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Abstract

We construct linear maps from the spaces of quasimodular forms for a discrete subgroup I" of SL(2, R)
to some cohomology spaces of the group I' and prove that these maps are equivariant with respect
to appropriate Hecke operator actions. The results are obtained by using the fact that there is a
correspondence between quasimodular forms and certain finite sequences of modular forms.
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1. Introduction

It is well known that there is a Hecke equivariant map from modular forms of a given
weight for a discrete subgroup I' of SL(2, R) to cocycles in some cohomology group
of I', which determines the Eichler—Shimura isomorphism (see, for example, [3]). The
goal of this paper is to study a quasimodular analogue of such a map.

Quasimodular forms generalise modular forms and were introduced by Kaneko and
Zagier in [4]. Various arithmetic and geometric aspects of quasimodular forms have
been investigated actively in recent years (see, for example, [2, 6, 8, 10, 12]). Given
integers m and A with m > 0, a holomorphic function f on the Poincaré upper half-
plane H is a quasimodular form for I' of weight A and depth at most m if there are
holomorphic functions fy, fi, ..., f,, on H such that

az+b

D=h@+ —=h@+ o+ (=) o

cz cz+d

(cz+
cz+
for all ze H and (f Z) el'. It is known that there is a correspondence between
quasimodular forms and certain sequences of modular forms (see also [5]). More
precisely, a quasimodular form can be expressed as a linear combination of derivatives
of the corresponding modular forms.
Hecke operators play an important role in the theory of modular forms or more
general automorphic forms, and they can be extended to the case of quasimodular
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forms. If G"*(C?) denotes the complex vector space C**! equipped with the I'-module
structure given by the nth symmetric tensor representation of I', then a modular form
of weight n + 2 determines a cocycle in the cohomology group H'(T', &"(C?)), which
can be used to establish the Eichler—Shimura isomorphism. Such a map allows us to
introduce Hecke operators on the cohomology space of the form H!(I", *(C?)) in such
a way that the given map is Hecke equivariant. Hecke operators on the cohomology of
more general groups were also investigated by Rhie and Whaples in [11].

In this paper we construct linear maps from the spaces of quasimodular forms for
a discrete subgroup I' of SL(2, R) to some cohomology spaces of the group I' with
coefficients of the form &/(C?) for some nonnegative integer ¢ and prove that these
maps are equivariant with respect to appropriate Hecke operator actions. The results
are obtained by using the above-mentioned correspondence between quasimodular
forms and certain finite sequences of modular forms.

2. Quasimodular forms

Let H be the Poincaré upper half-plane on which the group SL(2, R) acts as usual
by linear fractional transformations. Thus we may write

az+b
cz+d

Y

forallze H and y = (“ Z) € SL(2, R). For the same z and vy, we set

Cc

I, )=cz+d, K(y,2)= o+ d 2.1

The resulting maps J, & : SL(2, R) X H — C can be shown to satisfy
30V, 29 =30. Y3V, 2), (2.2)
Ky, 2 =30/, 7RG, 2) + /(Y. 2), (2.3)

for all y,y" € SL(2,R) and z € H.
Let R be the ring of holomorphic functions f:9H — C satisfying the growth
condition

Iz \7
1+ Izlz)
for some v > 0 (see, for example, [7, Section 17.1] for a more precise description of this
condition). We fix a nonnegative integer m and denote by R,,[X] the complex vector
space of polynomials in X over R of degree at most m. If a polynomial ®(z, X) € R,,[X]
is of the form

@) <
Oz, X) = ). ¢(X" (24)
r=0

https://doi.org/10.1017/5S0004972711003054 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711003054

(3]

152 M. H. Lee
and A is an integer with A > 2m, we introduce two additional polynomials
EYD)(2), (A D)(2) € Ru[X],
defined by
GO X) = ) r X, MO X) = ) MX, 25)
r=0 r=0
where
5oL g 1 8
Tl L a2 j -y
r _1 j
gr=@+2r=2m-1) ) D =it
, J!
j=0
XQr+d=2m—j-2)4)
foreachr€{0, 1, ..., m}. These formulas determine isomorphisms
A E": Ry[X] = Ryl X] (2.6)
with
A =g" Q2.7)
(see [5)).
Giveny € SL(2,R), 1€ Z, f € R and O(z, X) € R,,[X] as in (2.4), we set
(f i@ =30, 27 f(r2),
@[ NG X) = Y (@ luar NEX, (2.8)
r=0
2.9)

