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Abstract

We prove that any cyclic quadrilateral can be inscribed in any closed convex C1-curve. The
smoothness condition is not required if the quadrilateral is a rectangle.
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1. Introduction

To inscribe a quadrilateral Q in a Jordan curve is to find a nondegenerate scaling,
rotation, and translation which maps all of the vertices of Q to the curve.

Which quadrilaterals can be inscribed in any closed convex curve? Obviously,
the quadrilateral must be cyclic, that is inscribed in a circle. Such quadrilaterals
are characterized by a remarkable property that the sum of their opposite angles
is π . It turns out that for C1-curves this condition is also sufficient.

THEOREM 1. Any cyclic quadrilateral can be inscribed in any closed convex C1-
curve.

The C1-smoothness requirement is necessary in Theorem 1. For example, the
kite with angles π/2 and 2π/3 cannot be inscribed in the thin triangle with
angles π/10, π/10, 4π/5 (Figure 1). However, if Q is a rectangle the smoothness
condition can be relaxed.
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THEOREM 2. Any rectangle can be inscribed in any closed convex curve.

Figure 1.

In [8] V. Makeev conjectured that any cyclic quadrilateral can be inscribed
in any Jordan curve. He proved the conjecture for the case of star-shaped C2-
curves intersecting any circle at no more than 4 points. Theorem 1 proves
it for convex C1-curves. The example above shows that the conjecture fails
without the smoothness assumption. This example can be generalized to any
cyclic quadrilateral except for trapezoids. So, I. Pak [14] conjectured that
Makeev’s conjecture still holds for cyclic trapezoids even without the smoothness
assumption.

Makeev’s conjecture is a part of a substantial topic originating from the famous
question in geometry known as the Square Peg problem or Toeplitz’ conjecture:
Does every Jordan curve contain all the vertices of a square? In its general form
the Square Peg problem is still open. In the last hundred years it was positively
solved, however, for a wide variety of classes of curves. For instance, for convex
curves and later for piecewise analytic curves by A. Emch [1, 2], for C2-curves
by L. Šnirel’man [16], for locally monotone curves by W. Stromquist [15], for
curves without special trapezoids, for curves inscribed in a certain annulus, and
for centrally symmetric curves [13]. There were also high-dimensional extensions
of these results [4–6, 9]. For more details we refer the reader to the survey [11] by
B. Matschke.

Similar to the Square Peg problem, there exists the Rectangular Peg conjecture
stating that every Jordan curve contains the vertices of a rectangle with the
prescribed aspect ratio. A proof was claimed by H. Griffiths [3], but an error was
found later. For a discussion see [11, Conjecture 8]. The specific case of aspect
ratio
√

3 and ‘close to convex’ curves was solved by B. Matschke [10]. Theorem 2
proves the Rectangular Peg conjecture for the case of convex curves.

It is noteworthy that all of the proofs mentioned above use the topological
obstruction theory. Unfortunately, this approach fails in the more general cases.
The proof of Theorem 1 and 2 is based on a ‘nontopological’ observation first
made by R. Karasev, [7]. It allowed him, in particular, to prove the infinitesimal
version of Theorem 1. R. Karasev noticed and proved that during the rotation
of any three out of four vertices of a quadrilateral Q along a curve γ the fourth
vertex travels along a path bounding the same signed area as the original curve γ .
A similar idea was recently independently discovered by T. Tao who used it to
prove the Toeplitz’ conjecture for new types of curves [17].
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The results of this paper were independently obtained by B. Matschke, whose
preprint [12] appeared just a few days later than ours. It contains a stronger version
of Theorem 2, which is proved not only for rectangles but also for any cyclic
trapezoids.

2. The case of strictly convex C∞-curves

In this section we prove the following theorem.

THEOREM 3. Let Q be a cyclic quadrilateral and let γ be a closed strictly convex
C∞-curve. Then for any ε > 0 there is a cyclic quadrilateral Qε which is ε-close
to Q and can be inscribed in γ .

The proofs of Theorems 1 and 2 are obtained from Theorem 3 by ‘going to the
limit’ type argument in the next section.

Until the end of the section let us fix a closed strictly convex C∞-curve γ .
For a quadrilateral Q its drawing is the image of Q under some nondegenerate

scaling, rotation, and translation. If the angle of the rotation is α we also call it an
α-drawing.

LEMMA 4. Pick a vertex of a quadrilateral Q. For any angle α there is a unique
α-drawing of Q with all of the remaining 3 vertices being on γ .

Proof. The existence of a drawing follows by a simple continuity argument
similar to the argument in the proof of the following Lemma 6. The drawing
is unique because the vertices of two distinct homothetic triangles cannot lie on a
strictly convex curve.

For a vertex d of a quadrilateral Q denote by d(α) the position of d in the
α-drawing of Q with the remaining 3 vertices being on γ (see Figure 3).

