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EXIT TIMES FOR ELLIPTIC DIFFUSIONS AND BMO
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In 1948 P. Levy formulated the following theorem: If U is an open subset of the
complex plane and /:L/->C is a nonconstant analytic function, then / maps a 2-
dimensional Brownian motion Bt (up to the exit time from U) into a time changed
2-dimensional Brownian motion. A rigorous proof of this result first appeared in McKean
[22]. This theorem has been used by many authors to solve problems about analytic
functions by reducing them to problems about Brownian motion where the arguments
are often more transparent. The survey paper [8] is a good reference for some of these
applications. Levy's theorem has been generalized, first by Bernard, Campbell, and
Davie [5], and subsequently by Csink and 0ksendal [7]. In Section 1 of this note we
use these generalizations of Levy's theorem to extend some results about BMO
functions in the unit disc to harmonic morphisms in W, to holomorphic functions in C ,
and to analytic functions on Riemann surfaces. In Section 2, we characterize the domains
in R" which have the property that the expected exit time of elliptic diffusions is
uniformly bounded as a function of the starting point. This extends a result of Hayman
and Pommerenke [15], and Stegenga [24] about BMO domains in the complex plane.

1. Exit times, area, and BMO

First we recall the generalizations of Levy's theorem that we will need.

1.1 (Bernard-Campbell-Davie [5]). Let UcW be an open set and(j) = (<f)l,...,(pmy.
U-*Um be a C2 function. Let (B,,Q,PJ and (B,,fi,Px) be Brownian motions in W and Um

respectively. Then (i) and (ii) below are equivalent:

(i) <p(Bt) is, up to the exit time x = xv from U, again Brownian motion in Um, except for
a change in time scale. More precisely, if we define

o-t = J|V01|2ds, t^x,
o

then a, is strictly increasing for a.a. a>, (p*{(o) = lim,_t (f>{Bt) exists a.e. on {fft<oo}, and
the process M,(w,cb), (co, w ) e Q x Q , defined by

.) ; t«rt

with probability law Px x Po coincides in law with Brownian motion in Um starting at <p(x).
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274 R. BANUELOS AND B. 0KSENDAL

(ii) The coordinate functions 0, are all harmonic and their gradients V#,- are orthogonal
to each other and have the same length.

It is not hard to show that the class of function satisfying (ii) agrees with the class of
functions satisfying:

(iii) h harmonic on W(open)czMm=>ho(f> harmonic on (j)~1(lY).

The functions satisfying (iii) are called harmonic morphisms and they have been
studied by many authors in more general settings. See [11] and references there.

Now suppose f:UcC-*C is a holomorphic function. Then the Cauchy-Riemann
equations show that / satisfies (ii) and therefore / maps Brownian motion in C to
Brownian motion in C. When n = l , (ii) characterizes the analytic and conjugate analytic
functions.

A further generalization of Levy's theorem was given in [7] by Csink and 0ksendal.
We will briefly recall a special case of this result and refer the reader to their paper for
details and generalizations. Let A be a second order partial differential operator in Um

of the form

where we assume (1) aip b.eC00, (2) a^-a^, and (3) for all nonzero vectors yeUm,
YJijyiaij(x)yj>^- By an I to diffusion X, starting at x with generator A we shall mean a
solution of the stochastic differential equation

dXt = a{Xt) dBt + b(Xt) dt, Xo = x. (1.3)

Here b=(b^ and a is the matrix satisfying \ aaT = a = (aij), where aT is the transpose of
a. For the construction of the process see [16]. We have:

1.4 (Csink-0ksendal [7]). Let X, and X, be two ltd diffusions on open subsets
l/cR", VcUm respectively. Let A and A be the corresponding generators. Suppose
<p:V'-*V is C2 and not X,-finely locally constant. Then the following are equivalent:

(i) <f> maps X, into a time change of X,.
(ii) There exists a continuous function A(x) ^Oon U, with X(x) >0 except possibly on

an Xr finely nowhere dense set, such that for all xeU and feC2(V)

(1.5)

The function X gives the rate of time change to be used. In other words, if

t

ot = \k(Xs)ds, for
o

then the process defined by
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t<at

with a natural probability law agrees in law with X,. In fact, in this setting
without the condition that A>0 except possibly on an X,-finely nowhere dense set. See
Theorem 3 in [23].

