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RIEMANNIAN FOLIATIONS WITH PARALLEL CURVATURE

ROBERT A. BLUMENTHAL

§1. Introduction

Let M be a smooth compact manifold and let &# be a smooth codi-
mension ¢ Riemannian foliation of M. Let T(M) be the tangent bundle
of M and let E C T(M) be the subbundle tangent to #. We may regard
the normal bundle @ = T(M)/E of &# as a subbundle of T(M) satisfying
T(M) =E® Q. Let g be a smooth Riemannian metric on @ invariant
under the natural parallelism along the leaves of #. This is equivalent
to the existence of a bundle-like metric [16] and to the existence of a
transverse O(qg)-structure [5]. Recall that a connection V' on @ is basic
if the induced parallel translation along a path lying in a leaf of &# agrees
with the natural parallelism along the leaves and that such a connection
is characterized by the condition that VY = [X, Y], for all vector fields
X tangent to E and Y tangent to @ where [X, Y], denotes the @-compo-
nent of the Lie bracket of X and Y [3]. The torsion of / is the tensor field
of type (1,2) on M defined by T(X, Y) =V,Y, — V. X, — [X, Y], where X
and Y are vector fields on M. There is a unique torsion-free metric-
preserving basic connection ¥V on @ [9], [11] defined as follows. Let xe M.
Let f: U— V be a submersion whose level sets are the leaves of &#|U
where U is a neighborhood of x in M and V is an open set in R%. There
is a unique Riemannian metric g on V such that f*(g) = g|U. Let V be
the Riemannian connection on V. Then V|U = f-!(/). It is natural to
study the relationship between the curvature of // and the structure of the
foliated manifold (M, F).

In the present work we study the case of parallel curvature, that is
VR = 0 where R(X, Y)Z denotes the curvature tensor of V.

Let & be a Riemannian foliation with parallel curvature of a compact
manifold M.

THEOREM 1. Let M be the universal cover of M and let F be the lift
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of F to M. Then M fibers over a simply connected Riemannian symmetric
space with the leaves of & as fibers.

Let pe M. Let zn, be a two-dimensional subspace of @, and let {X, Y}
be an orthonormal basis of z,. The (transverse) sectional curvature of
7, is defined by K(r,) = — g,(R(X, Y)X, Y) and depends only on =, If
K(z,) > 0 (respectively, < 0, > 0) for all two-dimensional subspaces =, C
Q, and all p € M, we say that (M, #) has positive (respectively, non-positive,
non-negative) sectional curvature.

CoroLLARY 1. If (M, ¥) has non-positive sectional curvature, then M
is diffeomorphic to a product L X R* where L is the (common) universal
cover of the leaves of F and the leaves of # are identified with the sets
L x {x}, xe R~

CoroLLARY 2. If n(M) is finite, then (M, F) has non-negative sectional
curvature and all the leaves of & are compact with finite holonomy.

Remark. If % is a flat Riemannian foliation of the compact manifold
M, then (M, #) has zero curvature and zero sectional curvature and so,
by Corollary 1, M =L X R® and & is the product foliation. A theorem of
G. Reeb [14] states that if & is a codimension one foliation of a compact
manifold M defined by a closed nonsingular one-form, then M =L X R
and & is the product foliation. It is easy to see that such a codimension
one foliation admits a flat Riemannian structure and so we obtain Reeb’s
theorem from Corollary 1.

A differential r-form o on M is called base-like if on each coordinate
neighborhood U with coordinates (x', ---, x" 3", ---,¥") respecting the
foliation %, the local expression of w is of the form

PN (R ) T ANV ANY 4 %t
1<1< - <ir<q
[16], [17]. Since the exterior derivative of a base-like form is again base-
like, one can construct the base-like cohomology algebra H*(M, %) =
Do H'(M, ) of the foliated manifold (M, #). For each r>0, let
B.(M, F) be the dimension of H'(M, F).

THEOREM 2. If (M, F#) has positive sectional curvature, then B,(M, F)
= 0.

Recall from [13] the definition of the growth of a leaf L of &#. Pick
a Riemannian metric on M (bundle-like or not) and restrict to obtain a
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Riemannian metric on L. Let p e L and define the growth function of L
at p by g,(r) = vol(B,(r)) where B,(r) denotes the open ball in L of radius
r centered at p. The growth type of L is then defined to be the growth
type of the function g,: R* — R* and is independent of the choice of
metric on M and of pe L [13].

THEOREM 3. The growth type of each leaf of & is dominated by the
growth type of m(M).