(@ I, )z X) = 3y, 2) " D(yz, 3(7, 2*(X = K(y, 2)))

for all z € H. Using (2.2) and (2.3), it can be shown that the operations |, If and ||,
determine right actions of SL(2, R) on R for the first one and on R,[X] for the other

two. Furthermore, the two actions on R,,[X] are compatible in such a way that
(E70) [l V) X) = EJ (D [y, V(@ X,
(A7D) [}, V) X) = AT(@ ]|, ¥)(z. X)

for all y € SL(2, R), where E” and A"} are the isomorphisms in (2.6) (see also [5]).
We now fix a discrete subgroup I' of SL(2, R) and consider the restrictions of the

SL(2, R) actions described above to IT.
DeriniTioN 2.1. (1) An element f € R is a modular form for T of weight A if it satisfies

flhay=r

forallyeT.
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(i) A modular polynomial for T of weight A and degree at most m is an element
F(z, X) € R,,[X] satisfying
Flyy=F

forall y eT.
(iii) An element ®(z, X) € R,,[X] is a quasimodular polynomial for T" of weight A
and degree at most m if it satisfies

Ol y=2
forall y eT.

We denote by M,(I') the space of modular forms for I' of weight A and by MP7(I')
and QP7(I") the spaces of modular polynomials and quasimodular polynomials,
respectively, for I' of weight A and degree at most m. From (2.6) we see that the
maps E7 and A’} induce the isomorphisms

Y MPL,, @) — oPYI), AY:QP}(I)— MP,, ) (2.10)
for each A € Z with A > 2m.

DeriniTioN 2.2, Given an integer A, an element ¢ € R is a quasimodular form for T of

weight A and depth at most m if there are functions ¢y, ¢1, . . . , ¢,, € R satisfying
G L@ =) 6K, 2.11)
r=0

for all z € H and y € I, where K(y, z) is as in (2.1). We denote by QM"'(I") the space
of quasimodular forms for I of weight A and depth at most m.

Let ¢ € R be a quasimodular form belonging to QM’(I') satisfying (2.11). Then
it is known that for O < k < m the function ¢, is a quasimodular form belonging to
QMT_‘Z"k(l") (see, for example, [7]). In particular, since quasimodular forms of depth
0 are modular forms, ¢,, is a modular form belonging to M;_,,(I'). We define the
polynomial (] #)(z, X) € R,,[X] associated with ¢ by

@G X) = Y (DX, (2.12)
r=0

Since ¢ determines the functions ¢, uniquely, Q7'¢ is well defined. Furthermore, it can
be shown that formula (2.12) determines the isomorphism
Q) QMY(T) — QPY(D) (2.13)
for each A € Z whose inverse is given by
@)@z, X)) = 0(z,0)
for ®(z, X) € QP (I') (see also [1]). For 0 < k < m we define the projection map
I : Ru[X] =R (2.14)
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by setting
I D = ¢ (2.15)

for ®(z, X) as in (2.4). Then
I} (MP}(D) € Maok(D),  TI(QP(I)) € QM5 (D); (2.16)
hence by restriction we obtain the maps
I - MPY(ID) = Ma(@),  TI - QPF(I) — QM35 (D).

