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The Hilbert Coefficients of the Fiber
Cone and the a-Invariant of the
Associated Graded Ring

Clare D’Cruz and Tony J. Puthenpurakal

Abstract. Let (A, m) be a Noetherian local ring with infinite residue field and let I be an ideal in A and

let F(I) =

L

n≥0 In/mIn be the fiber cone of I. We prove certain relations among the Hilbert coeffi-

cients f0(I), f1(I), f2(I) of F(I) when the a-invariant of the associated graded ring G(I) is negative.

1 Introduction

Let (A, m) be a Noetherian local ring with infinite residue field k = A/m. Let I be an

ideal in A. The fiber cone of I is the standard graded k-algebra F(I) =

⊕
n≥0 In/mIn.

Set l(I) = dim F(I), the analytic spread of I. The Hilbert polynomial of F(I) is de-

noted by fI(z). Write fI(z) =

∑l−1
i=0(−1)i fi(I)

(
z+l−1−i

l−1−i

)
where l = l(I) We call fi(I)

the i-th fiber coefficient of I.

Most recent results in the study of fiber cones involve the depth of the associated

graded ring of I, G(I) =

⊕
n≥0 In/In+1. When I is m-primary there has been some

research relating f0(I) (the multiplicity of F(I)) with various other invariants of I

(see [15, 4.1], [6, 4.3] and [4, 3.4]). In the case of G(I) the relations among the

Hilbert coefficients e0(I), e1(I), e2(I) are well known (see [28]). However there is no

result relating f0(I), f1(I), and f2(I). The reason for this is not difficult to find: any

standard k-algebra can be thought of as a fiber cone of its graded maximal ideal. So

any result involving the relation between fi(I) would only hold in a restricted class of

ideals. Our paper explores the relation between a(I), the a-invariant of G(I), and the

Hilbert coefficients of F(I). This is a new idea.

We first analyze when l(I) = 2, 3 as it throws light on the general result.

Theorem A Let (A, m) be a Noetherian local ring with infinite residue field k = A/m.

Let I be an ideal with l(I) = 2. If a(I) < 0, then f1(I) ≤ f0(I) − 1. Furthermore,

equality holds if and only if F(In) is Cohen–Macaulay for all n ≫ 0. If grade(I) = 2,

then equality holds.

This result should be compared with a result due to Northcott [18], which in our

context states that f1(m) ≥ f0(m) − 1 whenever A is Cohen–Macaulay. In Exam-

ple 4.2, we exhibit a two-dimensional Noetherian local ring (A, m) with depth A = 1

but f1(I) < f0(I) − 1.
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To analyze the case when equality holds in Theorem A, we resolve F(In) as an

F( J[n]) = k[Xn
1 , Xn

2 ]-module and write it as:

0 −→ Kn −→
β[n]

1⊕
i=1

F( J[n])(−1 − α[n]
i ) −→ F( J[n])β[n]

0 −→ F(In) −→ 0.

Here α[n]
i ≥ 0 for all i. As depth F(In) ≥ 1 for all n ≫ 0, we get Kn = 0 for all n ≫ 0.

We show in Theorem 4.7 that if a(I) < 0, then for all n ≫ 0,

f1(I) − f0(I) + 1 = −

β[n]
1∑

i=1

α[n]
i and

β[n]
1 = 0 if and only if α[n]

i = 0 for all i .

Our second result, Theorem 5.5, has a noteworthy consequence when G(I) is

Cohen–Macaulay. Let red(I) denote the reduction number of I(see 1.1).

Theorem B Let (A, m) be a Cohen–Macaulay local ring of dimension d = 3. Let I be

an m-primary ideal with G(I) Cohen–Macaulay and red(I) = 2. Then

(1.1) f2(I) ≥ f1(I) − f0(I) + 1.

We extend our results to higher analytic spread using Rees-superficial sequences

(see the Appendix for details), under some mild assumptions on grade(I). We state

some of our noteworthy results. The first one (see Theorem 6.6) states that if l(I) ≥ 2,

grade(I) ≥ l(I) − 2, and red(I) ≤ 1, then f1(I) ≤ f0(I) − 1 with equality if

grade(I) = l(I). An immediate consequence (see Corollary 6.7) is that if (A, m) is

Cohen–Macaulay with dim A ≥ 2, I an m-primary ideal and the second Hilbert-

Samuel coefficient e2(I) = 0, then f1(I) = f0(I) − 1.

Finally, we show that if A is a Cohen–Macaulay ring of dimension at least three

and if I is an m-primary ideal of reduction number two whose associated graded ring

is Cohen–Macaulay, then f2(I) ≥ f1(I) − f0(I) + 1 (see Theorem 6.8).

Here is an overview of the contents of the paper. In Section 2 we introduce some

notations and necessary preliminary facts. In Section 3 we introduce two complexes

which will be used in the subsequent sections. In Section 4 we prove Theorem A.

In Section 5 we prove our second main theorem and as a consequence obtain The-

orem B. In Section 6 we obtain results on the coefficients of the fiber cone for any

analytic spread. In the appendix we recall some basic facts regarding minimal re-

ductions and filter-regular elements and prove an elementary result that is useful in

Section 4.

2 Preliminaries

From now on, (A, m) is a Noetherian local ring of dimension d, with infinite residue

field. All modules are assumed to be finitely generated. For a finitely generated mod-

ule M, we denote its length by ℓ(M).
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Let J = (x1, . . . , xl) be a minimal reduction of I. We denote by

red J(I) := min{n | JIn
= In+1}

the reduction number of I with respect to J. Let

red(I) = min{red J(I) | J is a reduction of I}

be the reduction number of I.