LEMMA 5. Let Q be a cyclic quadrilateral. Then for any ε > 0 there is a cyclic
quadrilateral Qε which is ε-close to Q and such that d(α) is a closed C∞-curve
for any vertex d of Qε.

Proof. Let U be the space of ordered triples of pairwise distinct points of γ .
Consider the map f : U → S1

× S1 which sends a triple (x, y, z) to the pair
of angles ( 6 xyz, 6 yzx). Clearly, f is C∞.

Let abcd be the vertices of Q in the counterclockwise order. Then the
curve d(α) corresponds to the f -preimage of the pair of angles ( 6 abc, 6 bca).

https://doi.org/10.1017/fms.2018.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.7


A. Akopyan and S. Avvakumov 4

By Sard’s lemma the set of the critical values of f has Lebesgue measure 0, that
is, the set of cyclic quadrilaterals Q such that d(α) is not a C∞-curve also has
Lebesgue measure 0. Applying this argument to every vertex of Q we get the
statement of the lemma.

LEMMA 6. Let Q be a cyclic quadrilateral. Then there is a vertex d of Q such
that the angle at d is nonacute and d(α) contains a point either on γ or in the
exterior of γ .

Proof. Let abcd be the vertices of Q in the counterclockwise order.
There are two adjacent vertices of Q with nonacute angles because Q is cyclic.

Without the loss of generality let us assume that the angles at c and d are nonacute.
We may also assume that γ is tangent to the lines y = 0 and y = 1.

For t ∈ (0, 1) denote by at and bt the leftmost and the rightmost, respectively,
of the two intersections of γ with y = t . Denote by ct and dt the points such
that at bt ct dt is a drawing of Q. Note that ct and dt are above the line y = t , see
Figure 2.

Consider the case when t is very close to 1. Then 6 dtat bt is greater than the
angle between at bt and the tangent to γ at at , which places dt is in the exterior
of γ . Likewise, ct is also in the exterior of γ .

Consider now the opposite case of t being very close to 0. Then 6 dtat bt is less
than the angle between at bt and the tangent to γ at at . Also, the segment at dt

is ‘short’, that is, much shorter than the intersection of the interior of γ with the
line parallel to at dt and going through the common point of γ and y = 0. Which
means that dt is in the interior of γ . Likewise, ct is also in the interior of γ .

Let us now continuously decrease t from 1 to 0. At some moment one of the
vertices d or c is going to intersect γ while another one is still in the exterior of γ ,
or on γ . Without the loss of generality we may assume that the latter vertex is d .
Then d(α) contains a point either on γ or in the exterior of γ .

Figure 2. Figure 3.

https://doi.org/10.1017/fms.2018.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2018.7


Any cyclic quadrilateral can be inscribed in any closed convex smooth curve 5

Proof of Theorem 3. Choose a cyclic quadrilateral Qε as in the statement of
Lemma 5.

By Lemma 6, there is a vertex d of Qε with a nonacute angle and such that d(α)
contains a point either on γ or in the exterior of γ .

If d(α) intersects γ then we are done, so we may assume that d(α) and γ are
disjoint.

By the Jordan curve theorem, d(α) lies in the exterior of γ . On the other hand,
γ lies in the interior of d(α). Indeed, as we revolve once along d(α), the diagonal
bd of the corresponding α-drawing of Qε must also complete a 2π rotation. This
would be impossible if the interiors of γ and d(α) were disjoint.

By the following lemma, the curve d(α) has no self-intersections in the exterior
of γ , that is, no self-intersections at all.

LEMMA 7. Let abcd and a′b′c′d be two distinct drawings of the same cyclic
quadrilateral with a nonacute 6 d. Suppose that d is outside of the convex hull of
the points a, b, c, a′, b′, and c′. Then six points a, b, c and a′, b′, c′ cannot be in
strictly convex position.

It is left to note that the area of d(α) must then be greater than the area of γ
which contradicts to the following lemma proven in [7].

LEMMA 8. Let Q be a cyclic quadrilateral and let d(α) be a C∞-curve for some
vertex d of Q. Then the signed area of d(α) is equal to the area of γ .

3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. Let γ be a closed convex C1-curve and let Q be a cyclic
quadrilateral. Choose a sequence γi of closed strictly convex C∞-curves
converging to γ pointwise. By Theorem 3, there is a sequence Qi of cyclic
quadrilaterals converging to Q and such that Qi can be inscribed in γi for each i .

Let ai , bi , ci , di ∈ γi be the vertices of Qi in the counterclockwise order. By
passing to the subsequences, we may assume that the sequences ai , bi , ci , and di

have limits, a, b, c, and d , respectively.
The quadrilateral abcd is inscribed in γ and is obtained from Q by a

composition of scaling, rotation, and translation. It remains to prove that the
scaling is nondegenerate.

