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BY 
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ABSTRACT. Given a resplendent model M for Peano arithmetic 
there exists a full satisfaction class over M, i.e. an assignment of 
truth-values, to all closed formulas in the sense of M with parame­
ters from M, which satisfies the usual semantic rules. The construc­
tion is based on the consistency of an appropriate system of J(-logic 
which is proved by an analysis of standard approximations of 
nonstandard formulas. 

This paper is a contribution to the study of the concept of satisfaction of 
nonstandard formulas, i.e. formulas in the sense of some nonstandard model of 
arithmetic. 

Let PA (Peano arithmetic) be formulated in a finite language without 
function symbols and with logical operators ~i, v , and 3. (Below we use an 
analysis of the structure of formulas which would become unmanageable were 
function symbols allowed.) Let L denote the chosen language. As with other 
notations for languages, L will also denote the set of formulas of the language. 
Let M be a model of PA then L(M) is the language obtained by adjoining 
constants naming the elements of M, and *L(M) denotes the set of all formulas 
of L(M) in the sense of M. By a full satisfaction class for M we mean a subset 2 
of the sentences of *L(M) containing all true atomic and negated atomic 
sentences satisfying the following three conditions: 

(i) for every sentence <p of *L(M) exactly one of <p and —i <p belongs to 2 
(ii) for all sentences <p, tjj of *L(M), <pv^eS if and only if at least one of <p 

and \\f is in 2 
(iii) for each sentence 3xcp(x) of *L(M), 3x<p(x)e2 if and only if cp(a)e2 for 

some ae | Jé | . 
Let °U be a structure in which the standard model Ji of PA is definable such 

that Th(N), the set of true sentences of L(Jf), or, strictly speaking, the set of 
Gôdel numbers of such sentences, is definable in °U. Let *% be an elementary 
extension of °ti. Robinson [8] observed that membership in *77I(JV>) is a 
possible definition of truth for sentences of *L(J{). He called this the "inter­
nal" definition of truth and contrasted it with an "external" definition formu­
lated in terms of Skolem functions. The latter definition is not applicable to all 
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sentences of *L(Jf) and Robinson showed that even where it applies it is not in 
general equivalent to the internal definition. In our terminology *Th(N) is a 
full satisfaction class, but Robinson's external truth seems to have no im­
mediate relevance to the present work. 

Our main result is that any resplendent model M of PA has a full satisfaction 
class. We will also give a necessary and sufficient condition for the existence of 
a full satisfaction class containing a given sentence <p. In particular we show 
that there exists a full satisfaction class containing the negation of a nonstan­
dard disjunction of copies of the sentence 0 = 0. Lachlan has proved the 
converse of our main result for countable models, that is, a countable model of 
PA for which there is a full satisfaction class is necessarily recursively satu­
rated. His theorem is presented in the paper immediately following this one. It 
is an open question whether there is a recursively saturated uncountable model 
of PA which has no full satisfaction class. The referee has suggested that the 
model of Kaufmann [4] might be an example. 

It will be clear that our results apply not only to arithmetic but also to any 
theory in which a sufficient part of arithmetic can be interpreted and which 
permits the coding of finite sequences of individuals. The theorem for ZF 
corresponding to our main result is much easier, see Proposition 5.1 of [5]. 

The plan of the paper is as follows. In the first section we define the 
particular system of logic we need and establish some lemmas about it. In the 
second section we show that given a proof of finite height we can replace each 
formula by a standard approximation in such a way that the proof remains a 
proof. In the third and final section we derive the main theorem and related 
results. 

We are grateful to J. Paris for suggesting the use of co-logic for the 
construction of satisfaction classes and to the referee whose many suggestions 
regarding an earlier version have clarified many parts of the paper. 