As a reference for local cohomology we use [1] (see especially Chapter 18 for rela-

tions between local cohomology and reductions). We take local cohomology of G(I)

with respect to G(I)+ =

⊕
n≥1 In/In+1. Set G = G(I) and G+ = G(I)+. For each

i ≥ 0 the local cohomology modules Hi
G+

(G) are graded G-modules. Furthermore

Hi
G+

(G)n = 0 for all n ≫ 0. For each i ≥ 0 set ai(I) = max{n | Hi
G+

(G)n 6= 0}.

Set l = l(I). Then Hl
G+

(G) 6= 0 and Hi
G+

(G) = 0 for all i > l (see [10, 2.3]). We

call a(I) = al(I) the a-invariant of G(I). The (Castelnuovo–Mumford) regularity of

G(I) is reg(G(I)) = max{ai(G) + i | 0 ≤ i ≤ l}. The regularity of G(I) at and above

level r, denoted by regr(G(I)), is regr(G(I)) = max{ai(G) + i | r ≤ i ≤ l}.

Observation 2.1 Let x ∈ I \ I2 be a I-superficial element of I. Also assume x is

A-regular. For all r ≥ 1 and s ≥ 0 it is easy to show

regr(G(I)) ≤ s =⇒ regr(G(I/(x)) ≤ s.

We will use the following beautiful result due to Hoa.

Theorem 2.2 (Hoa[10, 2.6]) There exist non-negative integers n0, r(I), such that for

all n ≥ n0 and every minimal reduction J of In we have red J(In) = r(I). Furthermore,

r(I) =

{
l(I) − 1 if a(I) < 0,

l(I) if a(I) ≥ 0.

For the definition and basic properties of superficial sequences see [20, pp. 86–87].

If I is m-primary, then let pI(z) be the Hilbert–Samuel polynomial of A with respect

to I (so ℓ(A/In+1) = pI(n) ∀n ≫ 0). Write pI(z) =

∑d
i=0(−1)iei(I)

(
z+d−i

d−i

)
. For

i ≥ 0, we call ei(I) the i-th Hilbert coefficient of I.

The Hilbert series of F(I), G(I) is denoted by H(F(I), z), H(G(I), z) respectively,

i.e.,

H(F(I), z) =

∑

n≥0

ℓ
( In

mIn

)
zn and H(G(I), z) =

∑

n≥0

ℓ
( In

In+1

)
zn

If x ∈ I j \ mI j , then we denote by x◦ its image in F(I) j = I j/mI j .
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3 Two Complexes

Our results are based on analyzing two complexes which we describe in this section.

Both the complexes are defined using the maps in the Koszul complex. Throughout,

I is an ideal in (A, m) with a minimal reduction J = (x1, . . . , xl) where l = l(I).

Note that x1, . . . , xl are analytically independent [19], [2, 4.6.9]). Using analyticity

to detect exactness (at some stage) of a complex has been studied first in [21].

The first complex is when l = 2:

(3.1) C
•
(I) : 0 →

A

m

α2−→
( I

mI

) 2 α1−→
I J

mI J
→ 0,

where

α2(a + m) =

(
−x2a + mI

x1a + mI

)
and α1

(
a + mI

b + mI

)
= x1a + x2b + mI J.

Observation 3.1 (i) H2(C
•
(I)) = 0 since x1, x2 are analytically independent.

(ii) If x1, x2 is a regular sequence in A, then clearly H1(C
•
(I)) = 0.

(iii) Clearly α1 is surjective. So H0(C
•
(I)) = 0.

The second complex, D
•
(I), is when l = 3.

(3.2) 0 →
A

m

α3−→
( I

mI

) 3 α2−→
( I2

mI2

) 3 α1−→
I2 J

mI2 J
→ 0,

where

α3(a + m) =




x3a + mI

−x2a + mI

x1a + mI


 , α1




a + mI2

b + mI2

c + mI2




= x1a + x2b + x3c + mI2 J,

α2




a + mI

b + mI

c + mI




=



−x2a − x3b + mI2

x1a − x3c + mI2

x1b + x2c + mI2


 .

Observation 3.2 (i) H3(D
•
(I)) = 0 since x1, x2, x3 are analytically independent.

(ii) In Lemma 3.3 we show that if x1, x2, x3 is a regular sequence and if I2 ∩ J = JI,

then image(α2) = ker(α1), so H1(D
•
(I)) = 0.

(iii) The assumption I2 ∩ J = JI holds when the following hold.

(a) I is integrally closed (see[12, p. 317] and [13, Theorem 1]).

(b) The initial forms x∗1 , x∗2 , x∗3 in G(I)1 form a regular sequence (see [27, 2.3]).

(iv) Clearly α1 is surjective and so H0(D
•
(I)) = 0.

Lemma 3.3 Assume (3.2). If x1, x2, x3 is a regular sequence and if I2 ∩ J = JI, then

image(α2) = ker(α1).
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Proof Let K(x)
•

be the Koszul complex on x1, x2, x3. It is acyclic since x1, x2, x3 is a

regular sequence. Suppose

ξ =




a

b

c


 ∈ ker α1.

Then ax1 + bx2 + cx3 = a′x1 + b ′x2 + c ′x3 where a′, b ′, c ′ ∈ mI2. As K(x)
•

is acyclic,

there exists f , g, h ∈ A such that

(3.3)




a − a′

b − b ′

c − c ′




=




−x2 f − x3g

x1 f − x3h

x1g + x2h



 .

