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Abstract

The functional programming language Haskell and its type system are used to define and

analyse the nature of some problems and tools in machine learning and data mining. Data

types and type-classes for statistical models are developed that allow models to be manipulated

in a precise, type-safe and flexible way. The statistical models considered include probability

distributions, mixture models, function-models, time-series, and classification- and function-

model-trees. The aim is to improve ways of designing and programming with models, not

only of applying them.

Capsule Review

This paper uses Haskell as a language to describe a family of statistical models based on

the MML principle. The generalization of the various models, and the natural mappings

between them, are shown clearly by the use of Haskell classes, types and functions. It will be

interesting to see how far this idea extends and how many more concepts in machine learning

can also be expressed in this framework in the future.

1 Introduction

Much research in machine learning and data mining is typified by creating some

new and reasonably general statistical model for a certain range of problems, or

devising a new search algorithm for a statistical model, or applying such a model

or algorithm to a new problem, or more than one of the above. This paper instead

examines different kinds of statistical models and operations on them and between

them, functional programming being used as the analytical tool. Haskell-98 (Peyton

Jones et al., 1999) is used here to express a range of models including univariate and

multivariate probability distributions, mixture models, function-models (regressions),

and time-series. Types and classes (in the Haskell sense) of statistical models and

functions of models are given and are, in effect, succinct definitions of what models

are and how they behave. This shows promise towards codifying some of what

is known about probability and statistics, and allowing statistical models to be

analysed and broken down into building blocks which can be reused in forming new

models.
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16 L. Allison

There are two main aims for this work. The first perhaps more important aim is

the getting of understanding, i.e. making what could be called a theory of statistical

models and modelling – in the sense that PreludeList (Peyton Jones et al., 1999, A.1

p105) is a theory or model of linked-lists and list-processing. (This understanding

is also helping to guide the design of a Java data-mining platform (Comley et al.,

2003).) A second, long-term aim is to build a toolkit of machine learning and

data mining tools, in Haskell. Haskell-98 is used in the interests of standardization

although some experiments, not described here, have been carried out using type

extensions. Functional programming gains great power from treating functions as

first-class values, and from clean notions of type and class. There exist general data-

mining platforms, such as R (see CRAN), S-Plus (Venables & Ripley, 1999) and

Weka (Witten & Frank, 1999), that give some support to programming with models.

In some there are two ways to program – in a compiled language, such as C, and in

an interpreted “scripting” language where the type-checking in particular tends to

be dynamic and ad hoc. Here Haskell is used for all purposes; if models are treated

as first-class typed values it is hoped that the power of functional programming will

rub-off on them.

Statistical models appear in statistics obviously, in artificial intelligence, machine

learning and data mining, and in specific application areas. Unfortunately different,

and often conflicting, terminology can be used in these various fields. This is a

real problem. In everyday use, the term statistical model can cover almost anything

from a simple probability distribution to a model of the planet’s climate. We cannot

match this flexibility in computer programming but try to be general while also being

precise enough to write programs and have them pass the type checker, compile and

run. Here, statistical model is often used in place of distribution, parameter estimate,

model, model class, hypothesis, or theory. We consider statistical models that assign

probabilities to data. Making an inference system where models can be combined

requires some way of addressing the overfitting problem; the minimum message

length (MML) framework discussed in section 2.1 provides sufficient conditions.

There are many possible ways to represent statistical models in Haskell but only

some fit with the aims of the paper: A library of large, independent machine-learning

tools, coded in Haskell or in some other language and called through an interface,

would add little understanding over existing machine-learning platforms. Some

completely new specification language for statistical models and having its compiler

or interpreter implemented in Haskell would gain little, except perhaps quick

development, from that choice compared to any other implementation language.

Of more interest, some kind of denotational semantics of statistical models would

be precise and would help understanding; by analogy Mosses’s (1974) mathematical

semantics of Algol-60 can be viewed as a theory of Algol-60 and of programming

in it. And a Haskell-98 prelude for statistical models would provide strong help

for programming with models, in Haskell-98. As noted, PreludeList is a kind of

theory or semantics of linked-lists and list-processing, a theory having a heritage of

40 plus years with some of the operators appearing in APL (Iverson, 1962) and Lisp

(McCarthy et al., 1962). Statistical models are at least as complex as lists so it may

be a little time before their own “best” programming theory is developed. However
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it is worth making a start and this paper presents a step towards a theory or model

or semantics or prelude of statistical models and of programming with them. The

types and type classes of models and of their operators are of particular interest

for understanding what models are and how they behave or could behave. Some

algorithms that implement important operators are presented to support a general

claim to realism.