1. J(-logic. As above M is a model of PA. Our logic will be denoted ££(M) 
and its formulas are all sentences of *L(M). The axioms of SB(M) are all 
formulas of the form —i <p v <p together with all true atomic and negated atomic 
sentences. The rules of inference of S£(M) are 

é 
Expansion 

^ • • <pvdf 
Commutativity 

ijJVip 

Associativity , r A — — ? - ! — * 

fflV (p 

Contraction 
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C u t xvcp i x v f t 
cpvijj 

<p(a) 
3-introduction -——- (a in M) 

dx<p(x) 

—i<p(a)for all a m M 
.it-rule —-— 

-\3xcp{x) 
and each rule is repeated with the addition of an arbitrary formula 6 as a 
parameter. For example the repetition of the M-mle is: 

6v-i(p(a) for all a in M 

6v-i3x<p(x) 

We use the symbol h to denote provability in 5£{M). To make this notion 
precise, for any set of sentences T^*L(M) let T' denote the set 

r U {6: 6 e *L(M) & 6 is an immediate consequence of a sentence 
or sentences in T by one of the rules}. 

Define F* by induction on the ordinal a: 

r - r u u (r*y. 

Then T h 6 means that there exists a G On such that 0 e F \ Because of the 
M-rule a proof of 6 from T may be infinite and may involve an infinite external 
subset of T. 

The reason for repeating the rules with a parameter is that it allows an easy 
proof of: 

LEMMA 1. Let T^L{M) be a set of sentences and q>, if/e*L(M) be sentences, 
then 

rU{<p}l~lA implies Th- icpv^ 

and 

TU {<p}h i/>, "i i/> implies T\- ~i <p. 

Proof. The second half of the conclusion follows easily from the first using 
the cut rule. For the first half suppose a proof of $ from T U{cp} is given, then 
the idea is that we go through the proof replacing each formula a by ~i <p v a so 
that occurrences of <p now become axioms. If a is an axiom or in T then we 
have IV icp va by means of the first two rules. It remains to check that if we 
repeat the process of adding a parameter to the rules of inference then the new 
rules we get are already derivable. We leave this to the reader. 

A set of sentences Y^L{M) is called consistent if no contradiction is 
derivable from it in L(M). 
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LEMMA 2. Let Y<^*L{M) be a set of sentences and M be countable. T can be 
extended to a full satisfaction class iff T is consistent. 

Proof. Suppose T is consistent. Let ((pt : i < a) be an enumeration of the 
sentences in *L(M). We define an increasing sequence (1^ :i<co) of consistent 
subsets of *L(M) such that r o = r and for all i<w, either <p4 or —i <p< is in IV 
Further for each i, if <pt has the form 3XI(J(X) and is in Tt, then ijj(a)eri for 
some aeM. From Lemma 1 it is easy to deduce that such a sequence 
(Ti:i<o)) exists. Clearly UiTi'.Ka)} is a full satisfaction class. The proof in 
the other direction is immediate. 

If the model M is standard it is clear that the empty set is consistent in £{M). 
However, for a nonstandard model the consistency of 0 is not obvious because 
the nonstandard sentences have no natural interpretation and indeed the main 
result of this paper together with Lachlan's converse show that, for countable 
nonstandard M, 0 is consistent in ££(M) iff M is recursively saturated. 

2. Approximation of nonstandard formulas. It is convenient to introduce a 
new logic SE'(M). Let V be the language obtained by adjoining to L infinitely 
many predicate symbols of each finite arity. Let L'(M) be obtained by adjoining 
to V all the variables in the sense of M and constants naming all the elements 
of M. Formulas are built up in the usual manner using the same logical 
operators as before but here there are only standard formulas. As axioms we 
take all sentences of the form —i<pv<p and all atomic and negated atomic 
sentences which are true in M. The rules of inference are the same as for £(M)\ 
again only sentences are admitted to proof trees. The symbol h will also be 
used to denote provability in SE'(M). 

Let i/>[p0, • • •, Pk-i] be a sentence of L'(M) where all the new predi­
cate symbols are displayed, and where pt is /vary. Let 
<Po(*ï> • • • > *n0)> • • • > <Pk-i(*ï~\ • • • » *nk~î) be formulas either all in L'(M) or all 
in *L(M), where all free variables are displayed. We use 
*A[<Po/Po> • • • 5 <Pk-i/Pk-il to denote the formula obtained by replacing each part 
of ip of the form p:(tî9..., tni) by (pt(tl9. . . , *„.). If <p in L'(M)U*L(M) can be 
written as il/[(p0/p0,..., <Pk-i/Pk-i] then we call if/ an approximation of <p. 