Next recall that a function f:T={z:\z =1}-»C is in BMO (bounded mean oscilla-
tion) if there is a constant c such that 1/|/ ^\f(9)-fj\2d9^c2 where fI=\l\l\\J(9)d9.
The BMO norm of / , ||/||BMO>

 ls the smallest constant c for which this holds. By BMOA
we shall mean the analytic functions in the unit disc D with boundary values in
BMO. Using basic properties about the Poisson kernel it can be shown that /eBMOA
if and only if

(1-6)
zeD T

where /i2 is the harmonic measure at z. (For the proof of (1.6) see [13]). If we translate
(1.6) to probability language we see that /eBMOA if and only if

sup£2| /(Bt)-/(z) |2<oo.
D

(1.7)

This probabilistic characterization of BMOA can be extended to define more
generally a BMO norm on harmonic morphisms <j>:U-*Um, for an arbitrary open set
U<=W:

Definition 1.1. Let (/):UcW-*Rm be a C2 harmonic morphism. Then we say that
0eBMO(U) if <jt=JIo|V(jf)1|

2ds<oo a.e. Px for all x eU and

(1.8)
xeV

Here $*(co) = lim,_t (/>(#,) is the stochastic boundary function of (j> whose existence is
given by the Bernard, Campbell, and Davie extension of Levy's theorem. Note that (1.8)
agrees with (1.7) in the case of analytic functions in the unit disc.

Theorem 1.2. Let ^:t/< IRm be a harmonic morphism. Then

^ W SUP

where T^^ is the first exit time from <I>(U).

Proof. Using the It6 formula we have

xeU

i=l\xeV
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xeU

(7t]Sw sup £y
xeU ye<t>(U)

since aT ̂  T#(U) by the Bernard-Campbell-Davie theorem.

If / is an analytic function in the unit disc D such that the area of f{D) (counting
multiplicities) is finite, then it is easy to show that /eBMOA. If one ignores
multiplicities the situation is more difficult. It was proved by Alexander, Taylor, and
Ullman [2] that if area (/(£>)) <oo, then feH2. This was improved by Hansen [14]
who showed that area (/(D))<oo implies feHp for all p<co. Finally, Stegenga [24]
showed that if area (/(D))<oo, then /eBMOA. In [4] Axler and Shapiro gave a new
proof of Stegenga's result using Alexander's spectral area estimates and extended their
result to the ball in C . Our stochastic approach gives the following generalization of
these results:

Theorem 1.3. Let U<=W be open and let <p:U->Um be a harmonic morphism. Then

|BMO(l/) = l I
cm /

where

2nm'2
cm=-

mr(m/2)

is the volume of the unit ball in Um.

Proof. Let D(r) = {xe Um:\x\ < r} be the ball in Um such that vol(D(r)) = vo\(<t>(U)). Let
B, be a Brownian motion in Um starting at 0 and let TD(r) = inf{£>0:Bf£D(r)}. It follows
from Aizenman and Simon [1] that for any ye<f>(U),

Thus ||0||BMo<i/)S'"£o(TB(r))- Using the Ito formula on the function f(y) = \y\2, yeR"1, we
can show that

(>(D<r))

SO
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2 < r 2 —
BMO(10 = " —

and we have the theorem.

Remark 1.4. Note that the inequality (1.9) is sharp. This can be seen by choosing U
to be the cylinder U = D(0,1) x R"~m, where D(0,1) is the unit ball in Rm, and

Let U be an open set in Um which has a Green function gu(x,y). As is well known
(see [10] or [16])

Ex{tv) = igv{x,y)dy, VxeU. (1.10)
u

If we assume U has finite volume then the estimates above show that

4(^r
and we have:

Corollary 1.5. Suppose U is an open set in Um with finite volume and with Green
function gv(x, y). Then

, * . „ . (U2)
J

Note: By the Green function gv(x, y) we mean the fundamental solution of jA with zero
boundary conditions.

With little effort we can extend Corollary 1.5 to Green functions for uniformly elliptic
operators in divergence form. More precisely, suppose our operator A in (1.2) has the
form

with the coefficients satisfying (1) and (2) of (1.2) and, in addition, there exists a constant
X > 1 such that for all (x, y) e Um x IRm

0 = 1

Theorem 1.6. Suppose U is an open set in Um with finite volume. Let gu(x,y) be the
Green function for A in U. Then there exists a constant Kx m depending only on the

https://doi.org/10.1017/S0013091500028339 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028339


278 R. BANUELOS AND B. 0KSENDAL

ellipticity constant X and the dimension m such that

$ m (115)

for all x 6 U.