In the following sections, first the most important properties of the most basic

models are examined; these are discussed in the minimum message length (MML)

framework. To study the realistic problem of unsupervised classification (also known

as clustering), mixture modelling and an associated search algorithm are defined.

Function-models, which have input (independent, exogenous) attributes (variables)

and output (dependent, endogenous) attributes, are then examined. Time-series are

treated next and some natural functions on and between the various kinds of model

are defined. Classification trees, also known as decision trees, and as used widely

in supervised classification, are brought in as examples of function-models and

are used to illustrate some relationships between the different kinds of statistical

models.

2 (Basic) models

Q: What is the difference between a hypothesis and a theory?

A: Think of a hypothesis as a card. A theory is a house made of hypotheses.

(From rec.humor.funny, attributed to Marilyn vos Savant.)

The terms distribution, statistical model, model class (class in the statistical sense),

hypothesis and theory are taken to be equivalent here except perhaps for indicating

a degree of scale or ambition. Similarly, estimating a model’s parameters, fitting a

model, choosing a model class and inferring a theory are taken to be equivalent to

the same extent. It is theories not theorems that are being discussed. The former

are inferred from observations, from data, and are necessarily falsifiable by new

observations whereas the latter are true – unless errors were made. The most

essential property of a statistical model seems to be that it makes predictions. Even

for a good model, its predictions are not expected to be infallibly correct; they are

probabilistic. The most basic property of the most basic kind of model is that it can

calculate the probability, pr, of a datum:

class Model mdl where

pr :: (mdl dataSpace) -> dataSpace -> Probability

...

data ModelType dataSpace =

MPr MessageLength (dataSpace -> Probability) | ...

instance Model ModelType where

pr (MPr ml p) datum = p datum

...
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Function pr takes a (basic) model over some data-space, i.e. a (mdl dataSpace),

and a datum from the data-space, and returns a probability. A Model might very

well be able to do other things – such as generate sample data or print itself – but

here it must at least have pr. The data type ModelType is an instance of the Model

class (class as in programming terminology); a model value can be constructed by

giving MPr a message length and a probability function; the message length is a

measure of the model’s complexity and is described in the next section. Thus if

fairCoin is a model of a throw (H|T) of a coin, which seems to be the natural way

to describe it, then pr fairCoin H = 0.5.

The accompanying code at the web site does implement (Allison, 2003) the ability

of statistical models to print (Show) themselves. This is very useful but not very

interesting so, for simplicity, references to printing are deleted in code fragments in

this paper.

2.1 Minimum Message Length (MML)

It is well known that over-fitting is a potential problem in machine learning: If

models of increasing complexities are entertained, some kind of stopping criterion

is needed so that simple and complex models are treated fairly. The need is even

greater if models can be combined, calling for a compositional methodology that

can easily assess the complexity of a combination from its parts. Minimum message

length (MML) inference (Wallace & Boulton, 1968) is a Bayesian methodology that

satisfies these requirements and is used in the present work. It seems likely that

some other methodologies, such as the Akaike information criterion (Akaike, 1973),

could be used in a similar way. Once the methodology is chosen, its terms naturally

tend to appear in the definition of each basic model and structured model. It is even

conceivable that the methodology could be abstracted out, particularly if restricted

to giving numerical costs (or scores) to models and to composing costs (or scores)

in simple ways (+, ∗, min, max, etc.). However at least one methodology would

still have to be instantiated for programs to be usable. The present work sits in the

MML framework which is introduced below.

MML is consistent, invariant under monotonic transformations of parameters, and

resistant to overfitting. MML relies on Bayes’s theorem (1763) and on Shannon’s

(1948) mathematical theory of communication – hence “message”. In particular,

Bayes gives the joint probability of a model (hypothesis, theory), M, and data, D, in

terms of the prior probability of M, Pr(M), and the likelihood, Pr(D|M), or in terms

of the probability of D, Pr(D), and the posterior probability of M given D, Pr(M|D).