We show that f , g, h are in I. Using (3.3) we get −x2 f − x3g ∈ I2 ∩ J = JI. So

−x2 f − x3g = x1 p + x2q + x3r where p, q, r ∈ I. Again using the fact that K(x)
•

is

acyclic, we get that there exists u, v, w ∈ A such that




p

q + f

r + g




=



−x2u − x3v

x1u − x3w

x1v + x2w


 .

So f , g ∈ I. Similarly by using the second row in (3.3), we get that f , h ∈ I. Set

η =




f

g

h


 ∈ (I/mI)3.

Notice α2(η) = ξ since a′, b ′, c ′ ∈ mI2. Thus ker α1 ⊆ image α2.

Let us recall the following well-known fact about complexes. Let

X
•

: 0 → Xn → Xn−1 → · · · → X0 → 0

be a complex of A-modules with ℓ(Xi) finite for all i. Then

(3.4)

n∑

i=0

(−1)iℓ(Xi) =

n∑

i=0

(−1)iℓ(Hi(X•
)).

4 Proof of Theorem A

In this section we prove Theorem A. The setup below is used throughout. The hy-

pothesis a(I) is crucial for our results. See Examples 4.2, 4.3, and 4.10 for some

illustrations of Theorem A.

Setup: Let J = (x1, x2) be a minimal reduction of I. Notice J[n]
= (xn

1 , xn
2) is a

minimal reduction of In. If grade(I) = 2, then we can take x1, x2 to be a regular

sequence (and so xn
1 , xn

2 is also a regular sequence). For i = 1, 2 set Xi = x◦i , the

image of xi in I/mI. So F( Jn) = k[Xn
1 , Xn

2 ] for all n ≥ 1.

We first prove the inequality (1.1) stated in Theorem A.
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Theorem 4.1 Let (A, m) be a local ring and let I be an ideal with l(I) = 2. If a(I) < 0,

then f1(I) ≤ f0(I) − 1. Furthermore, if grade(I) = 2, then equality holds.

Proof We consider the complex (3.1) for the ideal In for each n ≥ 0. Set C
•
[n] =

C
•
(In) for n ≥ 1. By Observation 3.1 we have Hi(C•

[n]) = 0 for i = 0, 2. Using (3.4)

for the complex C
•
[n] for each n, we get an equation

(4.1) 1 − 2ℓ(In/mIn) + ℓ(In J[n]/mIn J[n]) = −ℓ(H1(C
•
[n])).

Since a(I) < 0, by Theorem 2.2 we have red J[n] (In) = 1 for all n ≫ 0. So In J[n]
=

I2n for all n ≫ 0. Also for all n ≫ 0 we have fI(n) = ℓ(In/mIn). Setting these in

(4.1), we get for all n ≫ 0,

1 − 2 fI(n) + fI(2n) = −ℓ(H1(C
•
[n])).

Write fI(n) = f0(n + 1) − f1. Therefore

1 − 2{ f0(n + 1) − f1} + f0(2n + 1) − f1 = −ℓ(H1(C
•
[n])).

Thus 1 − f0 + f1 = −ℓ(H1(C
•
[n])). Hence 1 − f0 + f1 ≤ 0. By our assumption

on J, H1(C
•
[n]) = 0 for each n if grade(I) = 2. Hence equality holds in the above

equation. This proves the result.

The following example shows that if a(I) < 0, but grade(I) 6= 2, then f1(I) <
f0(I) − 1 is possible.

Example 4.2 Set A = k[[X1, X2, X3]]/(X2
1 , X1X2) = k[[x1, x2, x3]]. Set I = m =

(x1, x2, x3) and J = (x2, x3). Then J is a reduction of m and m2
= Jm. By [26, 3.2]

we get a(m) < 0.

It can be checked that grade(m) = 1 and x3 is a non-zero divisor. Using

COCOA [3] it can verified that the Hilbert series of F(m) = G(m) is

1 + z − z2

(1 − z)2
.

So f1(m) = −1, but f0(m) = 1.

The next example shows that Theorem 4.1 need not hold when a(I) > 0.

Example 4.3 Let (A, m) be a two dimensional Cohen–Macaulay local ring with

red(m) = 2. Then we have G(m) = F(m) is Cohen–Macaulay [24, 2.1] and its

Hilbert-series is
1 + z + cz2

(1 − z)2
where c > 0.

So f1(m) − f0(m) + 1 = c > 0.

Next we analyze the case when f1(I) = f0(I) − 1. Observe that F(In) = F(I)〈n〉,

the n-th Veronese subring of F(I). In particular l(In) = l(I) for each n ≥ 1. Local

cohomology commutes with the Veronese functor [11, 2.5]. In [22, 2.8] it is proved

that depth F(In) is constant for all n ≫ 0. We prove the following.
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Theorem 4.4 Let (A, m) be a local ring with infinite residue field and let I be an ideal

with s = l(I) > 0.

(i) depth F(In) > 0 for all n ≫ 0.

(ii) There exists a minimal reduction J = (x1, . . . , xs) of I such that (xn
1)◦ is F(In)

regular for all n ≫ 0.

Proof (i) Set E = H0
F(I)+

(F(I)). Clearly ℓ(E) < ∞. Say E =

⊕r
i=0 Ei . Notice E is

an ideal of F(I) with finite length. If E0 6= 0, then 1F(I) ∈ E. So E = F(I) will have

finite length, a contradiction since dim F(I) = l(I) ≥ 1. Therefore E0 = 0, and as a

consequence we have

H0
F(In)+

F(In) =

(
H0

F(I)+
(F(I)

) 〈n〉
= 0 for all n > r.

Thus depth F(In) > 0 for all n ≫ 0.