3. Group cohomology

Given a positive integer n, let {ej, ..., e,.} be the standard basis for the complex
vector space C"*!, whose elements are regarded as column vectors, and set

(2) = ; 2k e eCmt!
for (2}) € C2. Then the nth symmetric tensor power
0n:GL2,C) > GL(n+1,C)
of the standard representation of GL(2, C) on C? is given by
pn(y)(Z) = (7(2))

for all y € GL(2, C). We now define the vector-valued function v, : H — C"*! on H

by
Z n n o n
v,u(2) = (1) = Z 7 Ferr = Z Fen i (3.1

for all z € . Then, fory = (* 4) € SL(2, R),

b n
Pu(Y)V(2) = (Z’j: d) = (cz+ d)"Va(y2) = 37, 2)'Va(y2), (3.2)

where 3(y, z) is as in (2.2).
We denote by S"(C?) the complex vector space C"*! equipped with the structure of
a GL(2, C) module given by

(7, v) - (det y) ™ p,(y)v

for y € GL(2,C) and v € C"!. If I' is a discrete subgroup of SL(2, R) c GL(2, C) as
in Section 2, its first cohomology group with coefficients in &"(C?) can be described
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as follows. The set Z!(I', @(C?)) of 1-cocycles consists of all maps u:T" — C"*!
satisfying

uyy') = u(y) + pa()uy’) (3.3)
for all y, 9’ €. Given an element vy € C**!, the set B/(I', &"(C?)) of coboundaries
consists of the maps v : I' — C"*! such that

v(y) = (pa(y) — Dvo

for all y € T', where 1 is the identity map on C"*!. Then the first cohomology group of
I" with coefficients in "(C?) is given by

Z\(I, &"(C?)

1 ner2yy —
HI(T, &(C) = s o

(3.4)

We now fix a nonnegative integer m and a point zy € H and consider a quasimodular
form ¢ € QM’) (I') satistying (2.11) with A = 2v for some integer v > m. If k and r are
integers with 0 < r <k < m, we set

2(k+v—m—1) 20
—k ¢ 2k+v—m)
FLOm= ), f O i D2 2ty g1 dze CHEPTT (35
=0 20
for all y € T, where {ey, . . ., €4+y_m)-1} is the standard basis for C**+="~1 Note that

the integral is independent of the choice of the path zg — yzo because the functions ¢
are holomorphic. We now define the map

L, (@) : T — c2hrrmm- (3.6)

associated with ¢ by

(=1

r!

Qk+v—m—1)=nm—k+ T (y) (3.7)

m,y

k
ANOGIEDY
r=0

forall y eT.

TueorREM 3.1. The map .[:’,‘n’v(qb) in (3.6) is a cocycle belonging to Z'(T', &2 = (C?)),
which induces a complex linear map

Ly, oMy () —» H'(T, &*=m=D(c?y) (3.8)

sending a quasimodular form ¢(z, X) € QM) (T') to the cohomology class of .[j’,‘n’v(¢) in
Hl (F, 62(k+v—m—l)(©2)).

Proor. Let ¢ € QM7 (I'), so that @) (¢) € QP% (I'). Then by (2.10) the polynomial
(A3, 0 Q’Z"V)(¢) belongs to MP’Z"(V_m)(F); hence, from (2.16),

(IL o AT, 0 Q3)(}) € Mosy—m)(D)
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for 0 < k <m. If ¢ satisfies (2.11) with A = 2y, using (2.5), (2.12) and (2.15),

(I 0 A%, 0 @) = 2k +v—m) — 1) (3.9)
S (1Y
—Qk+v—m=1)=lm—k+ng, .
~r!
On the other hand, using (3.1), (3.5) and (3.7),
k  2(k+v-m-1) (_1),,
L=, >, - Qhktv=m=1)=nlm—k+n)
=0 (=0 :
Y20 o P
X ¢r;—k+r(z)z €2(k+v—m)—t-1 dz
20
S (1Y
=Y Qv —m=1)=n)lm—k+r)!
r!
r=0
e
X f ¢,1:,k+r(z)v2(k+v—m—l)(Z) dz.
20
From this and (3.9),
7o (T o A, o QI)(#)()
k k 2 © Sy
= - dz. 3.10
fuom= [ ST @ ds (10
To verify the cocycle condition (3.3) for L’fn’v(@, we set
(T} o AT o Q7 )(9)
= L L Moesy—m (D). 11
Ji 2ty —m) -1 € Mo ry—my() (3.11)
Then, fory, y’' €T,
. YY'20
L, (DY) = Je@Vagerv-m-1)(2) dz
20
Y20