Bayes:

Pr(M&D) = Pr(M) . Pr(D|M) = Pr(D) . Pr(M|D)

Shannon (1948) showed that if an event E has probability Pr(E) then it has a code-

word of length −log(Pr(E)) in an optimal code. Combining Bayes and Shannon, we

can consider a two-part message, sending first a model M and then data D given

M. In principle one could equivalently send D and then M given D but such codes

are hard to construct.
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Shannon:

msgLen(E) = -log(Pr(E))

so:

msgLen(M&D) = msgLen(M) + msgLen(D|M)

= msgLen(D) + msgLen(M|D)

It is, of course, arranged that M is an answer to some relevant inference problem

concerning D. The message length of the model itself, msgLen(M), is a measure

of its complexity as mentioned before in connection with MPr, the constructor for

ModelType; the units of measurement for messages are bits for logs to base 2, nits

(or nats) for natural logs, and Alan Turing’s bans for logs to base 10 (Hodges, 1983).

The MML paradigm considers a transmitter and a receiver. The transmitter

and receiver agree on algorithms and codes for transmitting models and data. The

transmitter and the receiver are then separated and the transmitter is given data to

send to the receiver. The transmitter should naturally use a code that is based on

a good model, M, of the data, D, but must first send any parameters describing M

that are not common knowledge so that the receiver is able to decode the message.

Continuous-valued parameters must be stated to an optimum accuracy: If excessive

precision is used, the length of the first part of the message increases by more than

any saving in the second part. If precision is too low, the stated values are, on

average, far from ideal and the consequent increase in the length of the second part

exceeds any savings on the first part.

The length of the first part of the message is msgLen(M); its inclusion allows

simple and complex models to be compared fairly. The second part of the message

transmits the data given M. A complex model is likely to fit the data better than a

simple model but is only preferred if the total message length is shorter. Note that

the difference in message lengths under two alternative models gives their posterior

−log odds ratio:

msgLen(M|D) - msgLen(M’|D)

= msgLen(M)+msgLen(D|M) - (msgLen(M’)+msgLen(D|M’))

Although strict-MML (SMML) inference is computationally intractable for most

interesting model spaces (Farr & Wallace, 2002), there are efficient MML approx-

imations for many problems and models of practical importance (e.g. Wallace &

Boulton, 1968; Wallace & Freeman, 1987).

MML is well suited to the composition of models because the units of meas-

urement for a model and for a data set given a model are the same (although

its programming potential has not been fully realized previously). In general,

better inferences can be obtained if all components and parameters of a model

are optimised together, but the search may then be intractable. If a model is

composed of sub-models which are optimised individually the total solution is not

necessarily optimal but, as noted by Georgeff & Wallace (1984), it will usually be

close to optimal under reasonable conditions and the search is much easier. Such

composition of models has previously been useful in special cases (e.g. Allison et al.,

1999) and is generalized here by having models as genuine first-class, typed values
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that can be used in other models. One of the main reasons for using Haskell in

the present exercise is its ability to support the specification and composition of

models in a compact and precise way through polymorphic types (Milner, 1978),

type classes and high-order functions.

Probabilities of data and of models can be very small for large data-spaces and

model spaces, possibly causing underflow. It is often better to compute in terms of

negative log probabilities and message lengths which are quite manageable numbers;

adding probabilities can be effected by using logPlus, where logPlus(−log(p1),

−log(p2)) = −log(p1+p2). However any discussion is in terms of probabilities

or their negative logs as is most convenient.

2.2 Example models

Other classes (in the Haskell sense) of statistical models are defined in section 3

in addition to the class Model already defined. They all share some common

properties, including having a prior probability and a first-part message, msg1,

which are attached to a super class – obviously the class SuperModel. Given that,

and given message lengths, class Model is revised:

class Model mdl where

pr :: (mdl dataSpace) -> dataSpace -> Probability -- & its...

nlPr :: (mdl dataSpace) -> dataSpace -> MessageLength -- neg’ log

msg :: SuperModel (mdl dataSpace) =>

(mdl dataSpace) -> [dataSpace] -> MessageLength

msg2 :: (mdl dataSpace) -> [dataSpace] -> MessageLength

pr m datum = exp (- nlPr m datum)

nlPr m datum = - log (pr m datum)

msg m ds = (msg1 m) + (msg2 m ds) -- total m & ds

msg2 m ds = foldl (+) 0 (map (nlPr m) ds) -- ds ~ data set

An instance of class Model must at least define pr, or nlPr, or both. The two-part

message length, msg, of a Model and a data set, is the sum of part one, msg1, and

part two, msg2.