(ii) By [26, 3.8] we get that there exists a minimal reduction J = (x1, . . . , xs) of I

such that x◦1 , . . . , x◦s ∈ F(I)1 is an F(I)-filter regular sequence. Set x = x1. Since x◦

is F(I)-filter regular, by Corollary A.5 we get that (xn)◦ is F(In)-filter regular for each

n ≥ 1. By (i) depth F(In) > 0 for all n ≫ 0. So by Remark A.2 we get that (xn)◦ is

F(In)-regular for all n ≫ 0.

Observation 4.5 As l(I) = 2, by computing the Hilbert polynomial of F(I) and

F(In) we obtain

f1(In) − f0(In) + 1 = f1(I) − f0(I) + 1 for all n ≥ 1.

Observation 4.6 Let J = (x1, x2) be a minimal reduction of I as constructed in

Theorem 4.4. In particular (xn
1)◦ is F(In)-regular for all n ≫ 0. Set Xn

j = (xn
1)◦ for

j = 1, 2. We resolve F(In) as an F( J[n]) = k[Xn
1 , Xn

2 ] module and write it as:

0 −→ Kn −→
β[n]

1⊕
i=1

F( J[n])(−1 − α[n]
i ) −→ F( J[n])β[n]

0 −→ F(In) −→ 0.

Here α[n]
i ≥ 0 for all i. As depth F(In) ≥ 1 for all n ≫ 0, we get Kn = 0 for all n ≫ 0.

We prove the following.

Theorem 4.7 With assumptions as in Observation 4.6, if a(I) < 0, then for all n ≫ 0,

f1(I) − f0(I) + 1 = −

β[n]
1∑

i=1

α[n]
i

and β[n]
1 = 0 if and only if α[n]

i = 0 for all i.

For the proof of this theorem we need the following.
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Lemma 4.8 Let R = k[X] and let S =

⊕
n≥0 Sn be a standard k-algebra of dimen-

sion 1 and multiplicity p + 1. Assume S = Ru1 + · · · + Rum where degree ui ≤ 1 and

u1 = 1S. Then S has the following resolution over R

0 −→
q⊕

i=1

R(−1 − αi) −→ R ⊕ R(−1)p+q −→ S −→ 0.

Furthermore S is free if and only if all αi = 0.

Proof By the hypothesis on S and as R is a Euclidean domain, we get

S = R ⊕ R(−1)p ⊕
( q⊕

i=1

R

(Xαi )
(−1)

)
,

where αi ≥ 0. The result follows.

Proof of Theorem 4.7 We choose n0 such that depth F(In) ≥ 1 and red J[n] (In) = 1

for all n ≥ n0. Fix n ≥ n0 and set αi = α[n]
i and F( J[n]) = k[Xn

1 , Xn
2 ]. Since

red J[n] (In) = 1, it follows that F(In) is generated as an F( J[n])-module in degrees ≤ 1.

Notice that by construction, Xn
1 is a non-zero divisor on F(In) (see Observation

4.6). Set R = F( J[n])/(Xn
1 ) = k[Xn

2 ] and S = F(In)/Xn
1 F(In). Note that S is generated

as an R module in degrees ≤ 1. By Lemma 4.8 the resolution of S as an R-module is

0 −→
q⊕

i=1

R(−1 − αi) −→ R ⊕ R(−1)p+q −→ S −→ 0.

Since Xn
1 is a non-zero divisor on F(In) and F( J[n]), we get that the resolution of F(In)

as F( J[n])-module is

0 −→
q⊕

i=1

F( J[n])(−1 − αi) −→ F( J[n]) ⊕ F( J[n])(−1)p+q −→ F(In) −→ 0.

Thus q = β[n]
1 . Set φ(z) =

∑q
i=1 zαi +1. Therefore the Hilbert series of F(In) is

1 + (p + q)z − φ(z)

(1 − z)2
.

So f0(In) = 1 + p. Notice that f1(In) = p + q −
∑q

i=1(αi + 1) = p −
∑q

i=1 αi . Using

Observation 4.5 we obtain
∑q

i=1 αi = f0(In) − f1(In) − 1 = f0(I) − f1(I) − 1. Also

by Lemma 4.8, q = 0 if and only if all αi = 0.

In view of this result we are tempted to ask the following.

Question 4.9 With notation as in Observation 4.6 Let (A, m) be a local ring and let

I be a proper ideal with l(I) = 2. Is
∑β[n]

1

i=1 αi
[n] constant for all n ≫ 0?
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Finally we observe that Theorem A follows from Theorems 4.1 and 4.7.

We give an example which shows that in the case l(I) = grade(I) = 2 and a(I) < 0

it is possible for F(I) to be not Cohen–Macaulay even though f1(I) = f0(I) − 1 and

F(In) is Cohen–Macaulay for all n ≫ 0. The example below was constructed by

Marley [16, 4.1] in his study of the associated graded ring G(I).

Example 4.10 Let A = k[X,Y ](X,Y ) and let I = (X7, X6Y, XY 6,Y 7). Using COCOA

one verifies that e2(I) = 0 and that the Hilbert series of the fiber cone F(I) is

1 + 2z + 2z2 + 2z3 + 2z4 + 2z5 − 4z6

(1 − z)2
.

From the Hilbert series it is clear that f0(I) = 7, f1(I) = 6, but F(I) is not Cohen–

Macaulay.

Remark 4.11 It is also possible to prove Theorem A directly from Theorem 4.7,

Observation 4.5, and by using a result of Kishor Shah [25, Theorem 1]. We kept

Theorem 4.1 in this section because it gives the inequality f1(I) ≤ f0(I)−1 very easily

and more importantly gives us a natural way of trying to relate fi(I) for i = 0, 1, 2

which is new and important. This is done in our next section.

