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Abstract

In this paper we discuss the existence of solutions for a class of abstract degenerate neutral functional
differential equations. Some applications to partial differential equations are considered.
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1. Introduction

In this paper we study the existence of solutions for a class of abstract neutral
functional differential equations of the form

d

dt
[x(t)+ D(t)x(t − r1)]= Ax(t)+ f (t, xt ), t ∈ [0, a], (1.1)

x0 = ϕ ∈ C, C = C([−r, 0]; X), (1.2)

where A : D(A)⊂ X→ X is the infinitesimal generator of a C0-semigroup of
bounded linear operators (T (t))t≥0 on a Banach space (X, ‖ · ‖), (D(t))t∈[0,a] is a
family of closed linear operators defined on a common domain D 6= X , 0< r1 ≤ r and
f : [0, a] × C → X is a suitable function.

In this work we continue the developments in Hernández and O’Regan [18] on
the existence of solutions for abstract neutral systems. The basic novelty with respect
to [18] and the general literature on neutral equations is the fact that the operators D(t)
can be unbounded.

In order to review the associated literature on neutral equations and understand the
motivations for this work, it is convenient to introduce the following more general
model of a neutral system:

d

dt
[x(t)+ g(t, xt )]= Ax(t)+ f (t, xt ), t ∈ [0, a], (1.3)

x0 = ϕ ∈ C. (1.4)
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Datko [9] and Adimy and Ezzinbi [1] studied some linear neutral systems similar
to (1.3)–(1.4) under the strong assumption that the function g(·) is D(A)-valued
continuous. If A is the generator of a C0-semigroup of bounded linear operators
(T (t))t≥0 (the case studied by Datko), this assumption arises from the associated
integral equation

u(t) = T (t)[ϕ(0)+ g(0, ϕ)] − g(t, ut )−

∫ t

0
AT (t − s)g(s, us) ds

+

∫ t

0
T (t − s) f (s, us) ds, t ∈ [0, a],

since except in trivial cases, the operator function AT (·) is not integrable in the
operator topology on [0, b], for b > 0. The same reason explains the use of this
assumption in [1], where the case in which A is a Hille–Yosida type operator is studied.

In the papers [16–18] the system (1.3)–(1.4) was studied assuming that A is the
generator of an analytic semigroup (T (t))t≥0 and under a more general and less
restrictive assumption on g(·), which is a particular case of the following condition.
(Hg) There exists a Banach space (Y, ‖ · ‖Y ) continuously embedded in X and
a function H ∈ L1([0, a]) such that g ∈ C([0, a] × C; Y ) and ‖AT (t)‖L(Y,X) ≤
H(t) for all t ∈ [0, a].

The condition (Hg) is satisfied in several situations, for example, the case in which
Y is an interpolation space between X and D(A). However, it remains an important
restriction on the system.

In the papers [2–5, 10] (among an extensive literature) an alternative assumption has
been used to treat some neutral equations. In these it is assumed that A is the generator
of a compact C0-semigroup (T (t))t≥0 and the set {AT (t) : t ∈ (0, b]} is bounded in
the operator topology. However, as has been pointed out in [16], these conditions are
valid if and only if A is bounded and dim X <∞, which restricts the applications to
ordinary differential equations. Moreover, if the compactness assumption is removed,
it follows that A is bounded, which remains a strong restriction.

On the other hand, in the recent paper [18] local existence results are established
for a neutral system with mixed delay similar to (1.1)–(1.2) without using the above
restrictions. Our purpose in this paper is to continue the developments in [18] by
considering the case in which the operators D(t) are unbounded. We will refer to
systems of this type as abstract degenerate neutral differential systems.

Neutral differential equations arise in many areas. The literature on ordinary neutral
functional differential equations is very extensive and we refer the reader to the book
by Hale and Verduyn Lunel [15] for details.

Partial differential neutral equations arise, for instance, in the theory of heat
conduction in fading memory materials. In the classical theory of heat conduction,
it is assumed that the internal energy and the heat flux depend linearly on the
temperature u(·) and on its gradient ∇u(·). Under these conditions, the classical
heat equation describes sufficiently well the evolution of the temperature in different
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types of materials. However, this description is not satisfactory in materials with
fading memory. In the theory developed in [14, 23], the internal energy and the heat
flux are described as functionals of u(·) and ux (·). The following equation (see, for
example, [6–8, 22]), has frequently been used to describe this phenomenon:

∂

∂t

[
u(t, x)+

∫ t

−∞

k1(t − s)u(s, x) ds

]
= c4u(t, x)+

∫ t

−∞

k2(t − s)4u(s, x) ds,

u(t, x)= 0, x ∈ ∂�.

