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0. Introduction

This work grew out of our attempt to understand the role of non-abelian unramified
coverings in the second author’s counterexample to the Hasse principle which could
not be explained by the Manin obstruction [Sk]. Suppose X is a variety over a
number field & which has points in all the completions of k. It has become clear
that given a torsor ¥ — X under a possibly non-abelian algebraic group G, one
can still apply the same descent procedure as in the classical case of elliptic curves.
It consists of ‘twisting’ ¥ — X by a cocycle ¢ € Z'(k, G), and determining the
set of cohomology classes [¢] € H'(k, G) such that the twisted torsor Y has points
everywhere locally. This set is a generalization of the Selmer group related to an
isogeny of elliptic curves. If X is proper and G linear, then this ‘Selmer set’ is
contained in an explicitly computable finite subset of H'!(k, G). If the Selmer set
is empty, then X has no k-rational point. We shall refer to this as the descent
obstruction given by the torsor Y — X. One difference with the case of abelian
groups considered in the descent theory of Colliot-Théléne and Sansuc [CS] is that
Y? is a torsor under an inner form G° of G, and not under G itself (Subsection 4.1).
The example mentioned above can be explained in this framework with a certain
finite nilpotent group G (Subsection 4.3).

The connection of this obstruction for G abelian with the Manin obstruction to the
Hasse principle which uses the Brauer—Grothendieck group Br X = Hézt(X , G, was
also studied by Colliot-Théléne and Sansuc in [CS]. Generalizing one of the main
results of [CS], one proves that the abelian descent obstruction is equivalent to
the algebraic part of the Manin obstruction, that is, the obstruction given by the
subgroup of Br X consisting of elements killed over an algebraic closure of k&
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(see [Sk], Theorem 3, and Theorem 4.9 below). It is known that elements which
survive can produce a nontrivial obstruction [Ha96]. We prove that even such a
‘transcendental’ Manin obstruction can be realized by non-abelian torsors (assuming
the standard conjecture that Br X coincides with the group of similarity classes of
Azumaya algebras on X, see Theorem 4.10). Thus the obstruction to the Hasse
principle on X related to all possible X-torsors should indeed be stronger than
the Manin obstruction.

The situation with weak approximation is similar. A smooth and proper k-variety
X with a k-point and non-abelian geometric fundamental group, under some
conditions (for example, if H'(X, 0) = H*(X,0) = 0) always has adelic points
satisfying the Brauer-Manin conditions but which are not in the closure of
the set of k-points [Ha99]. Here again it is non-abelian torsors that provide finer
conditions for an adelic point to be in the closure of X (k) (Subsections 4.2 and 5.2).

So far we have discussed the obstructions to the Hasse principle and weak
approximation for a variety over a number field & related to an already given torsor.
In the literature one also finds obstructions to the existence of rational points over
arbitrary fields; they can be realized as classes in the second abelian or non-abelian
Galois cohomology sets, or as obstructions to descending an X-torsor, where
X = X x; k, to an X-torsor. In [CS] one encounters the obstruction for the existence
of an abelian torsor of given ‘type’; in fact one can regard it as the obstruction for a
‘descent datum’ on an X-torsor to come from an X-torsor. (If H'(X,G,) = Kk
and Pic X is of finite type, then the finest of these is the obstruction for the existence
of a universal torsor.) When X is a homogeneous space under a k-group G with
geometric stabilizer H C G, Springer [Sp] constructs a class in the second Galois
cohomology set with coefficients in an appropriate lien on H (k) which is the
obstruction to lifting X to a k-torsor under G. Historically, the first obstruction
of this kind known to us is given by the exact sequence of the étale fundamental
group of X constructed by Grothendieck in [Gr]. This sequence splits if
X (k) # 0, which can be interpreted as the neutrality of the corresponding 2-cocycle.
We formulate a uniform approach to such obstructions in terms of group extensions
of the Galois group of k (Section 2), and study their interrelations. The splitting of
the exact sequence of fundamental group implies that Springer’s obstruction
disappears ([Sp], Theorem 3.8). We prove that going over to an open subset of
X we have a similar implication for the abelian obstruction of Colliot-Théléne
and Sansuc (see Section 3).

The second Galois cohomology set can also be used to deal with the homogeneous
spaces constructed by Borovoi and Kunyavskii (Subsection 5.3).

1. Preliminaries
1.1. NOTATION AND CONVENTIONS

In this paper k is a field of characteristic zero with an algebraic closure k. Let
I' := Gal (k/k) be the absolute Galois group of k. A k-variety is a separated k-scheme
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of finite type. The group I is equipped with its profinite group topology and the set of
l_c-points of a I_c-variety is equipped with the discrete topology.