5 Results When the Analytic Spread Is Three

In this section we assume that l(I) = 3. If J = (x1, x2, x3) is a reduction of I, we

also assume that x1, x2, x3 is a regular sequence. The goal of this section is to prove

inequality (1.1) under suitable conditions on I.

Observation 5.1 We consider the complex (3.2) for the ideal In for each n ≥ 0. Set

D
•
[n] = D

•
(In) for n ≥ 1. By Observation 3.1 we have Hi(D•

[n]) = 0 for i = 0, 3.

To analyze the case when H1(D
•
[n]) is zero, we use the following.

Definition 5.2 Let I be an ideal and let J = (x1, x2, x3) be a minimal reduction of I.

We say the pair (I, J) satisfy V∞
2 if I2n ∩ J[n]

= J[n]In for all n ≫ 0. This condition

has been studied by Elias [9].

Observation 5.3 By Lemma 3.3, H1(D
•
[n]) = 0 for all n ≫ 0 if the pair (I, J)

satisfy V∞
2 .

Observation 5.4 When grade(I) = l(I), then using Observation 3.2(iii) the hy-

pothesis V∞
2 holds when either

(i) I is asymptotically normal, i.e., In is integrally closed for all n ≫ 0 or

(ii) the initial forms x∗1 , . . . , x∗l(I) in G(I)1 form a regular sequence.

We now state our second main theorem.

Theorem 5.5 Let (A, m) be local and let I be an ideal in A with l(I) = grade(I) = 3.

Let J = (x1, x2, x3) be a minimal reduction of I and assume the pair (I, J) satisfy V∞
2 .

If a(I) < 0, then inequality (1.1) holds.
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Remark 5.6 The hypotheses of Theorem 5.5 are quite stringent. However they

are necessary (see Examples 5.11, 5.13, and 5.14). Also note that if F(I) is Cohen–

Macaulay then inequality (1.1) holds.

We give two examples where the condition of Theorem 5.5 holds.

Example 5.7 Let (A, m) be a three dimensional Cohen–Macaulay local ring with

I an m-primary ideal with reduction number two and G(I) Cohen–Macaulay. Then

the hypothesis of Theorem 5.5 holds by Proposition 5.4(ii). This is shown in Theo-

rem 5.10. Using [14, Example 6.1], we can construct an interesting example of this

kind as follows.

Let T = k[[t6, t11, t15, t31]], K = (t6, t11, t31), and L = (t6). Then it can easily

be verified that K3
= LK2. Since K2 ∩ L = LK , G(K) is Cohen–Macaulay by a

result of Valabrega and Valla [27, 2.3]. It can also be seen that t37 ∈ mK2, but t37 /∈
mLK . Therefore F(K) is not Cohen–Macaulay by a criterion due to Cortadellas and

Zarzuela [7, 3.2]. One can verify that the Hilbert series of F(K) is (1 + 2z)/(1 − z).

Let R = k[[X,Y, Z,W ]] and

q = (y2z − xw, x2z2 − yw, x3z − y3, x3 yw − z4, z5 − y4w, xyz3 − w2,

y5 − wx4, x2 y3 − z3, x5 − z2, x4 y2 − zw).

Set B = R/q = k[[x, y, z, w]]. Using COCOA, one can verify that B ∼
= T. Under this

isomorphism the ideal (x, y, w) maps to K and (x) goes to L

Set A = B[[U ,V ]]. Clearly A is Cohen–Macaulay of dimension 3. Set I =

(x, y, w,U ,V ) and J = (x,U ,V ). Clearly J is a minimal reduction of I and I3
= JI2.

Furthermore, G(I) ∼
= G(K)[U ,V ] and F(I) ∼

= F(K)[U ,V ]. So G(I) is Cohen–

Macaulay, while F(I) has depth 2.

Before giving the next example we make the following remark.

Remark 5.8 If A satisfies the condition of the theoremthen as a(I) < 0, we get

by Theorem 2.2 that red J[n] (In) = 2 for all n ≫ 0. So by using the Valabrega–Valla

criterion [27, 2.3] it follows that grade(G(In)+, G(In)) ≥ 3 for all n ≫ 0.

Example 5.9 Let A = k[[X,Y, Z]] and let m = (X,Y, Z). Let I be an m-primary

ideal with Ir
= ms for some s > r and G(I) not Cohen–Macaulay (for a specific

example see [5, 4.3], see also [5, 3.8]). If J is a reduction of I, then the pair (I, J) satisfy

V∞
2 , by Proposition 5.4(i). Also by Hoa’s result it follows that a(I) < 0. Any such

example is different from Example 5.7, since G(I) is Cohen–Macaulay in Example

5.7.

Before proving the theorem we give a proof of Theorem B. We restate it for the

convenience of the reader.

Theorem 5.10 Let (A, m) be a Cohen–Macaulay local ring of dimension d = 3. Let

I be an m-primary ideal with G(I) Cohen–Macaulay and red(I) ≤ 2. Then inequality

(1.1) holds.
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Proof As G(I) is Cohen–Macaulay we have that a(I) = red(I) − 3 ≤ −1. Let J be a

minimal reduction of I such that red J(I) = red(I). As G(I) is Cohen–Macaulay, the

pair (I, J) satisfy V∞
2 . So the result follows from Theorem 5.5.

We now prove Theorem 5.5. The notation is as in Observation 5.1.