In this equation, �⊂ Rn is open, bounded and has smooth boundary, (t, x) ∈
[0,∞)×�, u(t, x) represents the temperature in x at time t , c is a physical
constant and ki : R→ R, i = 1, 2, are the internal energy and the heat flux relaxation,
respectively. By assuming that the solution u(·) is known on (−∞, 0] and k2 ≡ 0, we
can represent this equation in the abstract form (1.3)–(1.4).

We also find partial neutral differential systems in the theory of population
dynamics. There exists an extensive literature on ordinary neutral differential
equations; see, for instance, [11, 12, 20, 21] and the references therein. Looking at
these papers, it is natural to think that the abstract equation (2.1)–(2.2) can be used to
consider spatial diffusion phenomena, which arise because of the natural tendency of
biological populations to migrate from high population density regions to regions with
low density.

We now introduce some basic concepts, definitions and results. In the rest of
this paper, A : D(A)⊆ X→ X is the generator of an analytic semigroup of bounded
linear operators (T (t))t≥0 on a Banach space (X, ‖ · ‖), (D(t))t≥0 is a one-parameter
family of closed linear operators defined on a common domain D ⊂ D(A), 0< r1 ≤ r,
C is the space C([−r, 0]; X) endowed with the uniform norm denoted by ‖ · ‖C and
f : [0, a] × C → X is a continuous function. The notation [D(A)] stands for the
space D(A) endowed with the graph norm and M > 0 is such that ‖T (t)‖ ≤ M for
all t ∈ [0, a].

For simplicity, we assume that (T (t))t≥0 is uniformly bounded and 0 ∈ ρ(A). In
this case, it is possible to define the fractional power (−A)α , 0< α ≤ 1, as a closed
linear operator on its domain D((−A)α). Furthermore, D((−A)α) is dense in X and
the expression ‖x‖α := ‖(−A)αx‖, x ∈ D((−A)α), defines a norm on D((−A)α).
Henceforth we denote by Xα the space D((−A)α) with the norm ‖ · ‖α . From [24]
we note the following properties.

LEMMA 1.1. The following conditions are satisfied.

(a) Let 0< α ≤ 1. Then Xα is a Banach space.
(b) If 0< β < α ≤ 1 then Xα ↪→ Xβ and the embedding is compact when the

resolvent operator of A is compact.
(c) For each γ ∈ (0, 1), there exists Cγ > 0 such that ‖(−A)γ T (t)x‖ ≤ Cγ /tγ ‖x‖

for all t ∈ (0, a] and every x ∈ X.

Let (Z , ‖ · ‖Z ) and (W, ‖ · ‖W ) be Banach spaces. Throughout this paper, let
(L(Z , W ), ‖ · ‖Z ,W ) denote the space formed by all the bounded linear operators
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from Z into W endowed with the uniform operator norm ‖ · ‖L(Z ,W ). We write simply
(L(Z), ‖ · ‖L(Z)) when Z =W . Let Br (z, Z) represent the closed ball with center at
z and radius r in Z .

2. Existence of solutions

In this section we discuss the existence of solutions for neutral equations of the
form

d

dt
[x(t)+ D(t)x(t − r1)]= Ax(t)+ f (t, xt ), t ∈ [σ, σ + b], (2.1)

xσ = ϕ ∈ C([−r, 0]; X). (2.2)

To deal with (2.1)–(2.2), we introduce and study two different kinds of solution (mild
and S-mild solution) which arise from different regularity-type conditions on the
functions ϕ and t→ D(t)ϕ(t − r1).

REMARK 2.1. In the rest of this work, g : [0, r1] → X is the function defined by
g(t)= D(t)ϕ(t − r1) and y : [−r, a] → X is given by y0 = ϕ and y(t)= T (t)ϕ(0)
for t ∈ [0, a].

2.1. Existence of mild solutions. Motivated by [18], we introduce the first type of
solution for (2.1)–(2.2).

DEFINITION 2.2. A function u ∈ C([−r + σ, σ + b]; X), b > 0, σ ∈ R, is called a
mild solution of the neutral equation (2.1)–(2.2) if uσ = ϕ and

u(t) = T (t − σ)[ϕ(0)+ D(0)ϕ(−r1)] − D(t)u(t − r1)

−

∫ t

σ

AT (t − s)D(s)u(s − r1) ds +
∫ t

σ

T (t − s) f (s, us) ds,

for all t ∈ [σ, σ + b].

