that the top surface is stress-free,

û = 0 at ẑ = 0,(
τ̂ij − p̂δij

)
n j = 0 at ẑ = ĥ(x̂, t̂ ),

(2.6)

where n is the normal to the upper surface ẑ = ĥ, and the kinematic condition there is

∂ ĥ

∂ t̂
+ û

∂ ĥ

∂ x̂
= ŵ at ẑ = ĥ(x̂, t̂ ). (2.7)

The omission of surface tension is potentially problematic in thin films with relatively
small length scales, as in the Kapitza problem (e.g. Chang 1994). We assume here that
the film has larger length scale so that capillary effects are small, our purpose being to
interrogate instabilities driven by rheological effects rather than how surface tension might
stabilize them.

2.2. Dimensionless leading-order formulation
To remove the dimensions (and hats) from the equations, we introduce the rescalings

t̂ = L
U t, x̂ =Lx, (ẑ, ĥ)=H(z, h), (2.8)

û = Uu, ŵ= εUw, p̂ = ρgHp cos θ, τ̂ij = μ0U
H τij, μ̂=μ0μ, (2.9)

where μ0 is a characteristic viscosity and the speed scale

U = H3ρg

Lμ0

cos θ. (2.10)

With these scalings, and omitting terms of O(ε2), (2.3) reduces to the lubrication
equations

0 = 1 − ∂p

∂x
+ ∂τxz

∂z
, 0 = −1 − ∂p

∂z
. (2.11)

The dominant component of the rate of strain tensor is the vertical shear γ̇xz = ∂u/∂z +
O(ε2), and to leading order, the stress conditions in (2.6b) become

p = τxz = 0 at z = h(x, t). (2.12)

The kinematic condition (2.7) is unchanged after scaling (but for the removal of the hats).
Equations (2.11) and (2.12) imply that the pressure is hydrostatic,

p = h − z, (2.13)
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and the shear stress is given by

τxz = (h − z)

(
1 − ∂h

∂x

)
= (1 − ζ )τb, τb = h

(
1 − ∂h

∂x

)
, ζ = z

h
,

=μ(λ)
∂u

∂z
, (2.14)

where τb is the basal shear stress.
Finally, mass conservation integrated over the fluid layer implies

∂h

∂t
= − ∂

∂x

∫ h

0
u dz = − ∂

∂x

∫ h

0
(h − z)

∂u

∂z
dz. (2.15)

Since

∂u

∂z
= τxz

μ(λ)
= (1 − ζ )τb

μ(λ)
, (2.16)

the constitutive law can now be plugged into (2.15) to arrive an evolution equation for the
fluid thickness. The exercise is complicated by the structure parameter λ, however, which
retains an unknown vertical profile, as discussed next.

2.3. Constitutive law
Thixotropic rheology has been described using simple constitutive models (Barnes 1997;
Mewis & Wagner 2009; Larson & Wei 2019) in which the structure parameter λ(x, z, t)
satisfies the (dimensional) evolution equation,

∂λ

∂ t̂
+ û

∂λ

∂ x̂
+ ŵ

∂λ

∂ ẑ
= 1 − λ

T
− αλ ˜̇γ + K∇2λ, (2.17)

and controls the fluid rheology through the viscosity law (2.4). The order parameter lies in
a range [0, 1]; for λ= 0, the fluid has no effective microstructure, while it is fully structured
when λ= 1. The evolution equation in (2.17) contains a restructuring term (1 − λ)/T that
drives λ towards the fully structured state, and a destruction term dictated by the local
shear rate ˜̇γ . Restructuring is characterized by a healing time scale T , and destruction is
parameterized by α. In some other related models, the rate of destructuring is taken to be
proportional to a power of ˜̇γ , or a power of the stress invariant τ̃ ; we use (2.17) in view of
its simplicity. We have further included a diffusive term in (2.17) to account for any spatial
structural diffusion, with diffusivity K , although we will be mostly concerned with the
limit in which this physical effect is relatively weak.

For the viscosity law, we follow Hewitt & Balmforth (2013) and choose

μ̃(λ)= μO

(1 − λ)[(1 − λ)(1 − a)+ a] =μOμ(Λ), (2.18)

where μO is the characteristic viscosity and a is a parameter with 0< a < 1. The resulting
constitutive law is qualitatively similar to others proposed in the literature, in that it
produces comparable flow curves in steady, uniform shear (Coussot et al. 2002; Dullaert &
Mewis 2006; Møller et al. 2006; Alexandrou et al. 2009). The precise form, however,
proves analytically convenient, as discussed below (and is written slightly differently to
that in Hewitt & Balmforth (2013)).
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In the shallow limit, following the scalings of § 2.2, the dimensionless version of the
constitutive model is

T (λt + uλx +wλz)= 1 − λ− Γ γ̇ λ+ κλzz,

uz = τxz A(λ), A(λ)≡ [μ(λ)]−1 = (1 − λ)[(1 − λ)(1 − a)+ a], (2.19)

where have used (t, x, z)−subscripts as shorthand for partial derivatives (except for the
shear stress τxz), and the dimensionless groups,

T = UT

L , Γ = αTU
H , κ = KT

H2 , (2.20)

represent a characteristic relaxation time, healing rate and diffusivity. The definition of
the reciprocal viscosity function A(λ) proves useful in the further analytical developments
of the appendices, where its usage also highlights how the results are insensitive to the
detailed analytical choice of the viscosity law.

The addition of diffusion in (2.19) demands the inclusion of further boundary conditions
on λ(x, z, t) at the base and surface of the film. Assuming that structure is neither created
nor destroyed by interfacial interaction, we adopt the no-flux conditions,

λz(x, 0, t)= λz(x, h, t)= 0. (2.21)

2.4. Flow curves
Viscosity bifurcations are commonly exposed and illustrated using the flow curve of a
model fluid; i.e. by considering how the shear stress depends on shear rate under conditions
of steady, spatially uniform shear. For the current rheological model, the relations (2.19)
imply the flow curve,

λ= 1
1 + Γ γ̇

and τ = |τxz| = (1 + Γ γ̇ )2

Γ (a + Γ γ̇ )
. (2.22)

Consequently, Γ dictates the dimensionless shear rate at which destructuring becomes
effective, whereas a controls the shape of the flow curve, as illustrated in figure 2. For
Γ γ̇ � 1, we recover the Newtonian law, τ = γ̇ . Conversely, for Γ γ̇ � 1, we find

τ = 1
Γ a

[
1 + 2a − 1

a
Γ γ̇ + · · ·

]
. (2.23)

Unless a = 0, the flow curve therefore intersects the τ -axis at a finite stress, τA = (Γ a)−1.
If a > (1/2), the flow curve increases monotonically away from this yield point towards
higher shear rates, in the manner of a simple (non-thixotropic) yield-stress fluid, see the
lower flow curves in figure 2(a). Beginning from fully structured fluid (λ= 1 and γ̇ = 0),
the threshold stress above which motion must take place is then τ > τA .