Y 20
= Jie@Voery-m-1)(2) dz + fV Ji@Vapry-m-1)(2) dz

20 Yzo0

= Lﬁl,v((ﬁ)(’)/) + fy f}C(yz)VZ(k-}-v—m—l)(')/Z) d()’Z)

However, using (3.2),

7 D s reme )y V) Vatkry-m-1) (2). (3.12)

V2(k+v—m—l)(yz) = 3(73
Using this and the relations

fi(y2) =30, " fi(z),  d(yz) = 3(y,2) % dz,
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we see that
Je YD Vagery-m-1)(¥2) d(¥2) = Pagesv-m-1) (V) Ji(@)Vaiktv-m-1)(2) d(2); (3.13)
hence, from (3.10),
Y 20 Y20
Je D Vagesv-m-1)(¥2) d(¥2) = p2(k+v-m-1)(¥) Je@Vagesv-m-1)(2) d(2)
2 2 (3.14)
= Paerv-m-1)(¥) Ly, @)Y
Thus
L DY) = Ly (DD + prcksr-m-n P Lo (DG,
and therefore L’,‘,,,V(gb) satisfies the cocycle condition (3.3). O

From Theorem 3.1 we obtain the complex linear map
P £, - om0 - ) H'@, SEmb ey (3.15)
k=0 k=0

for each v > m.

4. Hecke operators

We extend the formulas for J and & in (2.1) from SL(2, R) to the group GL*(2, R)
of 2 X 2 real matrices of positive determinant. We also extend the operations |, and ||,
of SL(2, R) in (2.8) and (2.9) to those of GL*(2, R) by setting

(f h @)(2) = (det @)*3(a, 2) ™ f(az)
(F |l @)(z, X) = det(@)*J(a, 2)™
x F(az, det(@)'3(a, 2)*(X — K(a, 2))) 4.1)

forallze H,a € GL*(2,R), f € Rand F(z, X) € R, [X]. _

Let I' be a discrete subgroup of SL(2,R) as in Section 2, and let I' be its
commensurator, that is, the set of elements g € GL(2, R) such that glg™! NT has finite
index in both I' and gI'g™". Given « €T, the double coset I'al” has a decomposition of
the form

Tal = ]_[ Ta; 4.2)
i=1

for some a; € GL*(2,R) with i=1,...,s. For the same @ and an integer k, the
corresponding Hecke operator

Ti(@) : Mi(I') = M(I')

on modular forms is given by

T@)f = ) (f k@, (4.3)

i=1
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for f e Mi(I') (see, for example, [9]). Such operators can be used to introduce the
Hecke operator
T (@) : MP"(T') — MP"(I')

on modular polynomials by
(TY(@F)@ X) = ) (Tral @I F)QX” (4.4)
r=0

for F(z, X) € MP7(I'), where the projection maps IT}" are as in (2.14). On the other
hand, for quasimodular polynomials the Hecke operator

T4 (a): QP(T) — QPY(T)
is given by

(TH@F) X) = Y \(F Il )z X) .5)
i=1

for F(z, X) € QP(I'), where ||, is as in (4.1) (see [1]). Using this and the isomorphism
in (2.13), we can also introduce the corresponding Hecke operator

T9(@): QM"(T') — OM"(I)

on quasimodular forms by setting

To@)f =) @)@ ) L) = (@) o TH@) o @1)f

i=1
for f € QM"'(I'), so that
TP(@) o Q) =Q) o T(). (4.6)

Tueorem 4.1. The linear isomorphisms EY and A"} in (2.10) satisfy

Ti(@) o B =Eo TV, (@), TV, (@)oAr=A"oT () (4.7)

for each a € T.
Proor. Given a modular polynomial of the form
FzX)= ) (X € MP}(D),
r=0
from (2.5) we see that

EF)EX) = ) fFX,
r=0
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where

=\ 1 0
7 _ZO: PN =2r — j— 1)vfm =i’

]:
For a € F, using (4.1) and (4.5),

(T7(@) o ENF)(z X)