We now establish our first existence result.

THEOREM 2.3. Assume that the following conditions are satisfied.

(a) There exist α ∈ (0, 1) and a Banach space (Y, ‖ · ‖Y ) ↪→ (X, ‖ · ‖) such that
D(·) ∈ C([0, a], L(Xα, Y )) and AT (·) ∈ L1([0, a], L(Y, X)).

(b) There exits 0< µ< 1− α such that ϕ(0) ∈ Xα+µ and g ∈ C([0, r1], Xα+µ).
(c) The function f (·) is continuous and there exists L f > 0 such that

‖ f (t, ψ1)− f (t, ψ2)‖ ≤ L f ‖ψ1 − ψ2‖C, t ∈ [0, a], ψi ∈ C.

Then there exists a unique mild solution of (1.1)–(1.2) on [−r, 2r1].
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PROOF. Let 01 : C([−r, r1]; X)→ C([−r, r1]; X) be the map defined by (0u)0 = ϕ
and

01u(t) = T (t)[ϕ(0)+ g(0)] − g(t)−
∫ t

0
AT (t − s)g(s) ds

+

∫ t

0
T (t − s) f (s, us) ds, t ∈ [0, r1].

From Bochner’s theorem on integrable functions and the estimate∫ t

0
‖AT (t − s)g(s)‖ ds ≤

∫ t

0
‖(−A)1−(α+µ)T (t − s)(−A)α+µg(s)‖ ds

≤ ‖g‖C([0,r1],Xα+µ)

∫ t

0

C1−(α+µ)

(t − s)1−(α+µ)
ds

≤ ‖g‖C([0,r1],Xα+µ)
rα+µ1

α + µ
,

we infer that the function s→ AT (t − s)g(s) is integrable on [0, t] for all t ∈ [0, r1]

and 01u ∈ C([−r, r1]; X) for all u ∈ C([−r, r1]; X). Moreover, from the inequality

sup
θ∈[0,t]

‖0k
1u(θ)− 0k

1v(θ)‖ ≤
(M L f )

k

k!

∫ t

0
sup
θ∈[0,s]

‖u(θ)− v(θ)‖ ds, t ∈ [0, r1],

it follows that 0k
1(·) is a contraction for k large enough and there exits a unique fixed

point u1(·) of 01(·). Obviously, u1(·) is a mild solution of (1.1)–(1.2) on [−r, r1].
Next, we show that u1

∈ C([0, r1]; Xα). Since ϕ(0) ∈ Xα and the semigroup
(T (t))≥0 is analytic, it follows that v(t)= T (t)[ϕ(0)+ D(0)ϕ(−r1)] − D(t)
ϕ(t − r1) ∈ Xα for all t ∈ [0, r1]. Moreover, from the estimate

‖(−A)α(u1(t)− v(t))‖

≤

∫ t

0
‖A1−µT (t − s)‖‖(−A)α+µg(s)‖ ds

+

∫ t

0
‖(−A)αT (t − s)‖‖ f (s, u1

s )‖ ds

≤ ‖g‖C([0,r1],Xα+µ)

∫ t

0

C1−µ

(t − s)1−µ
ds + sup

s∈[0,r1]

‖ f (s, u1
s )‖

∫ t

0

Cα
(t − s)α

ds

≤

(
‖g‖C([0,r1],Xα+µ) + sup

s∈[0,r1]

‖ f (s, u1
s )‖

)(
C1−µrµ1
µ

+
Cαr1−α

1

1− α

)
we conclude that u1(t) ∈ Xα and u1

∈ C([−r, r1]; Xα) since (−A)α is a closed
operator. Moreover, from this fact it follows that the function s→ D(s)u1(s − r1)

belongs to C([r1, 2r1]; Y ).
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We now consider the neutral equation

d

dt
[x(t)+ D(t)x(t − r1)]= Ax(t)+ f (t, xt ), t ∈ [r1, 2r1], (2.3)

xr1 = (u
1)r1 . (2.4)

Let 02 : C([r1 − r, 2r1]; X)→ C([r1 − r, 2r1]; X) be defined by (02u)r1 = (u
1)r1

and

02u(t) = T (t − r1)[u
1(r1)+ D(r1)u

1(−r1)] − D(t)u1(t − r1)

−

∫ t

r1

AT (t − s)D(s)u1(s − r1) ds +
∫ t

r1

T (t − s) f (s, us) ds,

for t ∈ [r1, 2r1]. Remarking that s→ D(s)u1(s − r1) ∈ C([r1, 2r1]; Y ), from the
estimate ∫ t

r1

‖AT (t − s)D(s)u1(s − r1)‖ ds

≤

∫ t

r1

‖AT (t − s)‖L(Y,X)‖D(s)u
1(s − r1)‖Y ds

≤ sup
s∈[0,r1]