For a < (1/2), on the other hand, the flow curve becomes non-monotonic, first
descending to lower stresses for a range of shear rates. The curve subsequently reaches
a minimum at (γ̇ , τ )= (γ̇C , τC ), and then ascends to higher stresses. The minimum stress
is given by

τC = 4(1 − a)

Γ

(
γ̇C = 1 − 2a

Γ
, λC = 1

2(1 − a)

)
, (2.24)

and implies an alternative stress threshold for motion of τ > τC . The upper four flow curves
in figure 2(a) illustrate this alternative behaviour. As illustrated in figure 2(b), such flow
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(a)

(γ̇c, τc)

(b)

(Γ, a) = (8, 1/5)

S
tr

es
s,

 Γ
τ

101

10–2 100 0 0.2 0.4

0.6

0.4

100

Strain rate, Γγ̇

a

Strain rate, γ̇

γ̇c

τc

τA

τA

Figure 2. Steady-state flow curves for (a) varying a (scaling γ̇ and τ by Γ ), and (b) (Γ, a)= (8, 1/5). The
special values, (0, τA ) and (γ̇C , τC ), are indicated. The dotted line in (a) shows the locus of (γ̇C , τC ) for varying
a; the specific flow curves shown have a = 0, 0.1, 0.225, 0.4, 0.666 and 1. The (red) arrows in (b) indicate the
path of a hysteretic loop taken on first increasing then decreasing the stress, starting from an initially structured
state with Λ= 1.

curves imply excursions along hysteretic loops on first increasing, then decreasing the
stress, in the conventional manner of thixotropy; sudden jumps in shear rate, or viscosity
bifurcations, arise at the stresses τ = τA and τ = τC . The multiplicity of possible states for
τA < τ < τC , also implies a sensitivity to initial preparation or flow history. The limiting
case a = 0, implying τA → ∞ and no finite yield stress for the fully structured state, is
similar to the models proposed by Coussot et al. (2002) and Møller et al. (2006).

3. Base states
Steady sheet-like flows are given by τ = 1 − z, u = U (z) and λ=Λ(z), where

κΛzz = ΓΛUz − (1 −Λ),

Uz = (1 − z)A(Λ),
U (0)=Λ′(0)=Λ′(1)= 0. (3.1)

Sample solutions to this system are shown in figure 3 for two representative parameter
settings, the first case without a viscosity bifurcation, the other case including one.

In the limit that κ → 0, (2.19) or (3.1) imply that the solutions follow stress-controlled
sections of the flow curve. Consequently, to achieve flow, the stress must exceed one of
the flow thresholds, τA and τC , somewhere within the layer. Given that τ = 1 − z, the
maximum stress is unity and occurs at the base. Therefore, flow requires τA < 1 or τC < 1.
For a monotonic flow curve with a > (1/2), the relevant criterion is τ−1

A
= Γ a > 1.

Conversely, if the flow curve first bends downwards and a < (1/2), then the base of the
fluid can be destructured and flowing if 1> τC . Nevertheless, if τA > 1> τC , it is also
possible that the entire fluid layer is fully structured and plugged up; only when τA < 1
are we assured that flow must take place. For τA > 1> τC , we have the potential for two
possible states, one flowing and one fully plugged.

Diffusionless, base-flow solutions therefore trace out a locus on the stress-shear-rate
plane which begins at the bottom of the τ−axis (i.e. the top of the fluid layer). For a >
(1/2) and 1> τA , the locus moves up that axis until it reaches the yield point, τ = τA , then
shifts to finite shear rates along the monotonic flow curve (all the while descending through
the fluid layer); the yield point arises at the height z = zA = 1 − τA . In other words, the fluid
is fully structured above z = zA , and is rafted along as a rigid plug by an underlying layer
of partially structured material. This leads to profiles for the velocity and shear rate that are
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(a)

z

(d )

U Λ

(e)

(c)

( f )

(b)

a = 1/5

1/2

1/2

1/2

1/2

1/2

1

0

0

a = 3/5

τ = 1 – Y

0
1

0.2 0.4 0.6

0 0.2 0.4 0.80.6

1.00.2 0.4 0.80.6

0.2 0.5

0.1 0.2

1.00
0 0

γ̇

τ

z = Y
κ ↑

Figure 3. Base states for (a,b,c) a = (3/5) and (d,e, f ) a = 1/5, with Γ = 8 and κ = 10− j , j = 3, 4, . . . , 8. In
(e–f ), the green dot–dash line indicates z = Y and τ = 1 − Y , with Y given by (3.6). The (red) dashed lines
indicate the diffusionless solution (computed assuming the same Y in (d–f )); the (red) dotted line in ( f ) shows
the untraced part of the flow curve.

continuous and similar to those for a Bingham fluid (Balmforth et al. 2006). Figure 3(a–
c) illustrate such profiles for (Γ, a)= (10, (3/5)). Solutions to (3.1) for κ > 0 are also
included in this figure, and demonstrate how the switch at z > zA becomes smoothed by
small diffusion, but otherwise the profiles remain similar. Notably, the upper section of the
fluid layer is not fully structured (Λ< 1), but is, nevertheless, plug-like with Λ≈ 1 and
Uz ≈ 0.

The other example in figure 3(e–f ) displays a case with a non-monotonic flow curve and
a viscosity bifurcation. Here, the locus of the base state on the (γ̇ , τ )-plane first moves
up the τ -axis, but then switches abruptly over to the right-hand part of the flow curve at a
stress level τ = 1 − Y that lies between the two thresholds, τA and τC . Without diffusion,
the jump is discontinuous; for κ > 0, the transition becomes smoothed. The abrupt jump
leads to a sharper transition from the superficial plug to much less structured material
underneath, with repercussions on the velocity and shear-rate profiles.