Proof We use the complex D
•
[n]. By Observation 5.3 and (3.4) we get

(5.1) −1 + 3ℓ
( In

mIn

)
− 3ℓ

( I2n

mI2n

)
+ ℓ

( I2n J[n]

mI2n J[n]

)
= ℓ(H2(D

•
[n])), ∀n ≫ 0.

Since a(I) < 0 we have by (2.2) red J[n] (In) = 2 for all n ≫ 0. So I2n J[n]
= I3n for all

n ≫ 0. Also for all n ≫ 0 we have fI(n) = ℓ(In/mIn). Setting these in (5.1) we get

−1 + 3 fI(n) − 3 fI(2n) + fI(3n) ≥ 0.

Since

fI(n) = f0

(
n + 2

2

)
− f1(n + 1) + f2,

an easy computation yields −1 + 3 fI(n) − 3 fI(2n) + fI(3n) = −1 + f0 − f1 + f2, and

the result follows.

Our second result, Theorem 5.5, has three hypothesis, namely

grade(I) = l(I),(5.2a)

the pair (I, J) satisfies V∞
2 ,(5.2b)

a(I) < 0.(5.2c)

We show that if any of the hypotheses in (5.2) are not satisfied, then inequality

(1.1) need not hold. In the first example only hypothesis (5.2a) is not satisfied, in fact

we have l(I) − grade(I) = 1.

Example 5.11 Let A = k[[X,Y,U ,V ]]/(XY,Y 3) = k[[x, y, u, v]] and I = m =

(x, y, u, v). One can readily see that grade(m) = 2 while l(m) = dim A = 3. Set

J = (x, u, v). Then I3
= JI2. So by [26, 3.2] we get a(I) < 0. The pair (I, J) satisfies

V∞
2 by Proposition 5.12. In fact in Proposition 5.12 we show m2n ∩ J[n]

= J[n]mn for

all n ≥ 1. However the Hilbert series of F(m) = G(m) (by COCOA) is

1 + z − z3

(1 − z)3

So f0(I) = 1, f1(I) = −2 and f2(I) = −3. Thus f2(I) � f1(I) − f0(I) + 1.

Proposition 5.12 We have A, m, J as in Example 5.11.

m2n ∩ J[n]
= J[n]mn for all n ≥ 1.
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Proof Fix n ≥ 1. We claim that

(5.3) if c ∈ k[[x, u, v]] and xnc ∈ m2n, then c ∈ mn.

Let us assume (5.3) and prove our result. Fix n ≥ 1. Let ξ ∈ m2n ∩ J[n]. Write

ξ = αxn + βun + γvn. Set (T, q) = (A/(xn), m/(xn)). Note

T =

k[[x, y, u, v]]

(xy, y3, xn)
=

( k[[x, y]]

(xy, y3, xn)

)
[[u, v]].

Thus u∗, v∗ are G(q)-regular. So βun + γ vn ∈ m
2n ∩ (un, vn) = m

n(un, vn). It follows

that β, γ ∈ m
n. Thus ξ = αxn + βun + γvn + θxn where β, γ ∈ mn, θ ∈ A. Since

xy = 0 we may assume α + θ ∈ k[[x, u, v]]. Notice (α + θ)xn ∈ m2n. So by (†) we get

(α + θ) ∈ mn. It follows that ξ ∈ mn J[n].

We now prove (5.3). Let S = k[[x, u, v]] be considered as a subring of A. Any

element a ∈ A can be written as

(5.4) a = φ(a)
0 (x, u, v) + φ(a)

1 (x, u, v)y + φ(a)
2 (x, u, v)y2,

where φ(a)
i (x, u, v) ∈ S for i = 0, 1, 2.

So A, as an S-module, is generated by 1, y, y2. Thus dim S = dim A = 3. It follows

that S ∼
= k[[X,U ,V ]].

Notice A/(y) = S and the natural map π : A → S is a splitting (as S-modules) of

the inclusion ı : S → A. Set L = Sy + Sy2. Then A = S ⊕ L as a S-module. It follows

that φ(a)
0 (x, u, v) in (5.4) is uniquely determined by a.

Let n be the unique maximal ideal of S. Then

(5.5) mi
= ni ⊕ (mi ∩ L) for all i ≥ 1.

Set c = φ(c)
0 (x, u, v) + φ(c)

1 (x, u, v)y + φ(c)
2 (x, u, v)y2. Notice that by hypothesis on c

we get φ(c)
1 (x, u, v) = φ(c)

2 (x, u, v) = 0. By uniqueness of φ∗
0 we get

φ(xnc)
0 (x, u, v) = xnφ(c)

0 (x, u, v).

Since xnc ∈ m2n, we get by (5.5) that xnφ(c)
0 (x, u, v) ∈ n2n. Clearly x∗ is Gn(S)-regular.

So φ(c)
0 (x, u, v) ∈ nn. By (5.5) again we get that c ∈ mn.

This proves 5.3. As stated earlier this finishes the proof of the proposition.

In the second example, only hypothesis (5.2b) is not satisfied. We adapt an exam-

ple from [8, 6.2]. If K is an ideal in A, let K̃ =

⋃
n≥1(Kn+1 : Kn) be the Ratliff–Rush

closure of K .

Example 5.13 Let A = Q[[X,Y, Z]]. Let I = (X4, X3Y, XY 3,Y 4, Z). The ideal

J = (X4,Y 4, Z) is a minimal reduction of I, in fact I3
= JI2. So by [26, 3.2] we get

a(I) < 0. Set B = Q[[X,Y ]] and q = (X4, X3Y, XY 3,Y 4). One can show q̃ 6= q.