Proof. Let X, be the Ito diffusion corresponding to A. Let T = inf{r>0:X,<£ U}. Then

(1.16)

Let Pt(x,y) be the transition probabilities for X,. As is well known ([16]), Pt(x,y) is the
fundamental solution of the heat equation d/dt—A. By Aronson ([3]) there exist
constants KXm and Rx,m such that

for all (t, x, y)e(0, ro)xR"x Rm. So

(1.17)

Therefore, if m > 2,

(KiiM-vol(I/))2""

If m = 2 we refine the estimate (1.17) as follows (put Kx Z = K,RX Z = R)

2nK VM

Then by the strong Markov property we have
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so that

Hence

7 PX(T >t)dt = ] Px(z > s • vol(t/)) vol(t/) • ds
o o

v ^JJ — * — S ( 1 - e )u du2nK2vo\(U) ,, _ _

which completes the proof.

Next, we consider the standard complex n-dimensional Euclidean space C and
operators of the form

^ ( L 1 8 )

where the coefficients atj satisfy (1), (2), and (3) of (1.2). The diffusion associated to A
will be denoted by Bf. In the case when aiJ = <5,7, (5^= 1 if i = j and 0 otherwise), we get
the ordinary Euclidean Brownian motion in U2n which we simply denote by Bt.

Lemma 1.7. Let U be an open set in C and let <fi:U->C be a holomorphic function.
Then for all / e C 2 ( C ) we have

0 ) (1.19)

where A = 4S2/dzdz is the usual Euclidean Laplacian in C. Therefore <p maps Bf into a
time change of Brownian motion B, in C, with time change rate

Proof. The formula (1.19) can be easily verified by using the chain ruie. ine
conclusion of the lemma then follows from the Csink-0ksendal extension ((1.4) above)
of Levy's theorem.
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Assume U is open in C" and let rj5 be the first exit time of BA from U. If (j>:U-*C is
holomorphic we will say that <f>eBMO(U,BA) if

OZA = J A(BS) ds<co a.s. P2 for all z e U and
ZEC/

(1.21)

where <f>*(o)) = limt^TA<f>{Bf), which exists on {<jxA<co}, by Lemma 1.7. With these
BMO-norms and the same argument used to prove Theorem 1.3 we have:

Theorem 1.8. Let 4>:U ->C be a holomorphic function and assume Area ((p(U)) is finite.
Then <t>eBMO{U,BA),for any A and

I
^ </Area(^

If U is a bounded strictly pseudoconvex domain in C with smooth boundary (see
[25] for definitions) and we take as our operator A the Euclidean Laplacian, then the
BMO-space we obtain from (1.21) is the usual BMO-space associated with Euclidean
balls. If we take the Laplacian of the Bergman metric as our operator A, we obtain the
nonisotropic BMO-spaces associated with the skewed balls (see [18]). Thus Theorem 1.8
includes the extensions of Stegenga's result given by Axler and Shapiro [4] to the unit
ball in C".

Next we mention a result for Riemann surfaces which also follows from these
methods. Let R be a Riemann surface which possesses a Green function g(x,a). Define
by BMOA(R) the space of analytic functions on R for which

J | | (1.23)
aeR

Since Levy's theorem is also true for Riemann surfaces (see [17] and [22]) we have by
the same arguments above:

,. ,.. /Area f(R)\112

Theorem 1.9. ||/||BMO^(R)^(
 J-^-\ .

Note: This Theorem is the main result in [19].
Our final application of the above generalizations of Levy's theorem is to asymptotic

values of holomorphic function in weakly pseudoconvex domains. Let U be a weakly
pseudoconvex domain in C" defined by U = {zeC:q(z)<Q} where qeC3(V) is
plurisubharmonic in U and Vq^=0 on dU. Define p(z)=^?=i |z,|2 —r2 where r is chosen
so large that £)(0, r) =5 U. Debiard and Gaveau [9] then consider the diffusion Bf where
the coefficients of A are given by

^ (1-24)
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They show that Bf has an infinite lifetime and that B£ = hm,^caBfe dU exists a.s.
Moreover, the harmonic measure /xZo with respect to the process Bf defined by nZo(F) =
PZo(B^eF), F a Borel set in dU, has no mass on the set W of weakly pseudoconvex
boundary points of U. (see [9], Theoreme 1). With these definitions we have

Theorem 1.10. Let <£:[/->C be a holomorphic function. Suppose Cap(C\<£([/))>0
that <j> is proper, i.e. K compact in <f>(U)=><l)~l(K) compact in U. Then almost all
boundary points of <p{U) with respect to Euclidean harmonic measure for (f>{U) are
asymptotic values of <f) at points in dU\W.

Note: We say that y is an asymptotic value of (p at xedU if there exists a curve
y:[0,1)->U terminating at x such that y = lim,-.l <t>{yt)- By Cap(F) we mean the
logarithmic capacity of the set F.