In principle, any level z = Y for which τA > 1 − Y > τC could locate a jump from
structured to destructured fluid in the diffusionless problem; the level Y must be selected
as an initial condition (cf. Wilson & Fielding 2006). The choice shown in figure 3(e–f ) by
the dashed (red) line corresponds to the particular location that is selected for κ → 0 in the
problem with diffusion (solid blue lines). To find this location, we consider (3.1) in more
detail: for κ � 1, the transition arises over a narrow region with a thickness of O(

√
κ).

Setting z = Y + √
κζ , (3.1) then reduces to

κΛzz ≡Λζζ ∼Ψ (Λ; Y, Γ,Bi)= (1 −Λ){ΓΛ[(1 −Λ)(1 − a)+ a](1 − Y )− 1}. (3.2)

The level z = Y now follows by imposing the matching conditions,

Λ→ 1 for ζ → ∞ and Λ→Λa for ζ → −∞, (3.3)
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where

Λa = 1
2(1 − a)

[
1 −

√
1 − 4(1 − a)

Γ (1 − z)

]
(3.4)

corresponds to the structure function along the right-hand branch of the flow curve. The
exercise is equivalent to demanding that∫ Λ∗

Λa

Ψ (Λ; Y, Γ,Bi) dΛ= 0, (3.5)

which implies that

Y = 1 − 9(1 − a)

Γ (2 − a)(1 + a)
, (3.6)

and successfully locates the transition level in figure 3(e–f ).

4. Stability theory

4.1. Linear equations
Infinitesimal perturbations to the base states, with

h = 1 + η̌eikx+σ t , u = U (z)+ψz(z)e
ikx+σ t , λ=Λ(z)+ λ̌(z)eikx+σ t , (4.1)

wavenumber k and (complex) growth rate σ = σr + iσi , satisfy

ψzz = Uz τ̌

1 − z
+ (1 − z)A′(Λ)λ̌,

T [(σ + ikU )λ̌− ikΛzψ] = − (1 + ΓUz) λ̌− ΓΛψzz + κ λ̌zz. (4.2)

Here, ψ(z) represents a stream function such that (u, w)= (U +ψzeikx+σ t ,

−ikψeikx+σ t ), and the shear stress perturbation has amplitude

τ̌ = [1 − ik(1 − z)]η̌. (4.3)

The boundary conditions translate to

[σ + ikU (1)]η̌= −ikψ(1), ψ(0)=ψz(0)= λ̌z(0)= λ̌z(1)+ η̌Λzz(1)= 0 (4.4)

(after a shift of the moving surface position back to z = 1 in the last one).
The problem in (4.2)–(4.3) can be solved by discretizing in z, and then using Chebyshev

differentiation matrices to turn the eigenvalue problem into a matrix one. Though limited
in spatial resolution, this technique expedites the search for unstable modes. Once found,
MATLAB’s inbuilt solver bvp4c can be used to compute those modes with better
resolution, and then continue them to different parameter settings. Alternatively, we may
take different limits of the problem and reduce the equations further to obtain some more
explicit results. That exercise is accomplished in Appendices B–E.

4.2. Results
Figure 4(a,b) displays sample numerical solutions to the linear stability problem, plotting
growth rates and phase speeds against k for various values of a, with (Γ, κ, T )=
(5, 10−4, 1). For the higher values of a, the flow curve is monotonically increasing, and
the flow is stable. When a is decreased sufficiently into the regime in which a viscosity
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1
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(c) (d )

z

z = Y

Real

Imag

Abs

σr/k2

ψz/η̌ λ̌/η̌

a ↓

a ↓

Figure 4. (a) Growth rates σr and (b) scaled phase speeds c/Uz(0)= −σi/kUz(0), for varying k, with
a = (1/20)(0, 1, 2, . . . , 6) (from red to blue) and (Γ, κ, T )= (8, 10−4, 1). The most unstable modes for the
three lowest values of a are indicated by stars. The inset compares the growth rates, scaled k2, with the
predictions of the long-wave analysis of Appendix B (dashed lines). The eigenfunctions, ψz/η̌ and λ̌/η̌, of
the most unstable mode for a = 0 are plotted in (c) and (d). The level z = Y from (3.6) is shown by the light
grey line. Also plotted in (d) is Λz for the base state, scaled to have the same maximum amplitude as |λ̌/η̌|
(dots).

bifurcation occurs, however, a band of unstable wavenumbers appears, extending from
k = 0 up to a critical value kcrit. The phase speeds of the unstable modes are close to
Uz(0), a feature that can be uncovered from a long-wave analysis (Appendix B).

The eigenfunction of the most unstable mode over all wavenumber k for the case with
a = 0 is plotted in figure 4(c,d). For this mode, an increase in fluid depth enhances
downslope flow speed (ψz ; figure 4c), whilst strongly perturbing the structure function
over the transition region buffering the destructured lower layer from the overlying plug-
like flow (figure 4d). Indeed, λ̌ is opposite in phase to η̌ and its profile is approximately
dictated by Λz(z), implying that structural perturbations are mostly due to a vertical shift
of the transition region. In other words, the instability operates by destructuring fluid
underneath the wave crests, which accelerates flow, enabling the wave to entrain more
fluid and thereby amplify. A more detailed interrogation of the instability mechanism
follows from the long-wave analysis (Appendix B): to leading order in k, perturbations
take the form of waves propagating with phase speed c ∼ Uz(0). These waves perturb
the flow over the destructured lower layer, where quasisteady viscous perturbations turn
out to be stabilizing, but the delay introduced by relaxation contributes to instability.
More significant are the associated destabilizing vertical shifts of the transition region. All
these effects appear at O(k2) in the long-wave expansion, and point to an interfacial-type
instability as suggested by Hewitt & Balmforth (2013).