‖D(s)u1(s − r1)‖Y ‖AT (·)‖L1([0,r1],L(Y,X))

we infer that 02u ∈ C([r1 − r, 2r1]; X) for every u ∈ C([r1 − r, 2r1]; X). Proceeding
now as in the first part of the proof, we can show that 0k

2(·) is a contraction for k large
and that there exists a unique fixed point u2

∈ C([r1 − r, 2r1]; X) of 02(·).
To finish, we note that the function u : [−r, 2r1] → X defined by u(t)= u1(t)

for t ∈ [−r, r1] and u(t)= u2(t) for t ∈ [r1, 2r1] is a mild solution of (1.1)–(1.2) on
[−r, 2r1]. The proof is now complete. 2

In the next result, we establish the existence of a solution using a fixed point
criterion for completely continuous maps.

THEOREM 2.4. Assume that conditions (a) and (b) of Theorem 2.3 hold and that the
semigroup (T (t))t≥0 is compact. Suppose, in addition, that f ∈ C([0, a] × C, X)
and that there are m ∈ C([0, a]; [0,∞)) and a nondecreasing function W : [0,∞)→
(0,∞) such that ‖ f (t, ψ)‖ ≤ m(t)W (‖ψ‖C) for every (t, ψ) ∈ [0, a] × C. If

M
∫ r1

0
m(s) ds <

∫
∞

C(ϕ)

ds

W (s)
,

where C(ϕ)= (M+1)(‖ϕ‖+‖g‖C([0,r1];X))+C1−(α+µ)‖g‖C([0,r1];Xα+µ)r
α+µ
1 /α+µ,

then there exists a mild solution of (1.1)–(1.2) on [−r1, b] for some r1 < b ≤ a.

PROOF. Let 01(·) be the map defined in the proof of Theorem 2.3. From the proof of
Theorem 2.3 we know that 01(·) is well defined. Moreover, a standard argument using
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the Lebesque dominated convergence theorem and the Ascoli–Arzelà criterion allows
us to prove that 01(·) is completely continuous.

In order to apply the Leray–Schauder alternative theorem [13, Theorem 6.5.4], we
obtain a priori estimates for the solutions of the integral equation z = λ01z, λ ∈ (0, 1).
Let λ ∈ (0, 1), uλ(·) be a solution of z = λ01z and αλ : [0, r1] → R be the function
defined by αλ(t)= ‖ϕ‖C + supθ∈[0,t] ‖u

λ(θ)‖. Then, for t ∈ [0, r1] we obtain

‖uλ(t)‖ ≤ M‖ϕ(0)‖ + (M + 1)‖g‖C([0,r1];X)

+ ‖g‖C([0,r1];Xα+µ)

∫ t

0

C1−(α+µ)

(t − s)1−(α+µ)
ds + M

∫ t

0
m(s)W (‖us‖C) ds

≤ M‖ϕ(0)‖ + (M + 1)‖g‖C([0,r1];X)

+ C1−(α+µ)‖g‖C([0,r1];Xα+µ)
rα+µ1

α + µ
+ M

∫ t

0
m(s)W (αλ(s)) ds,

and hence,

αλ(t)≤ C(ϕ)+ M
∫ t

0
m(s)W (αλ(s)) ds. (2.5)

If we denote the left-hand side of (2.5) by βλ(t), then β ′λ(t)≤ Mm(t)W (βλ(t)) and∫ βλ(t)

C(ϕ)

ds

W (s)
≤ M

∫ r1

0
m(s) ds <

∫
∞

C(ϕ)

ds

W (s)
ds,

which permit the assertion that {βλ : λ ∈ (0, 1)} is bounded in C([0, r1]), and, as a
consequence, that {zλ : λ ∈ (0, 1)} is bounded in C([−r, r1]; X).

From the above remarks and [13, Theorem 6.5.4], there exists a fixed point
u1
∈ C([−r, r1]; X) of 01. Moreover, the same argument as used in the

proof of Theorem 2.3 allows us to show that u1
∈ C([0, r1]; Xα), s→ D(s)u1

(s − r1) ∈ C([r1, 2r1]; Y ) and the function s→ AT (t − s)D(s)u1(s − r1) belongs to
L1([r1, t]; X) for all t ∈ [r1, 2r1].