§2. Proofs

Let z : F(Q) — M be the frame bundle of @, let w be the connection
form on F(Q) associated to V, and let H < T(F(Q)) be the corresponding
horizontal distribution. Let {(U,, f., 8.5)}a,sc4 De an R?-cocycle defining Z.
Let F(R?% be the frame bundle of R% Then {(z7'(U,), fos 8cs)}e,pca 18 an
F(R%-cocycle on F(Q) and defines a codimension g(q + 1) foliation &’ of
F(Q). Let E/ C T(F(®)) be the integrable distribution whose integral
manifolds are the leaves of &#’. Since V is basic we have E’ C H [12].
Let 6 be the R%valued one-form on F(Q) defined by 0,(Y) = u '(r, (Y),)
for ue F(Q), Ye T, (F(Q)) where u: R*— Q.,, denotes the vector space
isomorphism which sends the standard basis of R? to the frame u of Q..
The torsion form of F is the R%valued two-form © on F(Q) defined by
00X, Y) = (d) (X, Yy) for ue F(Q) and X, Ye T, (F(Q)). Since V is the
Riemannian basic connection, we have © = 0.

For each he R? let B(h) be the unique horizontal vector field on
F(Q) satisfying m, (B(h),) = w(h) for all ue F(Q). Let E' = B(e,) for i =
1, ---, g where {e, ---, e} is the standard basis of R? and let Q' C T(F(Q))
be the g-plane bundle spanned by E!, ---, E% Then H= E’ @ @ and so
T(F(Q)) = E'® @ ®V where V is the bundle of vertical vectors. Hence
we may regard @ @V as the normal bundle of &#’. Let Ef be the ¢ X ¢q
matrix with a 1 in the A*™ column and k™ row and 0 elsewhere and let
d(E¥) be the corresponding fundamental vector field on F(Q). Then {E‘,
oE}):i,h,k=1,---,q9} is a trivialization of the normal bundle of F#’.
Recall that a vector field Y on F() which is normal to &’ is said to
be parallel along the leaves to &’ if (f,)«(Y|z"'(U,) is a well-defined
vector field on £, (z'(U,) C F(R? for each ac A. This is equivalent to
Y being invariant under the natural parallelism along the leaves and is
characterized by the condition that [X, Y] is tangent to &%’ whenever X
is a vector field tangent to %’ [5]. Since the fundamental vector fields
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on F(RY are preserved by the maps g,,,, it follows that the vector fields
o(E}) are parallel along the leaves to &#’. Since V is the Riemannian
basic connection, it is transversely projectable and hence [X, E?] is tangent
to F' for i =1, -.-,q whenever X is a vector field tangent to F’ [10],
and so E'. ---, E? are parallel along the leaves to &#’. Hence {£?, o(E}):
i,h,k=1,.--,q} is an e-structure for #’ [5].

Let uc F(Q) and let Xe T (F(Q)). Then there is a unique expression
X=X, + Xy + X,. Thus 0,(X) = 0.Xy) = 0,(B(h),) = h for some i e R?
and so Xy = B(@0,X)),. Also 0,X) = 0,(X,) = 0,(c(4),) = A for some
A e gl(q, R) and so X, = g(w,(X)),. Letting X = [E?, E/],, we obtain

[EY, E%]y, = B.(E', E’].)), and [EY, E'],, = o(o([E%, E].)). .
Since

— 0.(E', E'],) = E{0(E’) — E{6(E") — 0.([E, E'].)
= (d0).(E;, E)) = O,(E;, E]) =0,

we have [E% E’],, = 0. Let 2 be the curvature form of I/ and write 2 =
>k =1 2% Ef where the 2} are two-forms on F(Q). Since

— o,([E', E'],) = Ej0(E’) — E]o(E") — o((E", E'].)

we have that

B B, = — 3 QUE, B)o(EY).

Let u,e F(Q) and let P(u) = {uc F(Q): u can be joined to u, by a
horizontal curve}, the holonomy bundle through u, Let ue P(u,) and let
p=rnu)eM. Let c:(—¢e)— M be a smooth curve with ¢(0) = p, and
let ¢*: (— ¢, &) — F(Q) be the unique horizontal lift of ¢ satisfying c¢*(0)
=u Fix 1<, j, I <q and let X(t) = c¢*(@®),, Y = c*(#),, and Z() =
c*(t),, Then X, Y and Z are normal vector fields along c¢ which are
parallel along ¢ and hence, since R is parallel, I/, ,R(X, Y)Z = 0. Defining
f:(—ee)— R by f(t) = c*@®) " (R(X, Y)Z)., we have that V,,R(X, Y)Z
= u(f’(0)) and so f/(0) = 0. But

R(X, Y)Z).., = ¢*O) (L oxioy(Einyy, Edn)e*@)7(c*(@)))

al’ld hence f(t) == Qa*(t)(EZ‘:"’(Lh Eg*(t)) 'el = lth column Of Qc*(t)(Ei*(t)’ E({*(t))' Thus
¢*(0)(I™ column of Q(E¢, E’)) = f/(0) = 0 and hence
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W™ column of 2(E?, E’)) =0

for all We H,. Thus Q¥E? E’) is constant on P(u,) for each 1 < h, k < q.