An algebraic k-group is a k-group scheme which is a k-variety. An algebraic group
G over k is linear if it is affine as a k-variety. It is of multiplicative type if the l_c-group
scheme G:= G x;k is a subgroup of G for some n >0, where G, is the
multiplicative group.

For any connected scheme X equipped with a geometric base point X, we let
n1(X, X) be the associated étale fundamental group (up to inner automorphisms,
it is independent of X). Let n2°(X) be the abelianization of m;(X, X) in the category
of profinite groups. It is independent of the base point. We write
K[XT* := HY(X x4 k, G,,) for the group of invertible functions on X x; k. If Y is
an X-scheme (resp. an X-group scheme), we shall denote by Aut(Y/X) (resp.
Aut #(Y/X)) the group of X-automorphisms of Y (resp. the group of
X-automorphisms of Y which are compatible with the group scheme structure).

CONVENTION. We write Y, Z, G, ... for k-varieties which are not necessarily
obtained by extension of scalars from varieties over k, though this may be the case.

When k is a number field we denote by A, the ring of adéles of k, by k, the
completion of k at the place v, and by O, the ring of integers of k,. Let Q be
the set of all places of k. If X is a k-variety, we write X(Ay) for the set of adelic
points of X. If we further assume that X is proper, then X(Ay) is just
[1,cq X(ky) equipped with the product of v-adic topologies.

Let G be an abstract group. An element g € G induces an inner automorphism of G
defined by (intg)(h) = ghg™'. We let Out G be the quotient of the group AutG of
automorphisms of G by the inner automorphisms.

1.2. SEMILINEAR AUTOMORPHISMS

DEFINITION 1.1. Let f:Y — Speck be a k-variety. We denote by
SAut (Y /k) C Aut (Y /k) the subgroup of semilinear k-automorphisms of Y. These
are the elements ¢ of Aut (Y /k) such that]_‘o Q= (g")! of_ for some g € I' (such
a g is then unique). We let ¢: SAut (Y /k) — I' denote the homomorphism which
sends ¢ € SAut (Y /k) to the element g such thatf o= (g9 o]_‘.

Remark 1.2. When Y is connected and reduced, the integral closure of k in k[Y]is
k, so any k-automorphism of Y induces an automorphism of k over k, hence is
semilinear. In this case SAut (Y /k) = Aut (Y /k). This equality is not true in general,
e.g. for Y = Spec (k @ k).

DEFINITION 1.3. Let X be a k-variety, and Y a k-variety with a morphism ¥ — X.

We define SAut (Y/X) := Aut (Y/X) NSAut (Y /k). If Y is an X-group scheme, we
denote by SAut & (Y/X) the subgroup of SAut (Y /X) consisting of the elements
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which are compatible with the group scheme structure. All those groups are equipped
with the weak topology associated to the discrete topology on Y(I_c), that is the
coarsest topology for which the map ¢@i— (/) is continuous for any m € Y (k).
We write Aut () instead of Aut (Y /k), and SAut (Y) instead of SAut (Y /k), if no
confusion is possible (and similarly for Aut®" and SAut ®"). Note that in general
the map ¢: SAut (Y) — I is not continuous.

LEMMA 1.4. Let Y be a quasi-projective I_c-variety (resp. an algebraic l_c-group).
Then the k-forms of Y are in natural bijection with the continuous homomorphic
sections of the map q:SAut (Y) — I (resp. q:SAut&(Y) — I').

Proof. Let j be a continuous homomorphic section of ¢. Then j induces an action*
of I' on Y (k) such that the stabilizer of any point is open. Now apply [BS], 2.12
and [Se59], V.20. We obtain a k-form Y of Y as the quotient of Y by the action
of T.

Conversely, if Y is a k-form of Y, the Galois group I" acts on Y = Y x k via the
second factor and this action defines a section j of ¢. Note that the constructions
of the form Y and of the section j are inverse to each other. O

1.3. TORSORS

Let X be a scheme, and Gy a smooth X-group scheme.

DEFINITION 1.5. An X-torsor under Gy (or Gy-torsor over X, or principal homo-
geneous space of Gy over X) is a faithfully flat X-scheme Y equipped with a right
action of Gy such that the associated map (m, s)i—(m, m.s): Y xy Gy — Y xy Y
is an isomorphism.