= Z(det a3, 27
i=1
X (EYF)(@nz, (det @)™ I, 2)°(X ~ K(@;, 2))
= > > (det a3, X = K@, Y £ (@)

i=1 r=0
s

= Z Z Z<deta V2 S, 207 ‘( )( (@i, 2) X R (i2)

r=0 k=0

S m m

= (1)~ k( )(deta NS (@, 2 R (@, 2) 7 R (@i XE
i=1 k=0 r=k

Hence

N m

m_ m-r d A/2-r(_1yk
(@ @o=DPE =Y 313 3 [ Y

11 A1=2r—i—1)!
py rljl(d-2r—-j—1)!

% (al’Z)Zr /lR(a Z)r kf(]) (a Z)Xk

m—r—j
— s Zm:mzfmi—r r+k (detai)fl/Z—r—k(_l)r
Hag g\ k)erbhia-2r-2k-j- 1!
X\S(a( Z)2r+2k /IR(O’,,Z) f(j)

ke ](azZ)X

which can be written in the form
(T} 0 E})F)(z, X)

s m m—k Zé’: (- j+k (_l)f—j(det a,l,)/l/Z—k—(’+j
k= j+ A+ 2k—20+ 1)

(4.8)
i=1 k=0 ¢=0 j=0

x J(al’z)2k+2[ 2j— /IR(a,l Z)l’ ]f(])k [((}.’,Z)X

by using £ = j + r. On the other hand, from (4.4),

T (@F (@ X) = ) (Taai-am(@)fODXF
k=0

= 2 i(fk Lis2k—2m @) () XE.

i=1 k=0
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Thus, if we set
ok = Z(fk [r2k—2m @)
i=1
and use (2.5), then

m m—k
1
v—m M a o .
o TH ) (@)F(z, X) = 2. ; O ar = X
s m m—k
1 dt .
- Y _g(fm—k—l’ [a—2k—2¢ a/,-)X .
i=1 kz(;fz:(;km(/l 2k—€-1'dz

Note, however, that

A=2k—-€-
(fmkél/l 2%- 2(0/,)—2( D= ( o )(dt 2-Crjk

x 3, 2R (@, Y (@i2).

Thus

s m m—k ¢ i l_/l/2—€+j—k A=k —t—1
2} o TY,,(@)F(z, X) = Z Z Z ( ) (det ;) ( . )
j=0

KA =2k —{—1)! t—j
X\S(CY Z)2k+2£’ 2j— AR((Z Z)f ]f(j)k g(CVzZ)Xk

which can easily be shown to coincide with (4.8); hence we obtain the first relation
in (4.7). The second relation follows from this and (2.7). O

From (4.4), (4.6) and (4.7) we see that the diagram

m

omra@) -~ opnay M mpr

Tf(a)l Tf(a)l T%m@l

omra@) -~ opnay M ppr

oo,
() —— M0, (D)
Ty 2m+2r(a)l (4‘9)

Hm
A- 2m(r) —M A 2m+2r(r)

is commutative for each o € T and r € {0,1,...,m}.

We now describe Hecke operators on cohomology. Given an element « el c
GL*(2,R) such that the corresponding double coset has a decomposition as in (4.2),
the corresponding Hecke operator on the cohomology group H'(I', &"(C?)) in (3.4)
can be determined as follows. If y € T, since ['al"y = I'al’, the decomposition in (4.2)
can be written as ;

Ial = U Ta;y;
i=1
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hence, for 1 <i<s,

a;y = &i(Y)aie) (4.10)
for some element &;(y) € I. We note that the set {1, . . . , @y} 15 @ permutation of
{a1, ..., a,}. Then the Hecke operator Tf (@) on the cohomology space H'(T', &"(C?))
is given by

(T @@)N) = ) (det @), (@(&(r) 4.11)
i=1
for each 1-cocycle ¢ and y € I (see [11]).

Tueorem 4.2. The linear map LY, , withk, v € Z and 0 < k <m < v in (3.8) satisfies
Lfn,v ° TZQV = T{{kﬂ/—m—l)(a,) ° ‘Elr(n,v

foreach a € T.