Let @(u,) be the holonomy group with reference point u,; that is,
D(u,) = {Aegl(q,R): u, and u,A can be joined by a horizontal curve}.
Then P(u,) is a reduced bundle with structure group @(u,) such that the
natural parallelism along the leaves of & carries elements of P(u,) to
elements of P(u,) and so P(u,) is a transverse @(u,)-structure for &% [5]
and o is reducible to a basic connection in P(w,). Let V' C T(P(u,) be
the subbundle consisting of vectors tangent to the fibers of P(u,). Then
T(P(uy) = E'®Q DV’ and F#’ is a foliation of P(u,) whose tangent
bundle is E’. Let A, ---, A, be a basis of the Lie algebra of @(u,). Then
{EY, ---, E% 0(A), ---,0(A,)} is an e-structure for &’ on P(u,). On P(u,)
we have

[E', E']y =0

[E%, Bl = 3 f1y0(A))
[o(A), o(4)] = 3 ctja(4))
[0(A), E'] = B(Ac-e) = 3. b1, E"

where %, ci;, and bf; are constants.
Let G be the unique simply connected Lie group with Lie algebra 4
spanned by elements Z,, ---, Z,, B,, - - -, B, satisfying

[Z, Z,)) = 2. fiB:

<

[Bia Bj] = Z c:lchk
k=1
q

[Bz: Zj] = Z bijk .

k=1
Let 4 be the subalgebra of 4 spanned by B,, - - -, B, and let » be the sub-
space of g spanned by Z, ---,Z,. Theng =h@®m, [h, h] C h, [h, m] Cm, and

[m,ml Ch Let Xeg and write X uniquely as X =Y + Z where Yel,
Zem. Let «(X) =Y — Z. Then r is an automorphism of ¢ and <* is the
identity. Since G is simply connected there is an automorphism F: G— G
such that F, = r. Let H be the identity component of the subgroup of
G fixed by F. Then H is a closed Lie subgroup of G and the triple
(G, H, F) is a symmetric space.
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Let we P(w,). Since E', ---,E% o(A), ---,0(A,) are parallel along
the leaves to %', there is a neighborhood W of u in P(u,) and a smooth
submersion f: W G such that

kernel(f,,) = E,
f*y(E;) = Zi}m’ i = 19 e, q
f*y(o(Aj)U) = Bj}“,,’ .] = 1’ T

for allye W. Let U = (W), a neighborhood of z(x) in M. Then f induces
a smooth submersion f: U — G/H such that kernel(f,,) = E, for all pe U
and the diagram

w-'sa

4

U—f) G/H

commutes. Let & be the canonical left-invariant g-valued one-form on G
and let 0, be the h-component of 4. Then 6#, defines a G-invariant con-
nection in the principal H-bundle G — G/H which induces the canonical
linear connection on the symmetric space G/H [8], and f*#, = . Thus
if F(G/H) is the frame bundle of G/H and @ is the connection form on
F(G/H) corresponding to the canonical linear connection on G/H, we have
that (f,)*@ = w on F(Q)/,. Thus we can find a G/H-cocycle {(U., f., 8.p)}a.pes
defining & such that (f,)*® = 0 on F(Q)/y,. If U,NU, + ¢ then, since
(f.)*o =0 = (f)*@ on F(Q)y,nv, it follows that (g.,)*@ =@ on
F(G/H)/s5wanvp- Without loss of generality we may assume that U,N U,
is connected whenever it is non-empty. Hence, since @ is a complete
analytic linear connection on the simply connected analytic manifold
G/H, g.; extends to an affine isomorphism of G/H [8].

Hence & is transversely homogeneous. The foliated manifold (M, %)
admits a complete bundle-like metric, and so we have that £ is regular
[1]. Hence the space of leaves M| is a complete, Riemannian, Hausdorff
manifold and the natural projection f: M — M/# is a fibration [16]. Let
N denote the Riemannian manifold M/#. Since the metric on N is in-
duced by the bundle-like metric on M, it follows that the curvature tensor
field of N is parallel. Thus N is a complete, simply connected, Riemannian
locally symmetric space and hence is Riemannian symmetric [8] and so

Theorem 1 is proved.

https://doi.org/10.1017/50027763000020390 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020390

RIEMANNIAN FOLIATIONS 151

If (M, %) has non-positive sectional curvature, then IV has non-positive
sectional curvature. Since IV is complete and simply connected we have
that N is diffeomorphic to R? [8] and hence the fibration f: M- Nis a
product, proving Corollary 1. See [2] for similar results in the flat non-
Riemannian case.