Let r1 < b ≤ 2r1 be such that

M
∫ b

r1

m(s) ds <
∫
∞

C(u1)

ds

W (s)

where

C(u1) = (M + 1)
(
‖u1

r1
‖C + sup

s∈[0,r1]

‖D(s)u1(s − r1)‖

)
+ sup

θ∈[0,r1]

‖D(θ)u1(θ − r1)‖Y

∫ b

r1

‖AT (s)‖L(Y,X) ds.
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Arguing as in the above steps, we can show that the map 02 : C([r1 − r, 2r1]; X)→
C([r1 − r, 2r1]; X) given by (02u)r1 = (u

1)r1 and

02u(t) = T (t − r1)[u
1(r1)+ D(r1)u

1(0)] − D(t)u1(t − r1)

−

∫ t

r1

AT (t − s)D(s)u1(s − r1) ds

+

∫ t

r1

T (t − s) f (s, us) ds, t ∈ [r1, 2r1],

is completely continuous and has a fixed point u2
∈ C([r1 − r, b]; X).

To conclude the proof, we remark that the function obtained by pasting together
u1(·) and u2(·) is a mild solution of (1.1)–(1.2) on [−r, b]. The proof is completed. 2

2.2. Existence of S-mild solutions. The results in the preceding section are proved
by assuming a type of spatial regularity for the initial condition ϕ and the function
s→ D(s)ϕ(s − r1). In this section, we introduce another type of solution based on
the assumption that ϕ and s→ D(s)ϕ(s − r1) are ‘regular’ in the temporal variable.

DEFINITION 2.5. A function u ∈ C([−r + σ, σ + b]; X), b > 0, σ ∈ R, is called
an S-mild solution of the neutral equation (2.1)–(2.2) if uσ = ϕ, the function
s→ D(s)u(s − r1) is differentiable almost everywhere on [σ, σ + b], s→ (d/ds)
D(s)u(s − r1) ∈ L1([σ, σ + b], X) and

u(t)= T (t − σ)ϕ(0)+
∫ t

σ

T (t − s)

[
−

d

ds
D(s)u(s − r1)+ f (s, us)

]
ds,

for every t ∈ [σ, σ + b].

In the rest of this section, AW is the generator of the semigroup (W (t))t≥0 on C
defined by [W (t)ψ](θ)= T (t + θ)ψ(0) for −t ≤ θ ≤ 0 and [W (t)ψ](θ)= ψ(t + θ)
for −∞< θ <−t.

The next result establishes the existence of an S-mild solution for (1.1)–(1.2).

THEOREM 2.6. Assume that ϕ ∈ D(AW ) and that the following conditions are
satisfied.

(a) There exists 0< α < 1 such that D(·) ∈ C1([0, a]; L(Xα, X)), g ∈ C2([0, r1];

Xα) and ϕ(0) ∈ X1+α .
(b) The function f (·) belongs to C1([0, r1] × C, X) and there exists L f > 0 such

that

‖ f (t, ψ1)− f (t, ψ2)‖ ≤ L f ‖ψ1 − ψ2‖C, t ∈ [0, r1], ψi ∈ C.

If −dg(t)/dt|t=0 + f (0, ϕ)= 0, then there exists a unique S-mild solution of
(1.1)–(1.2) on [−r1, b] for some r1 < b ≤ a.
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PROOF. Let 01 : C([−r, r1]; X)→ C([−r, r1]; X) be the map defined by (0u)0 = ϕ
and

01u(t)= T (t − σ)ϕ(0)+
∫ t

σ

T (t − s)

[
−

d

ds
g(s)+ f (s, us)

]
ds, t ∈ [0, r1].

From condition (b) and the contraction mapping principle, it is easy to show that there
exists a unique fixed point u1(·) of 0(·).

In order to show that u1
∈ C1([−r, r1]; Xα), we introduce the delayed integral

equation

z(t) = AT (t)ϕ(0)−
∫ t

0
T (t − s)

d2

ds2 g(s) ds

+

∫ t

0
T (t − s)[D1 f (s, u1

s )+ D2 f (s, u1
s )zs] ds, t ∈ [0, r1], (2.6)

z0 = AWϕ. (2.7)

A standard argument using the contraction mapping principle allows us to prove that
there exists a unique solution z ∈ C([−r, r1]; X) of (2.6)–(2.7). Moreover, arguing
as in Henríquez [19], it follows that the functions u1(·) and t→ u1

t are continuously
differentiable on [0, r1], du1 dt = z and du1

t dt = zt on [0, r1].
Since ϕ(0) ∈ X1+α , from the above remark and the estimate∥∥∥∥(−A)α

d

dt
u1(t)