Let L(M, p) be the language obtained by adjoining a new propositional 
constant p to L(M). Let <p G *L(M). By a part of <p we mean a pair (<p', if/) where 
<p'e*L(M, p), ijje*L(M), p occurs exactly once in <p\ and ç results from cp' by 
replacing p by i//. The set of all parts of <p will be denoted by ÏI(cp). 

The depth of the part (q>\ ijj), denoted d(<p', ijj), is the number of logical 
operators of <p' within whose scope p lies. The depth of a formula is the 
maximum depth of its parts. 

We call ijj the associated formula of the part (<p\ ip). Let (<p'0, i//0) and (q>[, i\fx) 
be parts of cp then (<p'0, i/r0) includes (<p[, i/^) written (<p'0, ^ 0 )> (<p'u ^i) if <Pi c a n 
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be obtained from ç'0 by replacing p by some formula of *L(M, p). Note that > 
is transitive. 

Let L(M, z) be the language obtained by adjoining a new individual variable 
z to L(M). Let <pe*L(M). By an occurrence in <p we mean a pair (9' , t) where 
<p'e*L(M, z), t is a term of *L(ÀL), z occurs exactly once in <p' and not in a 
quantifier, <p results from 9' by substituting £ for z, and f is free for z in <p'. It 
should be clear that this definition simply makes precise the usual notion of a 
free occurrence of a term in a formula. Let the set of occurrences in <p be 
denoted €(<p). Let <p denote the formula of *L(M, z) obtained by replacing 
every occurrence in <p by z. 

Let the concepts of part and occurrence together with the related terminol­
ogy and notation be carried over to other languages in the obvious way. 

Let *T(M) denote the set of terms of *L(M). Every formula <p in *L(M) has 
associated with it a unique mapping ^ :0(<p) -» *T(M) such that, if o is replaced 
by t<pW, for every occurrence *> in <p simultaneously, then <p results. 

Call two formulas <p0, <Pi in *L(M) weakly equivalent, written <p0~<Pi> if 
<p0= (pt. Call 90)91 equivalent, written <p0~<Pi> if <Po~<Pi a n d there exists an 
equivalence relation E on O((p0) = O((jp1) such that ^0, tvi are well defined on 
0(<p0)/E and differ on at most a finite number of equivalence classes. There is a 
canonical candidate for E given by: 

OQEOX <=> IXo(̂ o) = tp0(*i) <& t+(/>0)= ^(*i)]. 

It is easy to show that ~ is an equivalence relation. Further, suppose O is a 
finite set of pairwise strongly equivalent formulas each having only a finite 
number of free variables. We can associate with O a certain formula 6<p as 
follows. Let 0(<$>) be the common value of 0(c) for all <pe4>. Define an 
equivalence relation E& on 0(<ï>) by: 

For ç e<I> the map of 0(^)1 E^ into *T(^) induced by ^ will also be denoted t^. 
If <p, 1// G <I>, then 9 ~ i/f and thus there are at most a finite number of classes in 
0(&)/E& on which tv, t^ disagree. Let c€1,..., % be an enumeration of all 
classes <g in 0(^)1 E^ such that there exist <p, i/>e<E> such that t^)^ ^(<g) or 
^(^g) is a variable. Now let z 1 ? . . . , zx be new variables. Fix <p e<ï>. In <p replace 
each occurrence ^ in %x, 1 < i < /, by zf and every occurrence ^ not in any % by 
^(V). Let the resulting formula be denoted by 6^(zl9..., zt) and notice that 
this formula is unique to within a permutation of the variables. That is, there is 
no dependence on the choice of <p. Notice also that for each <p e <E> there exist 
unique tl9..., t{ such that <p is 6^(tly..., tt). 