A wider view of the unstable regime is presented in figures 5–7, which plot growth rates
as densities over the (k, T ), (k, a) and (k, κ) planes (respectively), each time holding
the other parameters fixed. All three figures contain five cases, for varying a in figure 5,
and varying T in figures 6 and 7. In every example, the instability has a long-wave
character, with kcrit = O(10−1) or less. The stability boundaries extracted from the figures
are assembled in figure 8, plotting kcrit against T , a or κ (including some additional cases
to better highlight the effect of varying the other parameters).
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Figure 5. Growth rate as a density over the (k, T ) plane for the values of a indicated, with (Γ, κ)= (8, 10−4).
The red contours show the stability boundary, and the dots indicate the most unstable mode over all
wavenumber. In (e), the triangle shows the scaling T ∝ k−2.
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T

σr

Figure 6. Growth rate as a density over the (k, a) plane for the values of T indicated, all with (Γ, κ)=
(8, 10−4). The red contours show the stability boundary, and the dots indicate the most unstable mode over all
wavenumber. The growth rates are scaled by their maxima; the colour scale can be inferred from ( f ), which
plots the maximum growth rate (achieved at the smallest values of a) against T . The (green) stars show the
specific values of T used in panels (a)–(e), whereas the (red) hexagrams show the additional cases that are also
presented in figure 8(a). The triangle shows the scaling σr ∝ T −1.

A first conclusion that can be drawn from figure 5 is that instability is eventually
suppressed for sufficiently small relaxation time T when diffusion is not strong, regardless
of the value of a. Indeed, in the limit T → 0 and κ � 1, one can further reduce the thin-
film model to a nonlinear diffusion equation, as summarized in Appendix C. The base
states in this limit can then be shown to be stable (at least in the absence of inertia).
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Figure 7. Growth rate as a density over the (k, κ) plane for the values of T indicated, all with (a, Γ )=
(1/5, 8). The red contours show the stability boundary, and the dots indicate the most unstable mode over
all wavenumber. The triangle in (b) shows the scaling κ ∝ k4. The growth rates are scaled by their maxima;
the colour scale can be inferred from ( f ), which plots the maximum growth rate against T . The stars show
the specific values of T used in panels (a)–(e), whereas the filled circles show additional cases that are also
presented in figure 8(c). The solid line shows the prediction in the limit of large diffusion κ � 1 (Appendix E).

(a) (b) (c)

100
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1000.8
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10–1100 100
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–2

k�T k�T

Figure 8. Stability boundaries on the (a) (k
√
T , a), (b) (k, T ) and (c) (k

√
T , κ) planes. The panels correspond

to figures 5–7, with the stability boundaries shown from red to blue for increasing T , a and T , respectively.
The dashed lines show additional cases, corresponding to a = 0.1 for panel (b), or the extra points plotted in
figures 6( f ) and 7( f ) (for panels (b) and (c)). The stars along the left-hand axes show the predictions of the
long-wave, small κ analysis of Appendix B. In (c), the triangles for κ = 102 indicate predictions using the large
diffusion theory of Appendix E; the triangles along κ = 10−8 indicate predictions in the zero-diffusion limit
(Appendix D).
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More curiously, figures 5 and 6 also demonstrate that instability extends into the
regime without a viscosity bifurcation (a > (1/2)), provided the relaxation time T is long
enough. This result is also apparent in figures 6 and 8. The rescaling used in the latter
figure emphasizes how stability eventually depends on the combination k

√
T for T � 1.

Evidently, when T becomes sufficiently large, the destabilizing effect of viscous relaxation
overwhelms stabilization by quasistatic viscous effects, even when there is no viscosity
bifurcation and the base state possesses no sharp interface. Instabilities associated with
the bulk of the fluid, rather than a sharp interface, have also been observed for other shear
flows of complex fluids (Renardy & Renardy 2017; Castillo & Wilson 2020).

Finally, figure 7 illustrates the impact of varying the diffusion coefficient κ . Earlier
figures display results for κ = 10−4, which is sufficiently small that diffusion does not
have a dramatic effect on the base states (other than broadening the interface-like transition
region). For low relaxation time (T � 4 in figure 7) the impact of diffusion on the linear
stability is more subtle: instability becomes restricted to a low-wavenumber band with
kcrit ∝ κ1/4. Instability therefore becomes suppressed for κ → 0. By contrast, with higher
T , growth rates converge to finite values. The limit of small diffusion is considered in
Appendix D; corresponding predictions for the position of the stability boundary are
included in figure 8(c).

Figure 7 also highlights how instability persists even with relatively strong diffusion. For
κ � 1, the structure function becomes uniform across the film, and the evolution equations
in (2.19) and (2.15) simplify further, as outlined in Appendix E. The prediction for the
large-κ limit of the stability boundary are again shown in figure 8(c). Note that the uniform
profile of the structure function implies that, in this limit, instability cannot be the result
of interfacial dynamics, but solely due to bulk viscous relaxation.

5. Nonlinear dynamics
To explore the nonlinear dynamics of unstable waves, we solve the thin-film equations
(2.15) and (2.19) numerically in periodic-in-x domains with length �= 2π/k (some details
of the numerical scheme are provided in Appendix F). A sample solution for a case in
which a viscosity bifurcation occurs (a = 1/5) and vertical diffusion is relatively small
(κ = 10−4) is shown in figure 9. The initial perturbation to the base flow seeds the
growth of an unstable wave, which amplifies according to linear theory. The instability
subsequently saturates at finite amplitude to generate a steadily propagating nonlinear
wave. The final wave travels slightly faster than the original unstable linear mode, as
evident from the snapshots in figure 9(c), which plots the wave height profile in the linear
wave frame (with phase speed c). Also shown (figure 9d), are snapshots of the interface
between structured and destructured fluid (identified as the contour where λ(x, Y, T )=
(4/5)). In line with the spatial structure of the linear mode, the interface elevates below
the rise to the crest of the wave, as fluid locally destructures due to increased shear stresses.

The final nonlinear wave is shown in more detail in figure 10, which presents the
distribution of the structure function, together with a selection of streamlines (in the frame
of the wave). Also shown (in figure 10b) is the final wave for a numerical solution with
a = (3/5). Although this second example does not feature a viscosity bifurcation, and
the division between structured and destructured fluid is smoother, the dynamics of the
instability is similar, with linear growth again saturating to create the nonlinear wave
illustrated (see also figure 9b).