Perhaps the simplest example of a model is a uniform distribution over a range

of discrete values:

uniform lo hi =

MPr 0 (\_ -> 1 / fromIntegral((fromEnum upb) - (fromEnum lwb) + 1))

The complexity of uniform lo hi is zero because lo and hi are taken to be

common knowledge here as defined by the data-space. The probability function

always returns the inverse of the number of values in the data-space.

The following is a more interesting model – over non-negative integers. It is based

on a universal code that was introduced for classification trees (Wallace & Patrick,
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1993) and assigns code-words of 1, 3, 5, 5, 7, . . . bits to successive integers:

wallaceIntModel = -- of non-negative Ints

let catalans = ... -- 1 1 2 5 14 ...

cumulativeCatalans = scanl1 (+) catalans

in MnlPr 0 (\n -> ((find n 0 cumulativeCatalans)*2+1)*log2)

Lazy evaluation aids in specifying the Catalan numbers used in the model’s

definition.

A continuous probability distribution defines a probability density. This gives a

genuine probability when combined with the data measurement accuracy. Present

practice is to require this accuracy to be given as a parameter of the function that

creates such a distribution; a resulting model then fits straight into the current

system. A conceivable, and more complex, alternative is to create one or more type

classes specifically for continuous models; this is still under consideration. Note that

data measurement accuracy does (should) affect estimation in some circumstances.

For example, it is unreasonable to infer a standard deviation much less than the

data measurement accuracy.

It can seem natural to try to define a special data type for some model and data

that are being used a lot, e.g.

data BiasedCoin = BiasedCoin Float -- i.e. Pr(H)

However this BiasedCoin cannot be made an instance of our current class Model

because it has the wrong kind. Such definitions can be made under type-extensions

such as multi-parameter classes and variations (Jones, 2000) but, as noted, we aim

to stay within standard Haskell-98 if possible.

2.3 Estimators

An estimator takes a data set, i.e. a list of values, and returns a statistical model

of some kind. For example, a multi-state model can be estimated from a data set

(list) of an enumerated (Enum), bounded data-space: The frequencies of the values

in the data set are counted and used to estimate the probabilities. It so happens

that the MML estimator adds 0.5 to each frequency before normalizing to give

probabilities, so values of zero or 1.0 are never estimated; justification for this and

details of the calculation of the model’s complexity, part1, were given by Wallace &

Boulton (1968). (In contrast, the maximum-likelihood estimator normalizes the raw

frequencies.) An example value, dataSet!!0, is used to convert the model of a range

of Ints into a model of the enumerated, bounded data-space (type):

freqs2model fs =

let total = foldl (+) 0 fs

...

part1 = ... -- model’s complexity

p n = ... -- probability function

in MPr part1 p
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modelInt2model egValue intModel =

let fromE x = fromEnum( x ‘asTypeOf‘ egValue )

toInt x = (fromE x) - (fromE minBound)

p datum = pr intModel (toInt datum)

in MPr (msg1 intModel) p

estMultiState dataSet =

modelInt2model (dataSet !! 0) (freqs2model (count dataSet))

The above estimators can be applied to simple games of chance. For example, a

model of a coin can be estimated from observations and used to make predictions

about the game:

data Throw = H | T deriving ...

biasedCoin = estMultiState [H, T, T, ... ]

The model biasedCoin has the data-space Throw and cannot be used with any

other type of data.

2.4 Operations on models

Given two models and their data-spaces, a bivariate model of the product data-space

can be formed. Similarly, a bivariate estimator can be formed from two estimators

for models. It is sometimes useful to deal with weighted data (e.g. section 2.5), and

weighted estimators are used in this example:

bivariate (m1, m2) =

let nlp (d1, d2) = (nlPr m1 d1) + (nlPr m2 d2)

in MnlPr ((msg1 m1) + (msg1 m2)) nlp

estBivariateWeighted (est1, est2) dataSet weights =

let (ds1, ds2) = unzip dataSet

in bivariate (est1 ds1 weights, est2 ds2 weights)

It is possible to define a trivariate model and estimator, and so on, and also a

n-variate model given a list of models of the same type. bivariate and the like

assume an absence of correlation between attributes. Correlation might be explained

by a model of d1, say, plus a function-model (see section 3.1) of d2 conditional on

d1. In principle a factor model (e.g. Wallace & Freeman, 1992) could also be defined.