We are now ready to begin the series of definitions which will lead directly to 
the crucial concept of the paper that of the nth approximation of a formula of 
*L(M). 
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Fix n<(D and a sentence <pe*L(M). For m<a> we define n(m)(<p, n) by 
induction as follows: 

Iï(0)(<p, n) = {<<p\ ^> e 11(c) : d(<p'9 ifr) < n} 

n("+1)(<p, *) = {<?', ^>en(9):3<P&3*o3<Pi3*i[<<P&, ^ e l l ^ , n) 

& d(<pi, ^ ) + d(<p', iflr) < d((p^ i//0) + n]}. 

For all sufficiently large m < co, n(m)(<p, n) is fixed. To see this notice that for 
each m<(o, if (<p\ t/>) e II(m)(<p, n), then there exists (<p'1? i^Jell^^cp, n) such 
that i / / - ^ . Also, if ( (p^ 0 >en( (p) , <<pi, *h>en(m)(cp, n), and <<p&, ̂ 0>> 
<<pi, i/ri), then <<p&, i//0)en (m)(9, n). Thus, if <<p', ̂ )en ( m )((p, n), then there exist 
<<pj, ifc)ell(m)(<p, n), i<d(cp\ i//), such that 

<<PÎ,*i>^<<PÏ+i,*+i> (î<d(<p',<fr)) 

and (<p-, ifo) = (<p', î ) for i = d(<p', \\f). Now the crucial point is that ifo^i^ for 
i<j<d((p\ if;). Also |II(0)((p, n ) |<2 n and as noted above each ifo is equivalent 
to a member of n(0)((p, w). Thus 

( ( p ^ > G n ( % n ) ^ > d ( ( p ^ ) < r . 

Since n(m)(<p, n ) c n ( m + % n) it is clear that there exists k<co such that 

k < m < o ) ^ n(m)(<p, n) = fl(k)(<p, n). 
For such k let 

r(<p, n) = {* G * L U ) : 3<p'(<<p', ifr> G n(k)(<p, n))} 

and 

Tjbp, n) = { i ) f€*L( i ( ) :3çW, ^ e ll(k)(<p, n) 

and (<p', i/>) is -<-minimal in n(k)(cp, n)}. 
Intuitively T(<p, n) is the least set of subformulas of <p including all those of 

depth < n in <p such that, if ifj0eT((p, n) is equivalent to i/^elXcp, n) of depth 
< n in <p, then F(<p, n) contains a subformula of tp0 if and only if it contains the 
corresponding subformula of 1/̂ . Also r7(<p, n) consists of the members of 
r(<p, rc) which are minimal in T(<p, rc). However, a precise treatment of these 
concepts requires the consideration of parts of <p rather than just subformulas, 
because strictly speaking one cannot speak of the depth of a subformula. 
Further, if i/^ — i/^, there is a natural bijection of Il(^0) onto I K ^ ) which 
underlies the construction of T(<p, n) and which has no analogue if we speak 
only of subformulas. 

From above every ijj e T(<p, n) is the associated formula of a part of <p of 
depth <2 n , whence \T(<p, n ) | < 2 2 \ Let TI(<p, n ) /~ be the set of equivalence 
classes into which Fj(<p, n) is partitioned by ~ . For QeTjicp, n ) /~ we let 
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0<t>(zu . . . , Zi) be the canonical formula associated with <I> described above. Call 
<&erj(<p, n) /« atomic if it contains an atomic formula in which case every 
member of <I> is atomic. 

We now define a mapping F ^ of T(<p, n) into L'(M). If i/f er(<p, n) is atomic, 
let F(f>n(ip) = if/. For each nonatomic <E>£rr(<p, n ) / « with associated formula 
0^(zl9..., Zi) choose a distinct new Z-ary predicate symbol p^ of L' and for 
each i/f = ^4>(^i»..., *i) e 4> let F^ip) = p^(tu . . . , *i). Extend F ^ to the rest of 
r(<p, n) by the rules: 

*V„ (iAo v i/>i) = F„t n (i/>0) v F 9 f n (i/O 

F4Pfn(3x^) = 3xF9fBW. 

We call F ^ ^ ) the n-fh approximation of <p. There is an element of nonunique-
ness in the definition of nth approximation but it is inessential. 