Proof. Let (B,, &, Py) be a Brownian motion in C. The Euclidean harmonic measure
vy for <j)(U) at y is supported by any set H such that

P , [ S t w e H ] = l. (1.25)

Let QQ = {co:Bi(co) = \im,^(DBf((o)edU\W&(t)*(co) = limt^ai(l)(Bf) exists}. By the
Debiard-Gaveau result and (1.4) we know that Pj,(O0) = l and that the process defined
by

with probability law Px x Po coincides with Brownian motion starting from y = 4>(x).
Since ct>(Bf)e(p(U) for all t<co and $*ed(4>(U)) (since (f> is proper) we conclude that
Mtw(/) = 0* a.s. and therefore, if we put

H = {4>*M:cu eQ0}

we have P I x P 0 { M t m e / / } = l. Since all points of H are of the form 4>*(co) =
where B^ = \\mt^xB^edU\W, the theorem is proved.

We end this section with some remarks. Let us assume that U is a bounded strictly
pseudoconvex domain in C with smooth boundary and let <j>:U->C be a holomorphic
function. Let us write ||</>||BMO f°r t n e BMO-norm in (1.21) with respect to either the
Euclidean Laplacian or the Laplacian of the Bergman metric in U. It would be
interesting to find necessary and sufficient conditions on 4> in order to have equality in
(1.22), i.e. so that

/Area <t>{U) \ 1 / 2

V rt j 'BMO = 1 1 I • (i-26)

Clearly if U is the unit disc D in the plane and <p is a Mobius transformation, we have
equality. But we can have (1.26) with more complicated 0's. Let #:1/->C be an inner
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function. (The existence of inner functions in smoothly bounded pseudoconvex domains
is shown in [21]). Since (f> maps into the unit disc we have Area <f)(U)^n. It is also clear
that ||0||iMo = suPzei/(l~|0(z)|2)- Thus to prove equality for inner functions we need to
show sup2el/(l — |<£(z)|2) = 1. This follows from the following lemma which in the case of
the unit disc in the complex plane is a special case of a theorem of Frostman, (see [13],
p. 79).

Lemma 1.11. Let U be a bounded strictly pseudoconvex domain in C with smooth
boundary and let <j>:U-*£. be an inner function. Then <j> assumes every point in the unit
disc except at most a set of capacity zero.

Proof. First we recall that from probabilistic potential theory (see [12]), if K is a set
of positive capacity in the unit disc D, then Brownian motion started at any point in D
will hit K with positive probability before it exits D. If B, is a Brownian motion in U
run until it exists U, then we know that <t>{B,) is a time change of Brownian motion in
the unit disc D. Since <f> is an inner function, this Brownian motion is run for the same
amount of time as the killed Brownian motion in D. So </>(l/) cannot omit a set of
positive capacity and the lemma is proved.

By carefully examining the proof of Theorem 1.3, Lemma 1.11, and the conditions for
equality in the Aizenman-Simon result we used to prove Theorem 1.3, the interested
reader can verify that if U is an open set in U", D(l) is the unit ball in Um, and
<f>:U-*D(\) is a harmonic morphism, then equality holds in (1.9) if and only if 4> is a
stochastic inner function in the sense of Bernard-Campbell-Da vie [5]. An example in
[5] of a stochastic inner function which is not an inner function in the sense of complex
analysis is the function </> mapping the unit ball in R4 to the unit ball in R3 given by
<p(x1,x2,x3,xA) = {xl + xl-xl-xl, 2(x1x3-x2x4), 2(x1x4 + x2x3)). The reader can
easily verify that 4> is a harmonic morphism and |</>(x)| = |x|2.

2. Exit times, capacity, and BMO

Hayman and Pommerenke [15] and independently Stegenga [24] discovered a
capacity criterion for the domain KcC with the property that an analytic function <f>
defined on the unit disc D with values in V will belong to BMOA. More precisely, they
showed that every such (j> is in BMOA if and only if there exist constants R and <5>0
such that Cap{D(xo,R)\V}>5 for all xoeV where D(xo,/?) = {xeC:|x-xo|</?} and
Cap denotes the logarithmic capacity. In this section we show that this capacity
condition can be used to characterize the domains in W with the property that the
expected exit time of uniformly elliptic diffusions is uniformly bounded as a function of
the starting point. This, combined with Theorem 1.2 of Section 1, gives an extension of
(one part of) the Hayman-Pommerenke-Stegenga result to harmonic morphisms in IR".