2.5 Mixture modelling

“. . . considered as a biological phenomenon, aesthetic preferences stem from a predisposition

among animals and men to seek out experiences through which they may learn to classify

the objects in the world about them. Beautiful ‘structures’ in nature or in art are those which

facilitate the task of classification by presenting evidence of the ‘taxonomic’ relations between

things in a way which is informative and easy to grasp.” (Humphrey, 1973, p. 432).
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A mixture model is a weighted average of a number of component models

(e.g. Wallace & Boulton, 1968; Figueiredo & Jain, 2002). Mixture models are

used in unsupervised classification, also known as clustering, where a component is

sometimes called a class but that is too dangerous a word in this context. Mixtures

can also be made of function-models and of time-series, as described later, so

it is most generally an operation on SuperModels. It is convenient to define a

Mixture class and a MixtureType data type. The weights in a mixture are, of

course, equivalent to an integer model:

class SuperModel sMdl where

prior :: sMdl -> Probability

msg1 :: sMdl -> MessageLength

mixture :: (Mixture mx, SuperModel (mx sMdl)) => mx sMdl -> sMdl

prior sm = exp (- msg1 sm)

msg1 sm = - logBase 2 (prior sm)

class Mixture mx where

mixer :: (SuperModel t) => mx t -> ModelType Int

components :: (SuperModel t) => mx t -> [t]

data (SuperModel elt) => MixtureType elt = Mix (ModelType Int) [elt]

instance Mixture MixtureType where ...

instance (SuperModel elt) => SuperModel (MixtureType elt) where ...

For example, a mixture of a fair coin and a biased coin is a less biased coin. Note

that it is possible for the components of a mixture to be different kinds of model,

e.g. geometric and Poisson distributions, provided that they are all models of the

same data-space. Their types must match.

The unsupervised classification problem is: Given univariate or multivariate data,

find a mixture model that best describes the data. The number of components and

the parameters of the components are not known in advance; they must be inferred.

For a component of a mixture model and a datum, the probability of the datum

being a member of the component is proportional to the probability of the component

times the probability of the datum given the component. The mixture’s mixer gives

the first factor and the component itself gives the second factor of the product. This

computation allows data to be assigned (fractional) memberships of the components.

Note that this method of fractional assignment of data to components gives an

unbiased estimator whereas total assignment gives a biased one in general. A

new mixture model can be estimated from the memberships: The weight of a

component is proportional to the sum of the memberships of the data with respect

to that component. The parameters of a component can be estimated from the

data weighted by their memberships of the component. So, a mixture model can be

estimated from memberships, and memberships can be estimated from a mixture,
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estMixture ests dataSet =

let

memberships (Mix mixer components)

= ... as discussed

randomMemberships

= ... straightforward

fit [] [] = []

fit (est:ests) (mem:mems)

= (est dataSet mem) : (fit ests mems)

fitMixture mems

= Mix (freqs2model (map (foldl (+) 0) mems))

(fit ests mems)

cycle mx = fitMixture (memberships mx)

cycles 0 mx = mx

cycles n mx = cycles (n-1) (cycle mx)

in mixture(cycles <some_number> (fitMixture randomMemberships))

Fig. 1. Estimator for a mixture model.

and so on. The process is started by assigning the data random memberships

and continues for several cycles. It must converge, possibly to a local optimum.

This algorithm is an instance of the expectation maximization (EM) paradigm and

is the most important part of the main loop in the “Snob” mixture modelling

program (Wallace and Boulton 1968). That program has additional heuristics, not

implemented or described here, to merge and split classes in the search for an

optimal mixture. The basic EM loop described is sufficient for present purposes and

given a list of estimators, one per component, yields an estimator for a mixture of

models; see Figure 1. A search through increasing numbers of components, to some

limit, will in principle find the best mixture.

As an example, consider a game played with a silver coin and a gold coin. A

bivariate estimator, est2coins, can be formed from the multi-state estimator. This

can be used with estMixture to fit a mixture model of two or more components to

some observations of the game. Foul play is detected if a mixture model with two or

more components describes the observations better than a one-component model,

or if a one-component model shows a clear bias:

est2coins = estBivariateWeighted

(estMultiStateWeighted, estMultiStateWeighted)

mix2 = estMixture [est2coins, est2coins] observations

It might be argued that estMixture only estimates the weights in the mixture

model and that it relies on parameters to estimate the component models. This is
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true, but the estimators for common models (distributions) such as the multistate

and the normal are not difficult. Relying on parameters here is in fact a good thing

because it allows new and improved estimators to be used with the existing code,

e.g. perhaps a factor-analysis model.