As an example consider a sentence <p in *L(M) of the form 

3x(f l(x,a)v^(x))v-i3y(e(6,y)v^(y)) 

where 6(x, a)^i(/(x). The zeroth, first, and second approximations of <p are p, 
Po vpx, 3xp0(x)v~ip1 respectively and in each case the number fc of the above 
definition is zero. However, since 6(x, a)vil/(x)^6(b, y)vi/f(y), when the third 
approximation of <p is constructed we shall have k = 1 and the approximation 
will be 

3x(p0(x, a)vp1(x))v-i3y(p0(b, y)vpi(y)). 

Let (<p°,. . . , <pk-1) = <p be a finite sequence of sentences of *L(M) with k 
standard and let n<(o be fixed as before. We define the n-th approximation of 
ip, which will be a sequence of sentences of L'(M) of length k, by carrying out 
the above construction simultaneously for all members of <p. Specifically, we 
define II(m)(<p, n) for m<<o by: 

Ui0)(ip,n)=U{Ui0\ç\n):i<kl 

rtm+1\ip, n) = {(ç\ iA)€ U n(cpi):3&<p'03ilj03j3<p'13ilf1[i,j<k& 
i<k 

(<p'0, «fo>eII (mV, n) & (<p'lt ^ 6 l f ( f ' , n) 4 ^ o « * i & <*', *) 

<(<p'0, ^o) & d(<p'u iM + d ( ? \ tfr) < d(<pj„ ifo) + "]}• 

Reasoning in the same way as before we see that each ((?', t̂ ) in II<m)(^, n) has 
depth < k • 2" and that there exists I such that 

/ < m < <o 4> n(m)(«P, n) = n(,)(<p, n). 

For such / let 

T(<p, n) = {^ e L{M) : 3<p'«<p\ *> e II('>(<p, n))} 
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and let Tj(<p, n) consist of the formulas in T(<p, n) which are <-minimal. Now 
we define F v n on T(<p, n) in a manner similar to that in which we defined F9 n 

on T(<p, n), and the nth approximation of <p is the sequence 
{FvJç°),...,FvJcpk~1)). 

LEMMA 3. Let <p be a sentence of *L(M) and for i<œ let cpt denote the i-th 

approximation of <p. Then q>t is an approximation of <p and if i<j<co then <p( is 
an approximation of <py. 

LEMMA 4. Let t/>, x be sentences of L\M) and $ be an approximation of x- If 

there is a proof in 56'{M) from 0 of t/f of height n, then the same is true of x> 

LEMMA 5. Let <p be a sentence of *L(M) and \\f be an approximation of <p. If \p 

has depth n then \\i is an approximation of the n-th approximation of <p. 

LEMMA 6. Let 0v~i3x<p(x) be a sentence of *L(M), and 0'v~)3x<p'(x) be its 
(k + 2)-th approximation, then the k-th approximation of 0v—i<p(a) is an 
approximation of 0'v-i<p'(a)-

The proof of these lemmas is a tedious exercise which we omit. The principal 
result of this section is 

LEMMA 7. There exists a recursive function G such that for every sentence <p of 
*L(M) if there is a proof of ç from 0 in S£(M) of height n<a), then there is a 
proof in SB\M) from 0 of height n of the G(n)-th approximation to <p. 

Proof. As before n denotes a standard positive integer. The second approxi­
mation of any sentence —11/> v ijj has the same form, and any approximation of 
an atomic sentence is the sentence itself. Thus we can take G(l) = 2. For the 
rest we proceed by induction on n. It is clearly sufficient to establish an 
appropriate sublemma for each rule of inference. We shall show how to handle 
three of the rules and leave the other cases to the reader. 