A wider suite of computations is shown in figure 11. This suite corresponds to traversing
a vertical section at k = 0.1 through figure 5(b). Waves are unstable within a band
of relaxation times T over this section, and figure 11 shows the corresponding wave
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Figure 9. Numerical solution to (2.14), (2.15) and (2.19), for (a, Γ, T , κ)= (1/5, 8, 102, 10−4) in a periodic
domain of length 20π . In (a), we present snapshots of the evolving profiles of h(x, t) and λ(x, z, t). The times
of the snapshots are indicated by the stars in (b), which plots the time series of

√〈(h − 1)2〉; the dashed line
shows the expected linear growth. Also shown is another numerical solution with a = (3/5). Snapshots of h and
the level at which λ= (4/5) (dashed lines in (a)) are plotted in (c) and (d) for the first solution (with a = 1/5), in
the frame of linearly unstable wave (which travels at phase speed c). The snapshots are spaced by 100 time units.
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Figure 10. Final nonlinear wave solutions for (a) a = 1/5 and (b) = (3/5), with (Γ, T , κ, k)=
(8, 102, 10−4, 0.1). Shown are density plots of λ(x, z, t), with a superposed selection of streamlines (red lines,
in the frame of the final wave, which has speed cn).

amplitudes for the final, saturated states. Those amplitudes decrease continuously to zero
at the edges of the band, illustrating how the transition to instability is supercritical. The
nonlinear waves travel at speeds that are a per cent or so higher than the linear phase speed
c (also plotted in figure 11c), which in turn exceeds the mean flow speed U∗ = 0.207 by a
factor of approximately three or more.

6. Discussion
This paper has focussed on the dynamics of instabilities in thin films of thixotropic fluid
flowing down an inclined plane. A previously suggested interfacial instability (Hewitt &
Balmforth 2013) has been confirmed to arise, and its details have been interrogated.
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Figure 11. (a) Wave amplitudes (hmax − hmin), (b) linear growth rates σr and (c) phase speeds −σi/k, plotted
against T for a suite of computations with (Γ, a, κ, k)= (8, 1/5, 10−4, 0.1). The wave profiles for the cases
shown by (red) circles are plotted in (d) (shifted horizontally to align their maxima). The squares indicate the
computation also shown in figures 9 and 10(a).

The instability has a long-wave character and is weak, in the sense that the time scale
for growth is rather longer than that for propagation. However, instability arises over
a wide choice of the settings of the problem parameters; only when the time scale for
microstructural relaxation becomes relatively short is instability suppressed. The instabil-
ity persists even when there are no viscosity bifurcations in the underlying rheological
model, or when there is a relatively large vertical diffusion of the order parameter
representing microstructure. Both results are surprising given that the discontinuous
interface hypothesized by Hewitt & Balmforth (2013) to be key to instability is then
completely absent. Instead, the phase lag introduced by the microstructural relaxation
primarily drives instability (cf. Renardy & Renardy 2017; Castillo & Wilson 2020).

An exploration of the nonlinear dynamics (in spatially periodic domains) reveals that
instability saturates into steadily propagating nonlinear waves that travel close to linear
phase speeds and faster than the mean flow. The transition to instability is supercritical,
with wave amplitudes reaching a fraction (20 % or so) of the fluid depth. Interactions and
secondary instabilities of the nonlinear waves have not been explored.

One key ingredient of the current exploration is that it is based on a thin-film reduction
of the original governing equations. In this reduction, the dominant resistance to fluid
motion arises through shear stresses across the depth of the film; the extensional stresses in
the film’s plane are omitted from the force balance equations. One awkward consequence
is that the two-layer structure of the flow becomes suspicious: the upper layer is assumed to
be strongly structured and plug-like, yet is simultaneously able to deform within the plane
of the film. This is permitted in the model by letting the viscosity become sufficiently large
over the upper layer to render the flow profile plug-like, but not so large that the extensional
stresses impact force balance (cf. Balmforth et al. 2003). This constraint translates to
a thickness-dependent limit on the viscosity: in the dimensionless notation of § 2.2, the
terms involving the extensional stresses appear at O(ε2) in the thin-film limit. Therefore,
as long as the viscosity μ remains much smaller than ε−2, there is no issue with neglecting
those stresses.
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Nevertheless, a more careful approach would be to solve the full, Orr–Sommerfeld-like
stability problem, relaxing the thin-film approximation whilst simultaneously including a
finite Reynolds number. This extension would permit one to identify precisely how the
extensional stresses eventually rigidify the upper layer and arrest any deformation of the
free surface, whilst gauging the impact of inertia.
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Appendix A. Instantaneous, non-diffusive adjustment
Hewitt & Balmforth (2013) consider a (rather drastic) simplification of the thixotropic
model of § 2.3 in which there is no diffusion (κ = 0) and the fluid adjusts instantaneously
to the steady-shear flow curve (T = 0). Without diffusion, the two-layer structure of the
base states, in which a superficial structured plug lies above a destructured shear layer
(§ 3), continues to apply even when flow becomes unsteady. As long as the stress at the
interface remains between the special values τA and τC , that division is imprinted by the
initial state of the fluid and acts as a material surface. In addition, if the microstructure
adjusts instantaneously to the flow dynamics (T = 0), the upper layer remains plug-like
and fully structured whereas the lower layer lies along the flow curve, with

λ= 1 − √
1 − 4(1 − a)(Γ τ)−1

2(1 − a)
, τ = (1 − hx )(h − z). (A1)

The thin-film model now devolves to two mass conservation equations; one for the
whole film and one for the destructured layer,

∂h

∂t
+ ∂

∂x
F(h, hx , Y )= 0,

∂Y

∂t
+ ∂

∂x
G(h, hx , Y )= 0, (A2)

where the flux functions,

F(h, hx , Y )=
∫ h

0
u dz = (1 − hx )

∫ Y

0
(h − z)2 (1 − λ) [(1 − λ)(1 − a)+ a] dz, (A3)

and

G(h, hx , Y )=
∫ Y

0
u dz = (1 − hx )

∫ Y

0
(h − z) (Y − z) [(1 − λ)(1 − a)+ a] dz, (A4)

with λ given by (A1), can be evaluated analytically although the explicit formulae are
convoluted and not very informative.

Equations (A2) have the uniform equilibrium solution h = 1 and Y = Y0, with 0< Y0 <
1 − 4Γ −1(1 − a) (ensuring τC < τ(z = Y ) < τA ). Normal-mode perturbations to this base
state of the form (h, Y )= (1, Y0)+ (ȟ, Y̌ )eσ t+ikx , with wavenumber k and growth rate σ ,
satisfy a quadratic dispersion relation. It follows from this relation that the uniform flow
is either stable, or one of the modes is unstable over all wavenumbers, with a growth rate
that increases monotonically with k and converges to a constant for k → ∞ (see Hewitt &
Balmforth 2013).