∥∥∥∥ ≤ ‖A1+αT (t)ϕ(0)‖ +

∥∥∥∥d2g

ds2

∥∥∥∥
C([0,r1];Xα)

∫ t

0

C1−α

(t − s)1−α
ds

+ sup
τ∈[0,r1]

‖D1 f (τ, u1
τ )+ D2 f (τ, u1

τ )zτ‖
∫ t

0

Cα
(t − s)α

ds

≤ C + C1−α

∥∥∥∥d2g

ds2

∥∥∥∥
C([0,r1];Xα)

rα1
α

+ Cα sup
τ∈[0,r1]

‖D1 f (τ, u1
τ )+ D2 f (τ, u1

τ )zτ‖
r1−α

1

1− α
,

where C is a constant independent of t , we infer that du1(t) dt ∈ Xα for all
t ∈ [0, r1], u1

∈ C1([0, r1]; Xα) and the function t→ D(t)u1(t − r1) belongs to
C1([r1, 2r1]; X).

From the properties of f (·), there are positive constants C, b and L such that

‖ f (t, ψ1)− f (t, ψ2)‖ ≤ L‖ψ1 − ψ2‖C,

and ‖ f (t, ψ1)‖ ≤ C for all (t, ψi ) ∈ [r1, r1 + b] × Bb(u1
r1
, C).

Let 0< b1 < b be such that M Lb1 < 1 and

sup
s∈[r1,r1+b1]

‖ys − (u
1)r1‖C ≤

b

2
,

M sup
s∈[r1,r1+b1]

∥∥∥∥ d

ds
D(s)u1(s − r1)

∥∥∥∥b1 + MCb1 ≤
b

2
.
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Let 3 be the space

3=

{
u ∈ C([r1 − r, r1 + b1]; X) : ur1 = (u

1)r1, ‖u − y‖C([r1,r1+b1];X) ≤
b

2

}
endowed with the supremum norm, and 02 :3→ C([r1 − r, r1 + b1]; X) be the map
defined by (02u)r1 = (u

1)r1 and

02u(t)= T (t − r1)u
1(0)+

∫ t

r1

T (t − s)

[
−

d

ds
D(s)u1(s − r1)+ f (s, us)

]
ds,

for t ∈ [r1, r1 + b1].
We next prove that 02 is a contraction from 3 into 3. For u ∈3 and t ∈

[r1, r1 + b1] we see that

‖ut − (u
1)r1‖C ≤ ‖ut − yt‖C + ‖yt − (u

1)r1‖C

≤ ‖u − y‖C([r1,r1+b1];X) +
b

2
≤ b,

so that ut ∈ Bb(u1
r1
, C). Consequently, ‖ f (s, us)‖ ≤ C for all s ∈ [r1, r1 + b1] and

‖02u(t)− y(t)‖ ≤ sup
s∈[r1,r1+b1]

∥∥∥∥ d

ds
D(s)u1(s − r1)

∥∥∥∥b1 + MCb1 ≤
b

2
,

for all t ∈ [r1, r1 + b1]. Thus, 02u ∈3 and 023⊂3. Moreover, for u, v ∈3 we find
that

‖02u − 02v‖C([r1,r1+b1];X) ≤ M Lb1‖u − v‖C([r1,r1+b1];X),

which proves that 02(·) is a contraction on3 and that there exists a unique fixed point
u2(·) of 02(·).

Finally, by pasting together the functions ui (·) we obtain an S-mild solution
of (1.1)–(1.2) on [0, b]. The proof is now complete. 2

To conclude this section, we consider the case in which D ⊃ D(A). The proofs of
our next results follow with minor modifications from the proof of Theorem 2.3 and
Theorem 2.6. We only give a sketch of the proofs for completeness.

THEOREM 2.7. Assume that f satisfies condition (c) of Theorem 2.3 and that there
are σ1 ∈ (0, 1) and 1> σ2 > σ3 > 0 such that f ∈ C([0, r1] × C([−r, 0]; Xσ2); Xσ3)

and g ∈ C([0, a]; X1+σ1). Suppose that there is a Banach space (Y, ‖ · ‖Y ) ↪→
(X, ‖ · ‖) and 0< σ <min{σ1, σ3} such that D(·) ∈ C([0, a]; L(X1+σ , Y )), ϕ(0) ∈
X1+σ and AT (·) ∈ L1([0, a], L(Y, X)). Then there exists a unique mild solution of
(1.1)–(1.2) on [−r, 2r1].
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PROOF. Let 01(·) and u1(·) be as in the proof of Theorem 2.3. Proceeding as in that
proof, we can prove that u1