SUBLEMMA (First associative rule). Let k, n<o) and <p, x, i// be sentences of 
*L(M). If there is a proof in <£\M) from 0 of height n of the k-th approximation 
of <pv(i/fv^) then there is a proof in S£'(M) from 0 of height n + 1 of the 
(k + 2)-th approximation of (<pvi//)v^-

Proof of sublemma. Let (pkv(ijjkvxk) a n d (<Pk+2
v^k+i)^Xk+i be the kth 

and (k + 2)th approximations of <pv(i|/v^) and (<pvi//)v^ respectively. In the 
first step of the construction of (<Pk+2vi//k+2)

vXk+2 we explore <p, if/ to depth k 
and x t o depth k + 1, whereas in the first step of the construction of <pkv 
i^kVXk) w e explore <p to depth k - 1 and t/>, x t o depth k - 2 . Because the 
analysis of (<pvij/)vx goes deeper than that of <pv(i//vx), (<Pk v i / ^ v ^ k is an 
approximation of ((pk+2^^k+2)^Xk+2- The reason why k + 2 is required here 
rather than k + 1 is illustrated by the formulas: 

((0o\/01)ve1)v(0ov01)9(((0o\/01)\/01)\/0o)\/01) 
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where 0O, Bx are inequivalent atomic sentences. The second approximation of 
the first is 

( (PovpiWpiMpovpi) 

but to get this deep an analysis of the second sentence we have to take its 
fourth approximation. 

SUBLEMMA (Cut rule). Let k, n<o) and <p, if/, x be sentences of *L(M). If there 
are proofs in !£\M), from 0 of height n, of the k-th approximation of xv<P and 
n^vi/f, then there is a proof in <£'(M), from 0 of height n + 1, of the 3 • 2k-th 
approximation of <p v i/>. 

Proof of sublemma. Let (x v <p)k9 ( n ^ v i ^ ) k denote the fcth approximations of 
X v <p, I x v i\f respectively. Let (xk, <pk, <fo> be the fcth approximation of <*, <p, <A>. 
Now (xV(p)k is a n approximation of *kvcpk whence by Lemma 4 there is a 
proof of XkV(Pk of height n. Similarly there is a proof of n ^ v ^ k of height n. 
Thus by the cut rule there is a proof of <pk v ^ k of height n + 1 . The depth of 
<pk v ife is < 3 • 2k whence, letting (<p v ^ ) k denote the 3 • 2kth approximation of 
cpvi//, by Lemma 5 <pkvi^k is an approximation of (<pvi^)k. The conclusion 
follows by Lemma 4. 

SUBLEMMA (M-ru\e with parameter). Let k, m, n<co and 0v-i3x<p(jc) fee a 
formula of *L(M). Suppose there is a proof in <£'(M), from 0 of height <n, of the 
k-th approximation of 6v—\cp(a) for every aeJt. Then there is a proof in S£'(M), 
from 0 of height <rc, of the (k + 2)-th approximation of 0v-i3x(p(x). 

Proof. Let 0'v—\3x<p\x) be the (fc + 2)th approximation of 0v-i3x<p(x), 
then by Lemma 6 the fcth approximation of 0v-i<p(a) is an approximation of 
0' v —\(p'(a). By Lemma 4 for every a eJt there is a proof in J£'(JL), from 0 of 
height <n, of 6' v -up\a). The conclusion now follows by applying the M-rulc. 

3. The main result. We continue the conventions of previous sections. A 
crucial observation is the following: 

LEMMA 8. If M is recursively saturated, r i l{ (p}ç*L(J) is a set of sentences 
definable in M with parameters, and T\-<p, then there is a proof of <p from T of 
finite height. 

We omit the proof because this follows at once from the fact that over a 
recursively saturated model all first-order inductive definitions close off by 
stage co. See [1], Corollary VI.5.13, or [7], Exercise 4.7. 

Let Th(M) denote the set of all standard sentences of L(M) which are true in 
M. Let hPC denote derivability in the predicate calculus. 

LEMMA 9. Let M be resplendent and ij/ be a sentence of L'(M). Then h if/ if and 
only if Th(M)^PC^. 
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Proof. Observe that the logic 2'(JH) was designed so that h i/> if and only if if/ 
is true in M under every possible interpretation of the new predicate symbols. 
Thus the "if" part of the conclusion is clear. For the other direction suppose 
Th(M)^-PCilj. Then there exists an elementary extension Jt* of M and interpre­
tations of the new predicate symbols of if/ over M* which make i/> false. Since 
M is resplendent such interpretations already exist over Ji, whence \f ty. 