3 More models

So far only the most basic kind of model has been examined. Next function-models

and time-series are added. Taken together, these sub-classes of SuperModel describe

not all but a good range of statistical models. It seems that there are no useful

pure SuperModels; to be useful they need to have another job as a basic model,

function-model, time-series or some other sub-class to be defined. For this reason

the name Model seems too valuable to waste on the super class.

3.1 Function-models

A function-model describes the relationship between input (independent, exogenous)

attributes (variables) and output (dependent, endogenous) attributes. This notion

includes many regressions, polynomial fitting and supervised learning problems. A

function-model makes a prediction of output attributes but it is conditional on

the input attributes, i.e. a conditional model, condModel, of the inputs and the

FunctionModel:

class FunctionModel fm where

condModel :: (fm inSpace opSpace) -> inSpace -> ModelType opSpace

condPr :: (fm inSpace opSpace) -> inSpace -> opSpace

-> Probability

condNlPr :: (fm inSpace opSpace) -> inSpace -> opSpace

-> MessageLength

condPr fm i o = pr (condModel fm i) o -- Pr(o|fm,i)...

condNlPr fm i o = nlPr (condModel fm i) o -- & neg log

data FunctionModelType inSpace opSpace =

FM MessageLength (inSpace -> ModelType opSpace)

instance SuperModel (FunctionModelType inSpace opSpace) where

msg1 (FM mdlLen m) = mdlLen

mixture mx =

let condM inp = mixture (Mix (mixer mx)

(map (\f -> condModel f inp) (components mx)))

in FM (msg1 mx) condM

instance FunctionModel FunctionModelType where

condModel (FM mdlLen f) = f
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The data type FunctionModelType is an instance of a FunctionModel; a value is

specified by giving the message length and the conditional model function. A mixture

of function-models is defined in terms of the mixture of the conditional models.

Functions of finite spaces form an important special case. If the input space

is finite and if no correlation between cases is assumed, a separate model of the

output space can be estimated for each input case. If the output space is itself finite,

the multi-state model is the obvious candidate model of the output space. This

yields conditional probability tables, for example, and can also form the basis of a

function-model on lists of a finite element-type, and of length less than or equal to k:

estFiniteIpFunction estOpModel ipSeries opSeries = ...

estFiniteFunction ipSeries opSeries =

estFiniteIpFunction estMultiState ipSeries opSeries

estFiniteListFunction k inputs outputs = ...

3.2 Time-series

A time-series is a statistical model of sequences of values or events. It makes a

sequence of predictions, each one for a position given the preceding values which

could literally depend on time or could, for example, come from a biological sequence

(Stern et al., 2001). Each of the predictions is a model, conditional on the time-series

and on the context of previous values, and this gives the types of predictors, prs

(for probabilities) and nlPrs (negative log prs):

class TimeSeries tsm where

predictors:: (tsm dataSpace) -> [dataSpace] -> [ModelType dataSpace]

prs :: (tsm dataSpace) -> [dataSpace] -> [Probability]

nlPrs :: (tsm dataSpace) -> [dataSpace] -> [MessageLength]

Note that predictors returns one more result than there are elements in the data

series; the extra prediction is for the next element.

One natural way to create a time-series is to give its message length and its

function for making a prediction from previous values; see TimeSeriesType and

constructor TSM below. (Another natural way to create a TimeSeries type could be

from a “stateful” function.)

data TimeSeriesType dataSpace =

TSM MessageLength ([dataSpace] -> ModelType dataSpace)

instance SuperModel (TimeSeriesType dataSpace) where

msg1 (TSM mdlLen m) = mdlLen

mixture mx =

let f context =

mixture(Mix (mixer mx)

(map (\(TSM _ ftsm) -> ftsm context) (components mx)))

in TSM (msg1 mx) f
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Fig. 2. Classes and conversion functions.

instance TimeSeries TimeSeriesType where

predictors (TSM mdlLen f) dataSeries =

let scan [] context = [f context]

scan (d:ds) context = (f context) : (scan ds (d:context))

in scan dataSeries []

A mixture of two or more time-series is made via a mixture of the models predicted.

Note that it is convenient to have the context of past values in reverse order, from

most recent to least recent, because of the way that the values are scanned and

because many time-series models pay more attention to recent values. For example,

a Markov model of order k can be estimated by fitting a finite list function to

contexts derived from a training data series:

estMarkov k dataSeries =

let scan (d:ds) context = context : (scan ds (d:context))

scan [] context = []

contexts = scan dataSeries []

in functionModel2timeSeries

(estFiniteListFunction k contexts dataSeries)

Note that functionModel2timeSeries converts a function-model, of the appropri-

ate type, into a time-series. More of these conversion functions are discussed in the

next section.