If (M) is finite, then M is compact and so the leaves of & are
compact. Thus all the leaves of &% are compact. Hence &% is a closed
metric foliation and so the holonomy group of each leaf is finite [15].
Since NN is compact it has non-negative sectional curvature [18] and so
(M, #) has non-negative sectional curvature, proving Corollary 2.

We now prove Theorem 2. Each covering transformation ¢ of M induces
an isometry ¥(s) of N. We thus obtain a homomorphism ¥': =, (M) — I(N)
where I(N) denotes the isometry group of N such that ¥(¢)of = foo for
all o en(M). Let X be the image of ¥ in I(IV) and let K be the closure
of 2. For each r > 0 let Ax(N) be the space of K-invariant r-forms on
N and let A" (M, %) be the space of base-like r-forms on M. Let
n€ Aw(N). Then f*5 is an r-form on M which is base-like with respect
to 4. Since 7 is Y-invariant it follows that f*3 is r,(M)-invariant and
hence there exists a unique we A"(M, F) such that f*p = p*» where
p:M— M is the covering projection. Conversely, suppose w e A"(M, F).
Then p*w is base-like and hence there exists a unique r-form » on N
such that p*e = f*y. Since p*w is =,(M)-invariant it follows that 7 is
2-invariant and hence K-invariant. Thus e A%(N). We have constructed
an isomorphism of cochain complexes

AWM, F) L A, 7 -S>

A —2 4y 2 -

and hence we obtain an isomorphism in cohomology H*(M, #) — HEN).
Since (M, &) has positive sectional curvature it follows that N has positive
sectional curvature. Thus N is compact [18] and so K is compact. Hence
the inclusion of the algebra of K-invariant forms on N into the algebra
of differential forms on N induces an injection HE(IN) — H*(IN) [4], [6].
Thus H*(M, &%) is isomorphic to a subalgebra of H*(IN). Since N is simply
connected we have that H'(N) = 0 and hence H'(M, #) = 0.

Let 2\INV be the orbit space of 3. To prove Theorem 3 we construct
a map h: M/# — 3\N and apply a result in [1]. Let L be a leaf of #.
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Choose a leaf L of & such that p(L) = L. Let x = f(L)e N. Then the
orbit of x under 3 depends only on L and we denote it by A(L). The
growth type of a leaf L of & is dominated by the growth type of h(L) [1]
which in turn is dominated by the growth type of 2. Hence, since 2 is
a homomorphic image of =, (M), we have that the growth type of L is
dominated by the growth type of =,(M).

§3. Examples

ExampLE 1. Let G be a compact connected Lie group of dimension
q and let 4 be the Lie algebra of G. Let M be a compact manifold and
suppose o is a smooth g-valued one-form of rank ¢ on M satisfying
do + }[w,»] = 0. Then o defines a smooth codimension ¢ foliation & on
M which is a Lie foliation modeled on G [7]. Let {,)> be a bi-invariant
Riemannian metric on G. Then {,) induces on (M, ¥) a Riemannian
structure with parallel curvature and non-negative sectional curvature.

ExampPLE 2. Let H be a Lie subgroup of the n-dimensional torus 7.
Then the foliation & of T" by the cosets of H admits a Riemannian
structure with vanishing curvature and p,(7", &) + 0.

ExaMPLE 3. Let M be the unit tangent bundle of the two-holed torus
T,. Let & be the foliation of M by the circle fibers. Then & admits a
Riemannian structure with parallel curvature and negative sectional
curvature and 8,(M, #) + 0.

ExampLE 4. Let @ : #,(T,) — SO(3) be a homomorphism whose image
is dense in SO(3). This defines a left action of =,(7,) on S®. Let H be
the universal cover of T,, Then H is a principal z,(T,)-bundle over Ti.
Let M = H X,,,S* be the associated bundle with fiber S®. The foliation
of H X S* whose leaves are the sets H X {x}, x€ S* passes to a foliation
F of M all of whose leaves are dense. Since =,(T,) acts on S* by iso-
metries, (M, #) admits a Riemannian structure with parallel curvature
and positive sectional curvature. Also (M, #) = 0.

ExamPLE 5. Define a left action of the integers Z on S? by letting
the generator act as

cos 2ra sin 2ra 0
— sin 2ra cos 2ra
0 0 1
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where 0 < « < 11is irrational. Let M = R X ,S%. Then M is an S*bundle
over S' with a codimension 2 foliation #. The foliated manifold (M, )
admits a Riemannian structure with parallel curvature and positive
sectional curvature and B(M, #) = 0. There are exactly two compact
leaves. If L is a non-compact leaf then L is diffeomorphic to 77 The
foliation of L by the leaves of % is an irrational slope foliation and
hence is a flat Riemannian foliation and 8(L, #) # 0.
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