∈ C([0, r1]; Xθ ) for every θ ∈ (0, 1) which in turn implies
that the function t→ f (t, u1

t ) belongs to C([0, r1]; Xσ3). Now, from the estimate

‖(−A)1+σu1(t)‖ ≤ ‖(−A)1+σ T (t)[ϕ(0)+ g(0)] − (−A)1+σ g(t)‖

×

∫ t

r1

‖A1−(σ1−σ)T (t − s)‖‖(−A)1+σ1 g(s)‖ ds

+

∫ t

r1

‖(−A)1−(σ3−σ)T (t − s)‖‖(−A)σ3 f (s, u1
s )‖ ds

≤ C + C1−(σ1−σ)‖g‖C([0,a];X1+σ1 )

rσ1−σ
1

σ − σ

+ C1−(σ3−σ) sup
τ∈[0,r1]

‖(−A)σ3 f (τ, u1
τ )‖

rσ3−σ
1

σ3 − σ
,

we infer that u1
∈ C([0, r1]; X1+σ ) and, as a consequence, that the function t→

D(t)u1(t − r1) belongs to C([r1, 2r1]; Y ). Now the proof can be completed by
arguing as in the last part of the proof of Theorem 2.3. We omit the additional
details. 2

For the S-mild solution case we have the following result.

THEOREM 2.8. Assume that D(·) ∈ C1([0, a]; L(X1, X)), ϕ(0) ∈ X2, ϕ ∈ D(AW )

and f (·) satisfies condition (c) of Theorem 2.6. Suppose that there are numbers
σ1 ∈ (0, 1) and 0< σ3 < σ2 < 1 such that g ∈ C2([0, r1]; Xσ1) and f ∈ C1([0, r1] ×

C([−r, 0]; Xσ2), Xσ3). If f (0, ϕ)− dg(t)/dt|t=0 = 0, then there exists a unique
S-mild solution of (1.1)–(1.2) on [−r1, b] for some r1 < b ≤ a.

PROOF. Let 01(·), u1(·) and z(·) be as in the proof of Theorem 2.6. Arguing as in
that proof, we can show that u1

∈ C1([0, r1]; Xθ ) for all θ ∈ (0, 1), which implies
that the function t→ d f (t, u1

t ) dt belongs to C([0, r1]; Xσ3). Now using the fact that
ϕ(0) ∈ X2, z = du1 dt is the solution of (2.6)–(2.7) and du1

t dt = zt , we obtain∥∥∥∥A
d

dt
u1(t)

∥∥∥∥
≤ ‖A2T (t)ϕ(0)‖ +

∫ t

0

∥∥∥∥(−A)1−σ1 T (t − s)(−A)σ1
d2

ds2 g(s)

∥∥∥∥ ds

+

∫ t

0
‖(−A)1−σ3 T (t − s)(−A)σ3(D1 f (s, u1

s )+ D2 f (s, u1
s )zs)‖ ds

≤ C + C1−σ1

∥∥∥∥ d2

ds2 g(s)

∥∥∥∥
C([0,r1];Xσ1 )

rσ1
1

σ1
+ C1−σ3

∥∥∥∥ d

ds
f (s, u1

s )

∥∥∥∥
C([0,r1];Xσ3 )

rσ3
1

σ3
,

which shows that u1
∈ C1([0, r1]; X1) and t→ D(t)u1(t − r1) ∈ C1([r1, 2r1]; Y )

since D(·) ∈ C1([0, a]; L(X1, Y )). Arguing now as in the last part of the proof of
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Theorem 2.6, we can establish the existence of an S-mild solution on [−r1, b] for
some r1 < b ≤ a. 2

3. An application

In this section we apply our abstract results to study the existence of mild and
S-mild solutions for a concrete partial neutral differential equation. Specifically, we
consider the ‘degenerate’ neutral system

∂

∂t

(
u(t, ξ)+ α(t)

∂ i

∂ξ i u(t − r1, ξ)

)
=
∂2

∂ξ2 u(t, ξ)+
m∑

i=1

βi (t)u(t − r1
i , ξ)+ α1(t)