Typical solutions of the dispersion relation are shown in figure 12. For the parameter
settings chosen, (a, Γ )= ((1/5), 5), all of the possible choices for the interface position
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Phase speed c

Phase speed c

Figure 12. (a) Growth rate σr = Re(σ ), (b) phase speed c and (c) amplitude ratio Y̌/ȟ for Y0 = 0.193 (blue)
and (3.6) (red), with (a, Γ )= ((1/5), 5). The unstable (stable) modes are plotted by the solid (dashed) lines.
Panels (d)–(e) show corresponding plots for the unstable mode, with k = 103 and varying Y0; the stars indicate
the two cases in (a) and (b). The dash–dot line in (a) indicates how the growth rates are modified when linear
diffusion terms are added to equations (A2), with a diffusivity of 2 × 10−6.

Y0 lead to instability. The choice Y ≈ 0.193 is most unstable; the base flow selected by
diffusion, with Y given by (3.6), is slightly less unstable. As highlighted by the amplitude
ratios Y̌/ȟ also plotted, the unstable mode perturbs Y more strongly that h. In other words,
the mode has an interfacial character. By contrast, the damped mode has a relatively strong
surface signature.

The system (A2) can be solved numerically with periodic boundary conditions to
explore the nonlinear dynamics of the interfacial instability, starting from a small
perturbation to the uniform base flow. To ease this task, we add linear diffusion terms to
both equations in (A2) (with equal diffusivities of 2 × 10−6). These diffusion terms control
the linear instability and ensure that the nonlinear solutions remain smooth. As illustrated
figure 12(a), for (Γ, a, Y0)= (5, 1/5, 0.193), a broad, but finite, band of unstable modes
then arises, with maximum growth for k ≈ 10.

Figure 13 displays the results of such initial-value computations, starting with two
different initial conditions, in domains of length 2π/5. In the first example, the initial
condition is given by (h, Y )= (1, Y0 + 10−4 sin 10x), where Y0 = 0.193. For the second
example, the initial perturbation to the interface z = Y0 corresponds to a random
superposition of the first 10 Fourier modes, with mean amplitudes of 10−4.

For the case initialized with a k = 10 perturbation, the unstable mode develops as
predicted by linear theory. In the nonlinear regime, the instability saturates to form two
nonlinear, shock-like waves. The second solution displays a richer dynamics: the initial
condition seeds the growth of five waves. On reaching finite amplitude, these waves
interact, leading to a sequence of coarsening events, somewhat like that seen for roll waves
in inertial viscous films (Balmforth & Mandre 2004). Eventually, a single wave remains.
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Figure 13. Nonlinear computations with (A2), including linear diffusion terms with equal diffusivities of 2 ×
10−6. The periodic domain has length 2π/5; (Γ, a)= (5, 1/5) and Y0 = 0.193. Panels (a i) and (b i) show
density plots of Y (x, t); panels (a ii) and (b ii) are plots of the initial (dashed) and final (solid) profiles of
h (blue) and Y (red); the lighter lines show intermediate snapshots (every 100 time units). In each plot, the
solution is shown in a frame translating close to that of the final nonlinear waves. In (a), the initial perturbation
to Y = Y0 is 10−4 sin 10x ; for (b), that perturbation is a random superposition of the first ten Fourier modes,
with mean amplitudes of 10−4. Panel (c) displays Max(Y − Y0) against time (solid blue line for the solution in
(a); dot–dash red line for that in (b)). The dashed line shows the growth expected for the linear k = 10 mode.

Note that there is an awkward issue hidden in this reduced model: the upper layer is
assumed to be fully structured, but it is also able to deform along the plane of the film,
despite the implied infinite viscosity. This issue reflects an assumption inherent in the thin-
film model, as discussed at the end of § 6 and Appendix D, and can be rationalized in the
same manner as the pseudoplugs of thin films of yield-stress fluids (Walton & Bittleston
1991; Balmforth & Craster 1999).

Appendix B. Small k

After differentiating the base-state equations (3.1) in z, and some algebraic manipulations,
the linear stability equations can be recast in the form

(ψ + η̌U )zz = − ik(1 − z)Aη̌+ (1 − z)A′(λ̌+ η̌Λz),

T [(σ + ikU )λ̌− ikΛzψ] = − (1 + ΓUz) (λ̌+ η̌Λz)− ΓΛ(ψ + η̌U )zz + κ(λ̌+ η̌Λz)zz,

(B1)
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where A = A(Λ) and A′ = A′(Λ) are evaluated for the base state. In the limit k � 1, we
may then introduce the sequences

σ = kσ1 + k2σ2 + . . . , ψ =ψ0 + kψ1 + . . . , λ̌= λ̌0 + kλ̌1 + . . . (B2)

to find a long-wave solution in which we select a normalization that fixes η̌. Here, we adopt
η̌= 1.

When κ is small, the fact that λ̌(z) and Λz(z) satisfy different conditions at z = 0 is not
significant. The leading-order solution is then

σ1 = −iUz(0), λ̌0 = −Λz, ψ0 = −[U − zUz(0)]. (B3)

At the following order of k, we then have

ψ1zz = − i(1 − z)A + (1 − z)A′λ̌1,

iT (1 − z)Uz(0)Λz = − (1 + ΓUz) λ̌1 − ΓΛψ1zz + κ λ̌1zz,
(B4)

with boundary conditions

σ2 = −iψ1(1), ψ1(0)=ψ1z(0)= λ̌1z(0)= λ̌1z(1)= 0. (B5)

The growth is therefore determined at O(k2), and contains two contributions when
κ � 1 and a < 1/2 (parameter settings we focus on here). The first contribution is from
the destructured layer in 0< z < Y : here, we omit the diffusion term in (B4) and solve
algebraically for ψ1zz . Then,

σ
(D)
2 ∼ −i

∫ Y

0
(1 − z)ψ1zzdz = −

∫ Y

0

T Uz(0)(1 − z)A′ΛΛz + A

1 + Γ (1 − z)A′Λ2 (1 − z)2dz, (B6)

in which Λ∼Λa from (3.4). Note that A′ < 0 but 1 + Γ (1 − z)A′Λ2 > 0. Hence, σ (D)2
contains two contributions: the first is proportional to T and positive; the second is
negative. In other words, over the lower-lying destructured layer, quasisteady viscous
effects are stabilizing, but relaxation is destabilizing.