THEOREM. Let M be a countable recursively saturated model of PA. There 
exists a full satisfaction class S for M. Moreover, for any sentence ç e *L(M), 2 
can be found containing <p if and only if there is no approximation if/ of <p such 
that Th(M)\- PC-^$. 

Proof. It is obviously sufficient to prove the second part of the theorem. If 
Th(M)\-PC—ii// for some approximation \\f of <p then it is immediate from the 
definitions that there is no full satisfaction class containing <p. Suppose there is 
no such approximation iff. By Lemma 9 there is no approximation if/ of <p such 
that h -i \\f. From Lemma 2 we have the desired conclusion provided {<p} is 
consistent. If not, then h ~i<p and by Lemma 8 there is a proof of —i<p from 0 of 
finite height. By Lemma 7 we have h -1 ifj for some approximation i// of <p. This 
contradiction shows that {<p} is consistent and completes the proof of the 
theorem. 

Using Lachlan's converse the theorem can be strengthened to say that a 
countable model of PA is recursively saturated if and only if it has a full 
satisfaction class. Also, using IlJ-reflection (see Theorem 2.4 (vi) of [2]) we can 
replace "countable recursively saturated" in the statement of the theorem by 
"resplendent". By a result of Harnik (see Theorem 9.3 of [6]) for M countable 
there will be 2K° possibilities for 2 . Other results about the number of various 
satisfaction classes are contained in [5]. 

As an example consider the sequence of sentences of L(M) defined as 
follows: 0O is 0 = 0, and 6i+1 = (fy v 0t) for all i. For each standard i, 6t obviously 
belongs to every full satisfaction class. However, suppose a e M is nonstandard 
then the successive approximations of 6a are: p, pvp, (pvp)v(pvp),... where 
p is a propositional constant. Since none of these approximations is a logical 
consequence of Th(M), no approximation of 6a is a logical consequence of 
Th(dt). Hence {~i6a} is consistent and there is a full satisfaction class contain­
ing -i 0a. 

Our theorem can be somewhat sharpened as follows: Let © be an L(M)-
axiom schema all standard closed instances of which are true in M. Note that 
by "standard instance" here we mean that the length of the formula is standard 
so that its meaning is unequivocal; if there are free variables we allow arbitrary 
substitution for them. As an example one can take the axiom schema of 
induction. Let @ also denote the set of all closed instances of the given axiom 
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schema in the sense of M. Then @ ç L ( l ) . Using the same technique as above and 
with the same assumptions we can show that there is a full satisfaction class 
2 ^ 0 . Further for any <p e L(M), S can be found containing <p if and only if there is 
no approximation i/r of <p such that Th(M) U E\-PC ~~i ^ where E denotes the set 
of all closed instances of the given axiom schema in L\M). Thus there are full 
satisfaction classes making some 6a false but all instances, in the sense of Jt, of 
the induction schema true. 

REFERENCES 

1. K. J. Barwise. Admissible Sets and Structures, Springer, Berlin 1975. 
2. K. J. Barwise and J. Schlipf. An introduction to recursively saturated and resplendent models, J. 

Symb. Logic 41 (1976), 531-536. 
3. J. Geiser. Nonstandard logic, J. Symb. Logic 33 (1968), 236-250. 
4. M. Kaufmann. A rather classless model, Proc. American Math. Soc. 62 (1977), 330-333. 
5. S. Krajewski. Non-standard satisfaction classes, in Set theory and Hierarchy theory, Springer 

Lecture Notes No. 537, 1976, 121-145. 
6. M. Makkai. Admissible sets and infinitary logic, Handbook of Mathematical Logic, North-

Holland, Amsterdam 1977, 233-281. 
7. Y. N. Moschovakis. Elementary Induction on Abstract Structures, North-Holland, Amsterdam 

1974. 
8. A. Robinson. On languages based on non-standard arithmetic, Nagoya Math. J. 22 (1963), 

83-107. 

SIMON FRASER UNIVERSITY 

BURNABY 2, B.C. V5A 1S6 

https://doi.org/10.4153/CMB-1981-045-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-045-3