∫ t

t−r
η(s − t)u(s, ξ) ds, (3.1)

u(t, 0)= u(t, π)= 0, (3.2)

u(θ, ξ)= ϕ(θ, ξ), θ ∈ [−r, 0], ξ ∈ [0, π ], (3.3)

for i = 1, 2, where α, α1, βi ∈ C([0, a]; R), η ∈ L2([0, a]), r, r1, r1
i , i = 1, . . . , m,

are real numbers and 0< r1 < r .
To treat the system (3.1)–(3.3) under the abstract framework used in the Section 2,

we need to introduce some technicalities. In what follows, X = L2([0, π ]), C =
C([−r, 0]; X), D(A) := {x ∈ X : x ′′ ∈ X, x(0)= x(π)= 0} and A : D(A)⊂ X→ X
is the operator defined by Ax = x ′′. It is well known that A is the infinitesimal
generator of an analytic semigroup (T (t))t≥0 on X . Furthermore, A has discrete
spectrum with eigenvalues −n2, n ∈ N, and corresponding normalized eigenfunctions
given by zn(ξ)= (2/π)1/2 sin(nξ), the set of functions {zn : n ∈ N} is an orthonormal
basis of X and T (t)x =

∑
∞

n=1 e−n2t
〈x, zn〉zn for x ∈ X . It follows from this

representation that (T (t))t≥0 is a compact semigroup on X . Let us consider the cases
i = 1 and i = 2 separately.

3.1. The case i = 1. Let α ∈ (1/2, 1) and D(t) : Xα→ X , f : [0, a] × C → X be
the functions defined by D(t)x(ξ)= α(t)x ′(ξ) and

f (t, ψ)(ξ)=
m∑

i=1

βi (t)ψ(−r1
i , ξ)+ α1(t)

∫ 0

−r
η(s)ψ(s, ξ) ds.

It is easy to see that D(·) ∈ C([0, a]; L(Xα, X
α− 1

2
)), AT (·) ∈ C([0, a]; L(X

α− 1
2
, X)),

f ∈ C([0, a]; L(C, X)) and

‖ f (t, ·)‖L(C,X) ≤
m∑

i=1

‖βi‖C([0,b];R) + ‖α1‖C([0,b];R)r
1/2
‖η‖L2([0,b];R), t ∈ [0, a].

Under these conditions, it is possible to describe the system (3.1)–(3.3) in the
abstract form (1.1)–(1.2). In the next result, which is a consequence of Theorems 2.3
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and 2.6, we say that a function u ∈ C([−r, b]; X) is a mild solution (an S-mild
solution) of (3.1)–(3.3) on [0, b] if u(·) is a mild solution (an S-mild solution) of the
associated abstract system (1.1)–(1.2) on [0, b].

PROPOSITION 3.1. The following assertions hold.

(a) If ϕ ∈ C([−r, 0]; Xα+µ) for some 0< µ< 1− α, then there exists a unique mild
solution of (3.1)–(3.3) on [−r, 2r1].

(b) Assume that α ∈ C2([0, a]; R), ϕ ∈ C2([−r, 0]; Xα), ϕ(0) ∈ X1+α , ϕ ∈ D(AW ),
the functions α1, βi are of class C1 and

−
d

dt
[α(t)ϕ(t − r1, ξ)]|t=0 +

m∑
i=1

βi (0)ϕ(−r1
i , ξ)

+ α1(0)
∫ 0

−r
η(s)ϕ(s, ξ) ds = 0 (3.4)

almost everywhere for ξ ∈ [0, π ]. Then there exists a unique S-mild solution
of (3.1)–(3.3) on [−r1, b] for some r1 < b ≤ a.

3.2. The case i = 2. In this case we consider the maps D(t) : D(A)⊂ X→ X
given by D(t)x = α(t)x ′′. As in the above case, we say that u ∈ C([−r, b]; X) is
a mild solution (an S-mild solution) of (3.1)–(3.3) on [0, b] if u(·) is a mild solution
(an S-mild solution) of the associated neutral system (1.1)–(1.2) on [0, b] . The next
result follows from Theorems 2.7 and 2.8.

PROPOSITION 3.2. The following assertions hold.

(a) Assume that α ∈ C([0, a]; R) and that there is σ1 > 0 such that ϕ ∈

C([0, a]; X2+σ1). Then there exists a unique mild solution of (3.1)–(3.3) on
[−r, 2r1].

(b) Suppose that ϕ ∈ D(AW ), α ∈ C2([0, a]; R) and ϕ ∈ C2([−r, 0]; X1+σ1) for
some σ1 > 0. If ϕ ∈ D(AW ), ϕ(0) ∈ X2 and (3.4) is satisfied, then there exists a
unique S-mild solution of (1.1)–(1.2) on [−r1, b] for some r1 < b ≤ a.
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