However notice G(I) = G(q)[Z∗]. So Z∗ is G(I)-regular. In particular Ĩ = I. By
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[22, 7.9] we get depth G(In) = 1 for all n ≫ 0. So by Remark 4.8, I does not satisfy

V∞
2 . The Hilbert series of F(I) is

1 + 2z + 2z2 − z3

(1 − z)3
.

So f0(I) = 4, f1(I) = 3 and f2(I) = −1. Thus f2(I) � f1(I) − f0(I) + 1.

In the third example hypothesis (5.2c) is not satisfied. Instead of (5.2b), the hy-

pothesis

(5.6) I2n ∩ (xn
1 , xn

2) = In(xn
1 , xn

2) for all n ≫ 1.

is satisfied. Recall J = (x1, x2, x3) is a minimal reduction of I. The hypothesis (5.6) is

equivalent to depth G(In) ≥ 2 for all n ≫ 0 [9, 2.4].

Example 5.14 Let A = k[X,Y, Z](X,Y,Z) and I = (X3, XY 4Z, XY 5, Z5,Y 7). Set

u = Z5,V = 5X3 + 3Y 7 and w = X3 − 3XY 4Z + 2Z5. Set J = (u, v, w). Using

COCOA we can check that I6
= JI5. So J is a minimal reduction of I. The Hilbert

series of G(I), G(I/(u)), G(I/(u, v)) is

H(G(I), z) = (1 − z)H(G(I/(u)), z) = (1 − z)2H(G(I/(u, v)), z),

=

77 + 15z + 8z2 + 2z3 + 2z4 + z5

(1 − z)3
,

H(G(I/(u, v, w)), z) = 77 + 28z

So u∗, v∗ is a G(I)-regular sequence. Note that depth G(I) = 2. It follows that

depth G(In) ≥ 2 for all n ≥ 1. So hypothesis (5.6) is satisfied.

We prove that a(I) ≥ 0. Set G = G(I).

ai(I) = max{n | Hi(G)n 6= 0} i = 0, 1, 2, 3

Proposition 5.15 Note that a0(G) = a1(G) = −∞. As red J(I) = 5 we get by

[26, 3.2] that a3(G) ≤ 2. By [16, 2.1(a)] we have a2(G) < a3(G) ≤ 2.

By [10, 2.4] we have

ai(In) ≤
[ ai(I)

n

]
for i = 0, 1, 2. and a3(In) =

[ a3(I)

n

]
.

Notice by Proposition 5.15 we get

ai(I3) ≤ 0 for i = 0, 1, 2.

a3(I3) ≤ −1 if a3(I) < 0

a3(I3) = 0 if a3(I) ≥ 0.

https://doi.org/10.4153/CJM-2009-041-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-041-1


The Hilbert Coefficients of the Fiber Cone 775

By [26, 3.2] it follows that

red J[3] (I3) = 2 if a3(I) < 0 and red J[3] (I3) = 3 if a3(I) ≥ 0.

However using COCOA we have verified that I9 6= I6 J[3]. Thus a(I) = a3(I) ≥ 0.

The fiber coefficients are f0(I) = 17, f1(I) = 34, f2(I) = 17. So

f2(I) − f1(I) + f0(I) − 1 = −1.

6 Results When the Analytic Spread Is High

In this section we extend Theorem A and Theorem 5.5 to the cases when l(I) ≥ 3 and

l(I) ≥ 4, respectively. The main tool is the use of Rees-superficial sequences. The

utility of a Rees-superficial element in the study of fiber cones was first demonstrated

in [14].

Definition 6.1 An element x ∈ I is said to be Rees-superficial if there exists r0 ≥ 1

such that (x) ∩ Irms
= xIr−1ms for all r ≥ r0 and s ≥ 0.

The following was proved in [14, 2.8] for m-primary I in a local ring A. The same

proof works in general.

Proposition 6.2 Let (A, m) be a local ring and I an ideal. Let x ∈ I be a nonzero

divisor in R which is also Rees-superficial for I. Set (B, n) = (A/(x), m/(x)) and K =

I/(x). Then

ℓ
( In

mIn

)
− ℓ

( In−1

mIn−1

)
= ℓ

( Kn

nKn

)
for all n ≫ 0.

In particular fi(K) = fi(I) for i = 0, . . . , l(I) − 2.

The existence of a Rees-superficial element which is also regular follows from the

the following special case of a lemma due to Rees [23, 1.2].

Lemma 6.3 Let (A, m) be local and let I be an ideal in A. Let P be a finite set of primes

not containing Im. Then there exists x ∈ I and r0 ≥ 1 such that

(i) x /∈ P for all P ∈ P;

(ii) (x) ∩ Irms
= xIr−1ms for all r ≥ r0 and s ≥ 0.

Remark 6.4 If x ∈ I is Rees-superficial and a non-zero divisor, then it is easy to

check that x is I-superficial.

We say x1, . . . , xr ∈ I is a Rees-superficial sequence if xi is Rees superficial for the

A/(x1, . . . , xi−1)-ideal I/(x1, . . . , xi−1) for i = 1, . . . , r.

Remark 6.5 (i) If grade(I) ≥ r, then using Lemma 6.3 we can show that there

exists a Rees-superficial sequence x1, . . . , xr in I which is also a regular sequence.

(ii) In this case we can further prove (by using Proposition 6.2 repeatedly) that if

K = I/(x1, . . . , xr), then fi(K) = fi(I) for i = 0, . . . , l(I) − r − 1.
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We state our main results.

Theorem 6.6 Let (A, m) be local and let I be an ideal in A with l = l(I) ≥ 2 and

grade(I) ≥ l(I) − 2. Assume either reg2(G(I)) ≤ 1 or red(I) ≤ 1. Then f1(I) ≤
f0(I) − 1. Furthermore equality holds if grade(I) = l(I).