The second contribution arises from adjustments over the thin transition region around
z = Y . If we again introduce the inner coordinate ζ = (z − Y )/

√
κ to resolve this region,

then we observe that

Lλ̌1 ∼ iκ− 1
2T (1 − Y )Uz(0)Λζ + O(1), (B7)

where

L= ∂2

∂ζ 2 − 1 − Γ (1 − z)(A + A′Λ). (B8)

But (3.1) implies that

LΛζ = −√
κΓ AΛ. (B9)

Hence, on multiplying (B7) by Λζ and integrating over the transition region, we find

iκ− 1
2T (1 − Y )Uz(0)

∫ ∞

−∞
Λ2
ζdζ + O(1)∼ −√

κΓ

∫ ∞

−∞
AΛλ̌1dζ, (B10)

given the matching conditions for ζ → ±∞ (which indicate that Λ and λ̌1 and their
derivatives in z are all order one). The balance in (B10) demands that λ̌1 = O(κ−1) over
the transition region. Given (B9) and (B7), the solution for λ̌1 must therefore be some
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multiple of Λζ at leading order: λ̌1 ∼ −iαΛζ . Equation (B10) then implies that

α ∼ T (1 − Y )Uz(0)
∫ ∞
−∞ Λ2

ζdζ

κΓ
∫ ∞
−∞ AΛΛζdζ

. (B11)

Moreover, from the first relation in (B4),

ψ1ζ ζ ∼ ακ(1 − Y )A′Λζ , (B12)

and so the transition region makes a contribution to the growth rate of

σ
(J )
2 ∼ −i(1 − Y )

∫ ∞

−∞
ψ1ζ ζ

dζ√
κ

∼ √
κα(1 − Y )2 A(Y −), (B13)

where A(Y −) denotes the reciprocal viscosity function evaluated as z → Y from below.
Note that σ (J )2 is positive and always contributes towards instability. Moreover, λ̌1 ∼
−iαΛζ represents a vertical shift of the transition layer due to the translation of wave-like
perturbations with speed −Im(σ1)= Uz(0). In other words, the motion of the transition
region is destabilizing.

Appendix C. Fast relaxation with small diffusion
When T → 0, the structure function satisfies

κλzz = (1 − λ){Γ τ(1 −Λ)[(1 −Λ)(1 − a)+ a] − 1}. (C1)

In the further limit κ � 1, we then arrive at the structure function,

λ=
{
Λa, 0< z < Y,
1, Y < z < h, (C2)

where

Λa(τ )= 1
2(1 − a)

[
1 −

√
1 − 4(1 − a)

Γ τ

]
, Y = h − 9(1 − a)

Γ (1 − hx )(2 − a)(1 + a)
, (C3)

which corresponds to a generalization of the solution to (3.2)–(3.6), but applying for the
full nonlinear dynamics of the film. Armed with this profile, we may compute the flux∫ h

0
(h − z)γ̇ dz = h2

τ 2
b

∫ τb

τY

τ̂ 2A(τ̂ )dτ̂ = h2G(τb), (C4)

where τb = h(1 − hx ) is the basal shear stress,

τY = (h − Y )(1 − hx )= 9(1 − a)

Γ (2 − a)(1 + a)
, (C5)

and A(τ )= (1 −Λa)[(1 −Λa)(1 + a)+ a] is the reciprocal of the viscosity function,
rewritten as a function of τ using (C3). Introducing this flux into the evolution equation
ht + Qx = 0, gives the nonlinear diffusion problem,

ht + [
h2G(τb)

]
x = 0. (C6)

Linear stability is dictated by the dispersion relation,

σ = −ik[2G(1)+ G ′(1)] − k2G ′(1). (C7)
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But

G ′(1)≡ τY
2Γ (τY )+

∫ 1

τY

τ 2Γ ′(τ ) dτ, (C8)

where Γ (τ)≡ τA(τ ) denotes the inverse of the ascending (right-hand) branch of the flow
curve in (2.22). Thus, as τY

2Γ (τY )≡ τ 2
C
γ̇C > 0 and Γ ′(τ ) > 0, we conclude G ′(1) > 0.

The film is therefore stable in this limit. Note that the situation may be different if the base
state were to contain sections of the descending (left-hand) branch of the flow curve.

Appendix D. Vanishing diffusion
When κ → 0 and there is a viscosity bifurcation (a < 1/2), the interface z = Y (x, t)
evolves as a material surface. Mass conservation over the plug-like structured layer then
demands that

(h − Y )t + [(h − Y )u P ]x = 0, (D1)

where u P ≡ u(x, Y, t) is the plug speed.
The base states arising in the κ → 0 limit of the diffusive problem have interface

positions given by (3.6), and flow profiles following the flow curve. Base states are given by
(u, λ, h, Y )= (U, Λ, 1, Y0). With κ → 0, the linearized structure function equation (4.2)
simplifies, reducing to an algebraic relation for λ̌. One must then integrate only the stream
function equation to solve the linear problem over 0< z < Y0. The overlying plug-like flow
can be taken into account by applying a boundary condition at z = Y0: a linearization of
(D1) indicates

Y̌ = η̌+ ik(1 − Y0)ǔ P

σ + ikUP

, (D2)

whereas the continuity of the velocity at z = Y indicates that

ǔ P =ψz(Y0)+ Uz(Y0)Y̌ . (D3)

Rewriting the kinematic condition at the free surface as

(σ + ikUP )η̌= −ikψ(1)= −ik[ψ(Y0)+ (1 − Y0)ǔ P ], (D4)

and then eliminating Y̌ and ǔ P from (D2)–(D4) furnishes the condition needed at z = Y0.
Note that the plug-like layer is again able to deform in this limit, despite its apparently

fully structured state. Once more, this reflects the omission of the extensional stresses from
the shallow-film model. Therefore, even though κ � 1, diffusion is assumed sufficient
to prevent λ from truly reaching unity. The viscosity function is thereby prevented
from diverging, and simply becomes sufficiently large to suppress vertical shear, but not
horizontal extension. In other words, the limit implicitly assumes that ε2μ(Λ)� 1 (given
that the extensional stresses impact the force balance equations at O(ε2)).