Proor. Given e el and k,veZ with 0<k<m<v, from the commutative
diagram (4.9) we obtain

Togkry-my(@) o I o A%, 0 @5, =TI} 0 AT 0 @5, © TQ (). (4.12)

Let ¢ € QM) ('), and let fi € Mojsy—m)([') be the associated modular form given
by (3.11). Using (3.10), (3.12) and (4.12) and assuming that the double coset I'al’
has a decomposition as in (4.2),

L (T2 (@)

Y20

= (Toky—m) (@) fi) (@) V2 (k4 v—m—1)(2) dz

20

s Y20
= Z(det @S (a, 7) 2R f Jil@iD)Vagay—m-1)(2) dz
i=1 20

S 20
= Z(det ) " 0g sy (@) fV Ji(@id) Vapsy-m-1y(@iz) d(a;z)
i=1 20

Y20

= Z(det ) " 0oy -1y (@) ! f Je(@Voiry-m-1)(2) dz
p

;zo

for all y €T. Since a;y = &(y)ai(,) by (4.10), the above integral can be written in the

form
Y20 f i(Y)iy)Z0 fw
(Vi) 2o Qi()20
= f’ v m &) f
20
i(y)20
(p2(k+v m-1)(&(¥)) f f
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However, using (3.12), (3.13) and (3.14),
&i(Y)iy)20 i(y)20
( f —P2(k+v-m-1)(&i(Y)) f )fk(Z)VZ(kJrvfmfl)(Z) dz
20 20

(V)i 20 Qi()20
= f Je@Vary-—m-1)(2) dz — f Ji&EWNDVoksy-m-1)(E(Y)2) d(Ei(y)2)

20 20
i(V)iy)20 (Vi) 20
= f Je@Voery-—m-1)(2) dz — f Je@Vaey-m-1)(2) dz
20 &z
&i(¥)zo
= f Fe@Vaar-m-1y(2) dz = L}, () E)).
20
On the other hand,

()20 ;20
(Pz(kw—m—l)(fi()’)) f - f )fk(Z)Vz(k+v—m—1)(Z)(Z) dz
20 20
= P2k tv-m—- 1) @DP2k -1y Y )P2 kv (Xi))

Ti(y)20
X f Ji@Vogry-m-1y(z) dz

20

Q20
- f Ji@Vairy-m-1)(2) dz.

20

Using the above relations, (4.11) and the fact that det o, = det a;,

L (TE(@)p)(y)

= > (det @) " popey o (@) L, (BED))
i=1

s
fetv— .
+ P2xktv-m-1)(Y) Z(det @ity)) " P2t v-m-1)(@icy)
i=1

@i(y)20
X f Je@Vory-—m-1)(2) dz

20

(det @) ™ 02ry-m-1y(@i) " Je@Voirv-m-1)(2) dz

i=1 20
= (T3trrom1)(@ Ly (D)D) + (O20kv-m-1)(¥) = D,

where 1 is the identity map on C2*+v="+1 "and

S ;20

;20

u= Z(det ) 0y -mey (@)™ Ji@Vary-m-1)(2) dz.

i=1 2

Hence L’,‘,,,V(TZQV (@)¢) and (Tgk +V_m_l)(cx)Lﬁw(gb)) belong to the same cohomology
class, and therefore the proof of the theorem is complete. O
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If the Hecke operator Do Té’({k ov-m-)(@) oON Do H 1(F, 62("”‘.’”‘1)(@2)) is
defined componentwise, then we see from Theorem 4.2 that it is compatible with the
Hecke operator TZQV (@) on QM3 (I') under the map EDZ:O L,’;,V in (3.15). Thus we
obtain the commutative diagram

n k
@ k=0 'Lm,v
- >

QMZ:,(F) @Z’:O Hl(l", 62(k+v—m—1)(62))

T sz (a)l \L @Tzo Tzh('kw-m-l)(“)
M™ (T 692120 'E{(”*V n 1 2(k+v-m—1) (2
Q 2V( ) I @kzo H (r9 6 (C ))

foreach @ € I' and v > m.

(7]
(8]

[10]
[11]

[12]
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