We denote by H'(X, Gy) the pointed set of isomorphism classes of right torsors
over X under Gy. The distinguished point of H'(X, Gy) is the class of the trivial
torsor Gy. For any X-torsor Y under Gy we let [ Y] be the class of Y in H'(X, Gy).

Rs’mark 1.6.If Gy isan %f}”lne X-group scheme, then we can compute H'(X, Gy) as
the Cech cohomology set H (X, Gy) ([Mi80], IT11.4.3 and I11.4.7). If, moreover, Gy is
abelian, H'(X, Gy) is identified with the étale cohomology group of the sheaf of
abelian groups represented by Gy. If G is an algebraic k-group, then H!(k, G) is
just the usual first Galois cohomology set H'(k, G(k)), which is a quotient of the
set Z'(k, G(k)) of 1-cocycles ([Se94], 1.5.1 and 1.5.2).

DEFINITION 1.7. Let G be an algebraic k-group, G = G xy k. The Galois group I’
acts on Aut®’(G). The twist of the group G by ¢ € Z'(k, Aut?(G)) is the quotient
G° of G by the twisted action of T, which is: (g, 5)—0,(g(5)), g € T, 5 € G(k) ([Se94],

*In this paper, an action of a Galois group on a scheme always means its left action.
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I11.1.3). The homomorphism int: G(k) — Aut®'(G) induces a map Z!(k, G(k)) —
Z'(k, Aut®"(G)). If ¢ is in the image of this map, G’ is called an inner form of G.

If an algebraic I_c-group G admits a k-form G,_then any k-form G’ of G is obtained
by twisting G with an element of Z!(k, Aut?(G)) ([Se94], 111.1.3).

DEFINITION 1.8. Let X be a k-variety, f: Y — X a right torsor under G which is a
quasi-projective k-variety, and ¢ € Z'(k, G). The twist of Y by ¢ is defined as the
quotient Y? of Y by the twisted action of I', which is (g, 7)—(g(3)) - ogl.

The twist Y7 is equipped with a map f°: Y? — X which makes it a right torsor
under the inner form G°. For example if G is abelian, then G° =G and
[Y°] =[Y]—[o]. If ¢ and ¢ are cohomologous cocycles, then Y’ and Y7 are
isomorphic but in general not canonically.

1.4. LIENS

We recall some known facts about liens and non-abelian H?. A convenient
down-to-earth introduction is ([FSS], Section 1). Definitions of liens and non-abelian
H? in a very general context can be found in [Gi], IV. The non-abelian H? naturally
appears in the classification of group extensions [Mc].

Let G be an algebraic l_c-group with unit element e. We have an exact sequence of
topological groups*

1 - Aut¥(G) — SAut¥(G) —» I' (1)

Let Inn G be the group of inner automorphisms of the algebraic k-group G. We set
Out G = Aut#(G)/Inn G (resp. SOut (G) = SAut ¢ (G)/InnG).

The natural action of SAut®(G) on G(k) induces a canonical map
SOut (G) — Out(G(k)). By Lemma 1.4, the k-forms of G are in natural bijection
with the continuous splittings I' — SAut ¢ (G) of (1).

The sequence (1) modulo Inn(G) gives rise to

1 — Out (G) — SOut (G) » I (2)

DEFINITION 1 ([FSS]). A k-lien** on G is a splitting x: I' — S0ut (G) of (2), which
lifts to a continuous map (not necessarily a homomorphism) I' — SAut ¢ (G). The
lien « is called trivial* if « lifts to a continuous homomorphic map I' — SAut ¢ (G).

A k-form G of G defines a trivial k-lien which we denote by lien(G). If G and G’ are
k-forms of G, then lien(G) = lien(G") if and only if G’ is an inner form of G.

The second Galois cohomology set H%(k, G, k) is defined in terms of cocycles; it
contains a distinguished subset of neutral elements ([FSS], (1.17) and (1.25)).

*In this paper the homomorphisms between topological groups are not necessarily continuous.

**Or k-band, or k-kernel.
t Representable in the terminology of [Gil.
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EXAMPLE 1.10. When k is either a non-Archimedean local field or a totally
imaginary number field, and G is semi-simple, Douai [D] proved that all elements
of H*(k, G, x) are neutral. If G is a k-form of G, we set H>(k, G) := H?*(k, G, lien(G)).

DEFINITION 1.11. An extension of topological groups
15 6h)—> E— T > 1 3)

is called compatible with a lien « if the maps are open onto their images (i.e. i is
continuous and ¢ is open), and the induced homomorphism I" — Out (G(k)) is
x: T — SOut (G) followed by the canonical map SOut (G) — Out (G(k)).