Appendix E. Strong diffusion
In the limit κ � 1, the structure function becomes locally uniform across the film:
λ∼ λ(x, t). The velocity profile is then parabolic and a reduction of the thin-film model
follows after integrating the dimensionless structure–function equation in (2.19) over the
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film thickness,

ht + (hU )x = 0, (E1)

T
(
λt + Uλx

) = 1 − λ− 3ΓUλ

2h
, (E2)

U ≡ 1
h

∫ h

0
(h − z)uz dz = 1

3
h2(1 − hx )A(λ). (E3)

Base states exist for Γ > 8(1 − a) and are given by

h = 1, λ=Λ= 1 − √
1 − 8Γ −1(1 − a)

2(1 − a)
, U = U∗ = 1

3
A(Λ), (E4)

corresponding to a point on the right-hand branch of the flow curve, with shear rate U∗
and unit shear stress. Linear perturbations with growth rate σ and wavenumber k have the
dispersion relation,[
T (σ + ikU∗)+ 1 + 3Γ

2
(U∗ +ΛUλ)

][
σ + ik(3 − ik)U∗

] − 3
2

ik(1 − ik)Γ ΛU∗Uλ = 0,
(E5)

with

Uλ = 1
3

A′(Λ)= −1
3
[2(1 −Λ)(1 − a)+ a]. (E6)

Solutions to this dispersion relation are illustrated in figure 14. Flow is again unstable for
sufficiently long relaxation time, and the stability characteristics are similar to those found
for finite κ .

For long waves, the dispersion relation simplifies further: we find σ ∼ −ikc + σ2k2,
where

c = 3U∗
[

1 − ΓΛUλ
2 + 3Γ (U∗ +ΛUλ)

]
, σ2 = 2T (c − U∗)(c − 3U∗)− U∗(2 + 3ΓU∗)

2 + 3Γ (U∗ +ΛUλ)
.

(E7)
The O(k2) growth rate again exposes the destabilizing effect of relaxation (c< 3U∗ and
2 + 3Γ (U∗ +ΛUλ) > 0) and the stabilization of quasisteady viscous effects.

As shown in figure 15, nonlinear solutions to (E3) in periodic spatial domains initially
demonstrate the growth predicted by (E5), but then saturate into steady nonlinear waves.
The initial condition used here seeds the growth of the most unstable linear mode (with
k = 0.2; see figure 15a). The nonlinear waves that emerge, as illustrated in figure 15(b,c),
display destructuring underneath the rise of the wave crests, and structural recovery over
the fall to the following trough. These nonlinear waves appear in a supercritical bifurcation
as a is lowered through the stability threshold.

Appendix F. Details of the numerical scheme used to compute nonlinear solutions
We first map the fluid domain to a rectangle by transforming to the new spatial variables
(x, ζ ), where ζ = z/h(x, t)). After discretizing the new variables, spatial derivatives
are evaluated using spectral differentiation matrices (supplementing Chebyshev matrices
for ∂/∂ζ with matrices for ∂/∂x based on the fast Fourier transform (Weideman &
Reddy 2000)). The discrete spatial grid in (x, ζ ) is then an N × M collection of
collocation points, where practically we take N = M = 128 or more. The resulting set of
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Figure 14. (a) Growth rates and (b) phase speeds as functions of k in the strong-diffusion limit for (a, Γ, T )=
(1/5, 8, 14). The (red) solid lines show the predictions of (E5), the (blue) points show numerical solutions of
the full linear stability problem with κ = 10. The remaining panels show density plots of growth rate (from
(E5)) over the (a) (k, T ) (a = 1/5), (b) (k, a) (T = 14) and (c) (T , a) planes (k = 0.2), all with Γ = 8. The
(red) solid lines in (c), (d) and (e) show the stability boundaries and the dots show the maximum growth over
all k or T .

coupled ordinary differential equations are solved using MATLAB’s ODE15s. As initial
conditions, we adopt h(x, 0)= 1 + A sin kx and λ(x, ζ, 0)=Λ(ζ), where A is typically
chosen to be 5 × 10−4 and Λ(z) is one of the base-flow solutions of § 3.

To examine the effect of spatial resolution, solutions with different choices for N and M
(but setting N = M) were computed and compared. For the same two solutions of figure 9,
the final amplitude of

√〈(h − 1)2〉 changes by less than a per cent when halving or even
quartering the number of grid points; the changes to the final nonlinear wave speed are
smaller still.

Note that MATLAB’s ODE15s uses preset relative and absolute error tolerances of
10−3 and 10−6, respectively, by default. These were reset to 10−5 and 10−9 in order to
provide additional assurance about the fidelity of the time integration. Nevertheless, the
two solutions of figure 9 changed by less than a tenth of a per cent when recomputed with
the original tolerances.

Figure 9(b) also compares the two nonlinear computations for N = M = 128 with the
predictions from linear theory; over the period of exponential growth, the computations
match the linear predictions. In more detail, the growth rate extracted from the time series
of the nonlinear solution agrees with the linear eigenvalue to better than a per cent. In
summary, there was no evidence of any issue with spatial resolution or time integration
error.
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Figure 15. A strong-diffusion solution to (E3) in a periodic domain of length 20π , with (a, Γ, T )=
(1/2, 8, 14). The initial condition is a random superposition of the first 10 Fourier modes with mean amplitudes
of 10−5. Shown are (a) a time series of

√〈(h − 1)2〉, and snapshots of (b) h(x, t) and (c) λ(x, t) (every five
time units, with the final profile shown darker). The dashed line in (a) indicates the growth expected for the
most unstable mode (with k = 0.2). The snapshots are shown in a moving frame with speed V = 0.64. The final
wave profiles from a wider suite of computations with varying a are shown below, plotting (d) wave amplitude
�h ≡ hmax − hmin against a, and (e) h and ( f ) λ for the values of a indicated by the stars in (d). The grey
dashed line shows the stability boundary in (d), and the profiles are shifted to align the wave crests (i.e. hmax )
in (e) and (f ). The dot–dash line in (a), circle in (d) and dashed lines in (e) and ( f ) show corresponding results
from the full thin-film model, with κ = 10 (plotting 〈λ〉 in ( f )); the most obvious differences arise during the
initial transients.
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