3.3 Mappings between models

There are some natural conversion functions between (basic) models, function-

models and time-series (see Figure 2). A model can be converted into a trivial

function-model and into a time-series, by ignoring the input attributes and the

context respectively. A time-series over a data-space, t, can be converted into a

model of sequences (lists) of t, by summing the negative log probabilities of (i) the
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elements of the list, and (ii) the length of the list using, say, wallaceIntModel

of section 2.2 unless domain knowledge suggests a different choice. A time-series

can be turned into a function-model of input space, [t], and of output space, t, by

extracting the last prediction of the time-series on the list, that is by extracting the

prediction for the next value; laziness is useful here. A function-model of an input

space and an output space can be converted into a model of their product space by

using its conditional prediction; this assumes that the values of the input attributes

are common knowledge, of zero cost, which is the case in supervised problems. And,

recalling the Markov model of the previous section, a function-model of input space,

[t], and of output space t, can be converted into a time-series in the obvious way:

model2functionModel m = FM (msg1 m) (\ip -> m)

model2timeSeries m = TSM (msg1 m) (\context -> m)

timeSeries2model tsm = ...

timeSeries2functionModel tsm =

FM (msg1 tsm) (\dataSeries -> last(predictors tsm dataSeries))

functionModel2model fm = MnlPr (msg1 fm) (\(i,o) -> condNlPr fm i o)

functionModel2timeSeries fm = TSM (msg1 fm) (condModel fm)

A function-model can be conditioned by a model of its input space to give a

model of the product of its input and output spaces:

condition m fm =

let nlp (i,o) = (nlPr m i) + (nlPr (condModel fm i) o)

in MnlPr (msg1 m + msg1 fm) nlp

Conversion functions are more than curiosities. Their existence, and the existence

of similar conversion functions on estimators, increases the generality of the whole

collection of models, functions, types and classes. For example, the mixture modeller,

estMixture (Figure 1), requires estimators for component models. Estimators

for function-models can be converted into estimators for models and used with

estMixture to infer mixtures of function-models, and so on.

3.4 Classification (decision) trees

The supervised classification problem is: Given a data set of items that have been

classified, e.g. by an expert, learn a function-model to predict (model) the category

of a new item. Classification trees, sometimes known as decision trees, are popular

for this problem with C4.5 and its relatives (Quinlan, 1992) being perhaps the best

known.
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A classification tree of CTreeType consists of leaf and fork nodes. Each leaf,

CTleaf, contains a model of the output attribute(s). Each fork node tests one

(usually) input attribute in order to select a subtree. A traditional fork, CTfork,

contains a selector or partitioning function with its message length, and a list of

subtrees. It is convenient to create a data type Splitter for a partitioning function

and some associated information. The function can be thought of as an “extreme”

function-model of the input space and Ints, one that places all of its probability

on the index of one subtree. This immediately suggests a more general kind of

fork node, CTforkFM, which contains the pieces for a mixture, capable of blending

predictions from the subtrees rather than just picking one of them. Note that it is

likely that many tree estimators will return trees containing leaves and either only

traditional or only general fork nodes. It might therefore be better to have two data

types of trees, but having both kinds of fork in the one data type gives the potential

for a combination to be used; the jury is still undecided. Also note that the structure

of a tree is included as part of its message length calculations; the details (Wallace &

Patrick, 1993) are interesting but not relevant to this paper.

data CTreeType inSpace opSpace =

CTleaf (ModelType opSpace) |

CTfork MessageLength (Splitter inSpace)

[CTreeType inSpace opSpace] |

CTforkFM (FunctionModelType inSpace Int)

[CTreeType inSpace opSpace]

instance SuperModel (CTreeType inSpace opSpace) where ...

instance FunctionModel CTreeType where

condModel (CTleaf leafModel) i = leafModel

... etc.

These classification trees are already more general than those of C4.5, allowing any

kind of model, not just univariate discrete ones, in leaves. As another example,

let linear a b epsilon be a linear function-model where y=a.x+b+(normal 0

epsilon), and normal m s is a normal model with mean m and standard-deviation

s. Then regTree, below, is a function-model-tree, i.e. a regression-tree.