DEFINITION 1.12. We shall say that an exact sequence of topological groups (3) is
locally split (being understood as locally in the étale topology) if there exists a finite
field extension K/k such that the induced map ¢k: Ex — I'r admits a continuous
homomorphic section, where I'g := Gal (l_c/K) and Ex := ENg '(Tg).

The condition ‘locally split’ is usually quite easy to check, and will be satisfied in
the examples we are going to consider. See Appendix A for more details about
extensions of topological groups.

PROPOSITION 1.13 ([FSS], (1.19)). The set H?(k, G, k) is in natural bijection with
the equivalence classes of extensions of topological groups which are compatible with
the lien k. The neutral elements correspond to the extensions which admit a continuous
homomorphic section U — E. The set H*(k, G, k) contains neutral elements precisely
when K is trivial.

Remark 1.14. Let x be a k-lien on G and E be an extension which is compatible with
k. In the language of [Gi], the fibred category G such that for any finite extension K /k
the fibre of G at Spec K consists of the sections of ¢gx: Ex — Tk, is a k-gerb. By [Gi],
VIIL.6.2.5 and VIIL.7.2.5, the cohomology class of such an extension in the sense
of Proposition 1.13 is the cohomology class of the gerb of sections G of this extension
in the sense of [Gi].

Remark 1.15. Let Z be the center of G. Then a lien « defines a k-form Z of Z. Either
H?(k, G, ) is empty or H?(k, Z) acts simply transitively on it ([Sp], 1.17). If G is
abelian and x = lien(G) is a k-lien on G, then it is easy to check that H*(k, G, k)
is just the usual Galois cohomology group H?*(k, G) which has zero for a unique
neutral element (see also [Gi], 1V.3.4).

It is actually possible to use locally split sequences to define H*(k, G, k) in terms of
extensions of groups (see Appendix A).
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2. Obstruction Given by a Class in H?

Until the end of this section, we fix a triple (X, Y, G), where G is an algebraic
k- -group, X is a reduced and geometrically connected k-variety, and Y is a
quasi-projective k-variety equipped with a map f Y — X which makes Y a right
torsor under G.

2.1. DESCENT DATUM

The following sequence of topological groups is exact:
1 — Aut (Y/X) — Shut (Y/X) —> T 4)

Note that G(k) is a subgroup of Aut (Y/X) via its right action on Y. The weak
topology on Aut (Y/X) induces the discrete topology on G(k) because the stabilizer
in G(k) of an arbitrary k—pomt of Y is just {e}.

DEFINITION 2.1. Let E be a topological subgroup of SAut (Y/X). We shall
say that E satisfies the condition (*) (with respect to (X, Y, G)) if there exists a
commutative diagram:

1 — Gk — E 2 r — 1

l l | <*>

1 — At (¥/X) — Shut(¥Y/X) — T

where the top row is an exact and locally split sequence of topological groups, and
the map G(k) — Aut (Y/X) is the natural inclusion.

In Section 3, we shall review three situations where condition () holds for a well
chosen E, namely, the case of a connected torsor Y under a finite k-group scheme
G, the case when X is a homogeneous space of a connected k-group, and the case
of an abelian group G.

We are now ready to define a k-lien attached to E satisfying (x).

PROPOSITION 2.2. Assume that E C SAut (Y /X) satisfies (*).
(1) If g— @, is a set-theoretic section of q: E — I, then there exists a unique map

0:T — SAut & (G) such that

0 (M.5) = 9 ().0,(5), meY(k), seGk), geTl. (5)

https://doi.org/10.1023/A:1014348315066 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014348315066

248 DAVID HARARI AND ALEXEI N. SKOROBOGATOV

(2) The map kg:T — S0ut (G) induced by 0 is independent on the set-theoretic section
o. It is a k-lien on G, such that the exact sequence

15 Gk)—» E—T =1 (6)

is compatible with it.

(3) Ifthe class CI(E) of the sequence (6) in H*(k, G, k) is neutral, then there exists a
k-form G of G with lien(G) = kg, and a G-torsor Y over X such that the G-torsor
Y is obtained from Y by extension of scalars from k to k.

Proof. (1) Fix foreach g € I'an element ¢, of E such that ¢(¢,) = g. Then for any
5 € G(k) the element Pg oS0 (péj_l € E is in the kernel of ¢. Let us call it 0,(s). It is
clearly the only element of G(k) satisfying (5). By definition of a torsor the map
®: (mn, 5)—(m, m.s) is an isomorphism from Y x; G to Y xy Y. Fixing m € Y(k)
we have 04(5) = pa[® ' (9, (), @ (M.5))], where p,:Y x; G— G is the second
projection. Therefore the map 51— 0,4(s) is indeed an element of SAut (G). Formula
(5) now shows that it belongs to SAut £'(G).