Proof If l(I) = 2, then we are done by Theorem A. If l ≥ 3 and as grade(I) ≥ l(I)−2,

by Remark 6.5(i) we can choose a Rees-superficial sequence x1, . . . , xl−2 which is also

a regular sequence (and so an I-superficial sequence). Set K = I/(x1, . . . , xl−2). Then

l(K) = 2.

If reg2(G(I)) ≤ 1, then by Observation 2.1 we get a(K) + 2 = reg2(G(K)) ≤ 1. So

a(K) < 0. If red(I) ≤ 1, then red(K) ≤ 1. So by [26, 3.2] we get a(K) < 0. Thus at

any rate a(K) < 0.

By Theorem A we get f1(K) ≤ f0(K) − 1. The result follows since by Remark

6.5(ii) we have fi(I) = fi(K) for i = 0, 1.

Corollary 6.7 Let (A, m) be a Cohen–Macaulay local ring of dimension d ≥ 2. If I is

m-primary and e2(I) = 0, then f1(I) = f0(I) − 1.

Proof First assume that d = 2. By Narita’s result [17] we get that if J is any reduction

of I, then red J[n] (In) = 1 for all n ≫ 0. Also as grade(I) = 2, by Theorem A we get

f1(I) = f0(I) − 1.

When d ≥ 3 we choose a Rees-superficial sequence x1, . . . , xd−2 which is also an

A-regular sequence (and so an I-superficial sequence). Set K = I/(x1, . . . , xd−2).

Note that e2(K) = e2(I) = 0. Also fi(I) = fi(K) for i = 0, 1.

Next we give an application of Theorem 5.10.

Theorem 6.8 Let (A, m) be a Cohen–Macaulay local ring of dimension d ≥ 3 and

let I be an m-primary ideal. If G(I) is Cohen–Macaulay and red(I) ≤ 2, then f2(I) ≥
f1(I) − f0(I) + 1.

Proof When d = 3, then the result follows from Theorem 5.10. If d ≥ 4, we choose

a Rees-superficial sequence x1, . . . , xd−3 which is also an A-regular sequence (and so

an I-superficial sequence). Set K = I/(x1, . . . , xd−3). Note that G(K) is Cohen–

Macaulay and the reduction number of K is ≤ 2. By Theorem 5.10 we have f2(K) ≥
f1(K) − f0(K) + 1. Also as fi(I) = fi(K) for i = 0, 1, 2 (Remark 6.5(ii)) we get the

result.

A Appendix: Minimal Reductions and Filter-Regular Elements

In this section we prove that if x◦ ∈ F(I)1 is F(I) filter-regular, then (xn)◦ ∈ F(In)1 is

F(In) filter-regular. This is used in proof of Theorem 4.4.

Proposition A.1 Recall that the following assertions are equivalent:

• x◦ ∈ F(I)1 is F(I)-filter regular;
• (0 : F(I) x◦)n = 0 for all n ≫ 0;
• x◦ is F(I)/H0

F(I)+
(F(I)) regular.
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For proof of the above equivalence see [26, 2.1]. It is perhaps better to see [1,

Exercise 18.3.8].

Remark A.2 By Proposition A.1 we get that if depth F(I) > 0 and x◦ is F(I) filter-

regular, then x◦ is F(I) regular.

For the definition of a filter-regular sequence see [1, 18.3.7]. We, however, are only

interested in a filter-regular element.

The relation between minimal reductions and filter-regular sequences first ap-

peared in the work of Trung [26]. We state one of his results [26, 3.8] in the form

we need.

Lemma A.3 Let I be an ideal with s = l(I) > 0. Then there exists a minimal

reduction J = (x1, . . . , xs) of I such that x◦1 , . . . , x◦s ∈ F(I)1 is an F(I)-filter regular

sequence.

We give an ideal-theoretic criterion for an element x◦ ∈ F(I)1 to be F(I)-filter

regular.

Proposition A.4 Let I be an ideal with s = l(I) > 0 and let x ∈ I \mI. The following

conditions are equivalent:

(i) x◦ is F(I) filter-regular.

(ii) (mI j+1 : x) ∩ I j
= mI j for all j ≫ 0.

Proof (i) ⇒ (ii) We assume (0 : x◦)n = 0 for all n ≥ c. Clearly mI j ⊆ (mI j+1 : x)∩I j

for all j. If a ∈ I j \ mI j and xa ∈ mI j+1, then we have x◦ • a◦ = 0. It follows that

j < c.

(ii) ⇒ (i) Conversely, assume (mI j+1 : x) ∩ I j
= mI j for all j ≥ c. Say a◦ ∈ F(I) j

is non-zero and x◦ • a◦ = 0. Then a ∈ (mI j+1 : x) ∩ I j . It follows that j < c. So x◦ is

F(I) filter-regular.

Corollary A.5 (Assume the hypothesis of Proposition A.4) If x◦ ∈ F(I)1 is F(I) filter-

regular, then (xn)◦ ∈ F(In)1 is F(In) filter-regular.

Proof Since x◦ is F(I) filter-regular, by Proposition A.4, there exists c > 0 such that

(mI j+1 : x) ∩ I j
= mI j for all j ≥ c.

So for j ≥ c we have (mI j+n : xn) ∩ I j
= mI j . Therefore for j ≥ c we obtain

(mIn( j+1) : xn) ∩ In j
= (mI(n j+n) : xn) ∩ In j

= mIn j .

Thus by Proposition A.4 we get that (xn)◦ is F(In) filter-regular.
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