-- linear a b epsilon is a FunctionModel of Float Float

linear a b epsilon = ...

regTree = CTfork (...) [leaf0, ... ]

leaf0 = CTleaf (functionModel2model (linear 1 2 1))

An estimator function for a classification tree requires an estimator function for

leaf models, ways of partitioning or splitting the data set into parts to pass to

subtrees, and a training set of inputs and outputs. (In this case alternative splits

are provided by a function of the input set which returns a list, possibly empty,

of partitioning functions. This seems to be a reasonable approach because data
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estCTree estLeafMdl splits ipSet opSet =

let search ipSet opSet =

let leaf = CTleaf leafMdl

leafMdl = estLeafMdl opSet

leafMsg = msg (functionModel2model leaf) (zip ipSet opSet)

...

alternatives ... =

let theTree = CTfork ... ... leaves

leaves = map CTleaf leafMdls

leafMdls = map estLeafMdl opParts

...

in ...return the best...

in case alternatives (splits ipSet) leafMsg leaf [ipSet] [opSet] of

((CTfork msgLen pf leaves), ipParts, opParts)

-> CTfork msgLen pf (zipWith search ipParts opParts);

(t, _, _) -> t -- done

in search ipSet opSet

Fig. 3. Estimator for classification tree.

sets shrink as the tree is descended.) The simplest tree consists of a single leaf,

and gives a certain message length (msg, part one plus part two) to the data. The

alternative is to split the data set in some way, i.e. a fork node. The simplest,

zero-lookahead search first considers fork nodes with immediate leaves. The best

alternative out of the single leaf and all possible one-fork trees is selected. If it

is the single leaf the search is done, otherwise the search is repeated recursively

for each subtree with the appropriate part of the training data (see Figure 3).

It is usual to do an n-way split on an enumerated, bounded attribute of range

n, and to try binary splits, at data-dependent cut-points, on a continuous-valued

attribute. The splits on multivariate data include at least the splits on each attribute

individually. The set of splits tried can in principle be generalized to include any

other partitioning function that divides the data into at least two parts but the search

problem gets worse, of course. The search selects the best alternative, subject to the

restricted lookahead, on the basis of the complexity of the tree and its fit to the

data.

It is even possible to make the splits parameter implicit: A class Splits having

a partitioning operator on lists is defined. Float, any bounded enumerated type, and

tuples (,) of Splits types can be added to the class. The jury is out as to whether

this is the best method.

The tree estimator, estCTree (see Figure 3), also estimates a function-model-

tree (regression-tree) with the aid of a simple conversion function; for example see

tree fmt below. An estimator for a suitable leaf function-model is converted to an

estimator for a corresponding model by estFunctionModel2estModel so that it
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can be used with estCTree:

estFunctionModel2estModel estFn ipOpPairs =

functionModel2model (uncurry estFn (unzip ipOpPairs))

fmt = estCTree

(estFunctionModel2estModel someFunctionModelEstimator)

splits set1 set2

The data in set1, i.e. the inputs to the tree, and in set2, i.e. the input-output pairs

for the function-model, can share common attributes or not as appropriate provided

that care is taken to account, once, for all that is not common knowledge.

4 Conclusions

Types, classes, and functions have been defined for (basic) models (2), function-

models (3.1), time-series (3.2), mixtures (2.5), classification trees (3.4), estimators,

and mappings between models, function-models and time-series (3.3). These do not

cover all the statistical models that are used in machine learning and data mining, but

they make a good start. Basic but usable estimators for unsupervised classification,

supervised classification, time-series and sequence analysis have been presented.

The models, functions and estimators given have static, polymorphic types as

in any other Haskell program. It is a natural and useful consequence of using a

programming language to give a treatment of statistical models that the “theory”

or “model” compiles and runs. Polymorphic typing, type classes and the conversion

functions defined above bring out the generality of models. The mere fact of

having estimators and models defined in a compact, polymorphic and usable form

has suggested unanticipated generalizations. For example, the relationship between

classification trees and regression trees then became obvious.

The most valuable feature of Haskell-98 for this application is its type system.

High-order functions follow closely for defining estimators, conversion functions, and

functions that combine models to build new ones. Lazy evaluation is helpful in some

algorithms and definitions, e.g. wallaceIntModel (2.2), and in some manipulations

of time-series. Type-classes are very important but some question remains over

whether or not it would be worth using type extensions outside the standard

language.
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