For the rest of the paper A will be an operator satisfying the conditions in (1.13) and
(1.14) and with associated diffusion Bf. If V is an open set in W we denote by gy(x,y)
the Green function of the operator A for the set V. If F is a subset of V we define

CapK(F) = sup{/x(F):/x is a Borel measure supported in F and \gv{x,y)df^y)-^\ Vx}.
F

The equilibrium measure of F is denoted by \iT v.
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Theorem 2.1. Let V be an open set in W and let x be the first exit time of Bf from V.
Then SUPXEK£X(T)<OO if and only if there exists an R and a S>0 such that
CapD(x,2R){D(x,R)\V)^5 for all xe V.

Proof. Put £> = D(xo,2/?) and F = D(xo,R)\V. Define the stopping times

(2.1)

(2.2)

From probabilistic potential theory (see [6], Chapter 6, Section 4, or [12])

S (2.3)

Next, let us denote by gD(x, y) the Green function of D with respect to the Laplacian
jA. By [20] there exist constants Kx and K'x depending on the ellipticity constant X such
that

KkgD{x,y) ^gD(x, y) ^ K'xgD(x,y) on F. (2.4)

Thus

since fD(x0,)>)^ constant depending on R for all yeF. Thus we conclude that if the
capacity condition holds then

.a>0 (2.5)

where Kx R s is a constant depending on the parameters indicated.
We now define by induction the stopping times

^ i K} (2.6)

and

fft = inf{t>ff i k_1 :B^D(B^_l ,2i l )}. (2.7)

If 6, denotes the shifting operator, then
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so that

T^T^.+e^,^. (2.8)

Similarly

Thus the strong Markov property gives

££,o(Tt_1)+sup£jr(T1)PXo(Tlk_1 = *»_!). (2.10)
xeD

It follows from (2.4) and the Ito formula that Ex(a y)^K'xR
2 /n = K'Xi Rn. Therefore we

have

o o >J,..PXo(Tlk_ !=«!»_!). (2.11)

Once again, the strong Markov property gives

= c i , J l , ,P , 0 (v 1 =f f 7 _ 1 ) (2-12)

with cXRd< 1, by (2.5). Combining (2.10) and (2.11) we get

£XO(T») ̂  £,„(!»_ l) + K\^n{_cXiRt 3f

or

£JoW^^a,»|ih,M];- (2-13)

Since Tk | T as k->oo a.s. we conclude that

and the sum converges because cx R t< 1. This proves half of the theorem since x o e V is
arbitrary.
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Now suppose there exists a K<oo such that Ex(x)<K for all xeV. Fix x o eK We
claim there exist constant Ro and e0 > 0 depending on K, X and n such that

PX\B? exits V before|B^-x0|>;yj>eoVx6D(xo)y-J. (2.14)

To show (2.14) put D = D(xo,R) and as before gD and gD are the Green functions for
D with respect to A and %A, respectively. Then if xD is the exit time of Bf from D, and if
xeD(xo,R/2)

Ex(iD) = 1 8D(X, y) dy^Kk\ gD(x, y) dy
D D

2

So if we choose Ro = R0(K) large enough,

EX(TD)^.2K for all xeDI x0,—- I. (2.16)

Now consider T = zv n D, the exit time of V n D. We have

[p2 |Di4 v |2~|K o~ |"t — *o|

so that

Hence

Kn

or

https://doi.org/10.1017/S0013091500028339 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028339


286 R. BANUELOS AND B. 0KSENDAL

from which it follows that

Pxl\B?-xo\<Ro-c^£if\x-x0\^RJ2. (2.17)

where c<\ and E > 0 are depending only on K, the ellipticity constant, and the
dimension. (2.14) now follows from (2.17) and if we set F=D(x0, R0/2)\V we find that

e<Px{Bf exists V before \Bf-X0\>R0/2} = ig^x,y)d^D(y).
F

Integrating both sides of the previous inequality over D(x0, Ro/2) with respect to x and
using Fubini's theorem we find that nF D{F)>e or

CapD(Xo<Ro){D(xo,Ro/2)\V}^5 for all x0.

where Ro depends on K, the ellipticity constant X, and the dimension n. This completes
the proof of the Theorem.
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The second named author was partially supported by Norges Almenvitenskapelige
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Note added in proof. After this paper was finished we became aware of the article by
Carl Muller entitled "A characterization of BMO and BMOP", published in Studia
Math. 72 (1982), 47-57. Muller gives a stochastic proof (for the case of Brownian
motion in C) of the necessity and sufficiency of the Hayman-Pommerenke/Stegenga
condition discussed in Section 2 above.
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