Assume to the contrary that a = b = c = d . Then both ai bi and bi ci converge to
the tangent to γ at a = b = c = d . That is, 6 ai bi ci converges to either 0 or π . On
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the other hand, 6 ai bi ci must converge to the corresponding angle of Q. Angles of
Q are neither 0 nor π , which leads to a contradiction.

Proof of Theorem 2. Let γ be a closed convex curve and let Q be a rectangle. Let
γi , Qi , ai , bi , ci , di , a, b, c, and d be as in the proof of Theorem 1.

Again, it remains to prove that the rectangle abcd is nondegenerate. Assume to
the contrary, that a = b = c = d .

The vertices of Qi divide γi into 4 arcs which we denote in the
counterclockwise order by Ai , Bi , Ci , and Di , see Figure 4. The lengths of
3 out of 4 arcs converge to 0. Without the loss of generality we assume that the
lengths l(Ai) and l(Ci) of Ai and Ci , respectively, converge to 0.

Denote by L Ai and LCi the tangents to Ai and Ci parallel to ai bi , see Figure 4.
The distance between L Ai and LCi is less than l(Ai) + l(Ci) + |bi ci |, that is, it
converges to 0. Which contradicts to the fact that the curve γi lies between L Ai

and LCi for each i .

Figure 4.

4. Proof of Lemma 7

Assume to the contrary of the statement of the lemma that the points a, b, c, a′,
b′, and c′ lie in strictly convex position.

Draw the lines containing the sides of the triangle abc, and denote the angular
regions of the plane formed by them as shown in Figure 5. At first, let us note that
the point a′ cannot belong to the region Ca , because in that case a is covered by
the triangle a′bc. Analogously, the points b′ and c′ cannot belong to the regions
Cb and Cc, respectively.

Denote by Ω the circumcircle of abcd and let ` be the tangent line to Ω at a.
Together with the lines ab and ac the line ` forms two additional angular regions
denoted by C ′b and C ′c, respectively, see Figure 5.

It is easy to see that the composition of a homothety and a rotation around d
which sends a to b and a′ to b′ also sends C ′b to Cb. So, if a′ lies in C ′b then b′ lies
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in Cb, which we already showed to be impossible. Therefore a′ cannot lie in C ′b.
Analogously, a′ cannot lie in C ′c.

We proved that a′ cannot lie in the union of Ca , C ′b, and C ′c, which means that
a′ and d lie on the same side of the line ab. Similarly, a and d lie on the same
side of the line a′b′. From the latter fact we conclude that a′ lies in the exterior of
the circle ω passing through d and tangent to ab at a (Figure 6). To see this the
reader might consider that a′b′ passes through a iff a′ belongs to ω.

We know that d lies outside of the convex hull of a, b, c, a′, b′, and c′ and that
6 cda = 6 c′da′ > π/2, so 6 ada′ < π/2. Thus, without the loss of generality we
may assume that the counterclockwise rotation sending da to da′ is at most π/2.
Therefore, a′ lies in the angular region formed by 6 cda.

This region is covered by the four grey zones in Figures 5–8. Let us give a
verbal description of the zones and prove that a′ cannot lie in them. This will
conclude the proof of the lemma.

Figure 5. Figure 6.

• The grey zone in Figure 5 is the halfplane bounded by ab and not containing d .

• The grey zone in Figure 6 is the interior of ω.

We have already proved that a′ cannot lie in the grey zones in Figures 5 and 6.

• The grey zone in Figure 7 is the intersection of the halfplane bounded by ab
and containing d , the exterior of ω, and the interior of Ω . Suppose that a′ is in
that grey zone.

Denote by x the point of intersection of the line ab with the circle going through
a, a′, and d. Point x is inside of the segment ab. From the angular property
of an inscribed quadrilateral it follows that b′, a′, and x lie on the same line.
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So, the intersection point x of ab and a′b′ lie inside of the segment ab and
outside of the segment a′b′ which contradicts to the convex position of a, b, a′,
and b′.

• The grey zone in Figure 8 is the intersection of the halfplane bounded by `
and containing c, the halfplane bounded by ac and not containing d , and the
exterior of Ω . Suppose that a′ is in that grey zone.

Denote by y the point of intersection of the line ac with the circle going through
a, a′, and d . Point y is outside of the segment ac. From the angular property of
an inscribed quadrilateral it follows that c′, a′, and y lie on the same line. So,
the intersection point y of ac and a′c′ lie outside of the segment ac and inside
of the segment a′c′ which contradicts to the convex position of a, c, a′, and c′.

REMARK 9. Lemma 7 does not hold if the quadrilateral is not assumed to be
cyclic (Figure 9) or if the angle at d is allowed to be acute (Figure 10).

Figure 7. Figure 8.

Figure 9. Figure 10.
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