(2) If we change the set-theoretic section ¢, then ¢, is replaced by ty 0 ¢, for some
1, € G(k). Then 0,(3) is replaced by ZgOg(E)?;. Therefore 0 induces a well defined
section kg:I' — S0ut (G). For any g, h € I' we have ¢, = iz o (¢, o ¢;,) for some
g, € G(k). Thus kg is a homomorphism. To show that kg is a lien, it remains
to check the continuity condition (cf. [FSS], (1.7)); in particular, it is sufficient
to show that one can choose the maps ¢, such that for each m € Y (k) the map
g—> @,(m) is locally constant. But this follows from Appendix A since (6) is locally
split by assumption, hence ¢: E — I' admits a continuous set-theoretic section.
The compatibility of (6) with kg is obvious.

(3) If a section ¢:I' > E of ¢ is a continuous homomorphism, then the
corresponding 0: ' — SAut (G) is also a homomorphism. Then the lien « is trivial,
and 0 defines a k-form G of G as the quotient of G by the continuous action of
O(I'). Since Y is quasi-projective, we can also define Y as the quotient of Y
by ¢(I'). Now formula (5) shows that the right G-torsor Y is a k-form of the
G-torsor Y. m

Remark 2.3. The condition that there exists £ C SAut (Y /X) which satisfies (x)
means that for any g eI the associated conjugate X*-torsor Y* under G° is
isomorphic to the X-torsor Y under G. In the language of [DM] this is a descent
datum on the X-torsor Y.

DEFINITION 2.4. Assume that E satisfies (%), and that there exists a k-form
(X, Y, G) of the right torsor (X, Y, G). We shall say that this k-form is compatible
with E if the map I' — SAut (Y /X) (defined using the universal property of the fibred
product Y = Y xy X) takes values in E.
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Therefore the class CI(E) can be regarded as the obstruction to descend the torsor
(X, 7Y, G) to a k-form compatible with E.

2.2. THE ELEMENTARY OBSTRUCTION

To a subgroup E C SAut (Y/X) satisfying (%) we associate an obstruction to the
existence of a k-rational point on X.

THEOREM 2.5. Let E be a subgroup of SAut (Y /X) satisfying (x). Assume that X
contains a k-rational point x. Then for any l_c-point y of Y above x, there exists a
canonical continuous homomorphic section j; of q: E — I uniquely defined by the
property that the image of the induced section of q:SAut(Y/X)— I leaves y
invariant. In particular, the class CI(E) in H*(k, G, xg) is neutral.

Proof. Taking the push-out of (6) with respect to iy: x = Speck—X we get a
commutative diagram

1 — Gk «— — E 2 r — 1

l L |

1 — aut(T/h) — Shut(To/h) —— I —s 1

The fibre Y of Y at x is a k-torsor under G. Choosing a point y € Y (k) defines an
isomorphism of right k-torsors G — Y,. Since (6) is locally split, it admits a
continuous set-theoretic section ¢:I" — E (cf. Appendix A). Then for every
geT, there exists a unique s, € G(k) such that a(p(2))(7) = y.s,. The map
g1— Sg is locally constant. Define j5:I' — E by j;(g) = s;l o ¢(g). It is clear that
J5(g) is the only lifting of g which leaves y invariant. From this it follows that j;
is a homomorphic section of £ — I'. It is continuous because ¢ and gi— s, are
continuous. O

DEFINITION 2.6. Suppose that E satisfies (x). By Theorem 2.5, the condition that
the class CI(E) is not neutral is an obstruction to the existence of a k-rational point
on X. By analogy with the abelian case (see Subsection 3.4 below and [CS], 2.2.8)
we call this the elementary obstruction given by the quadruple ¢ := (X, Y, G, E)
(or by E if no confusion is possible).

Remark 2.7. Let Y — X be a G-torsor (defined over k), and let m € X (k) be such
that the fibre Y, of Y at m has no k-rational point. Then the section j; associated
to a geometric point y € Y(I_c) lying over m defines a k-form Y’ = Y /j;(I') which
is not isomorphic to Y. (Y’ contains a k-rational point lying over m.) Actually,
Y’ is isomorphic to the twist Y of the torsor Y by a cocycle ¢ such that Y, is
a k-torsor under G defined by o.
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2.3. THE ELEMENTARY OBSTRUCTION OVER A NUMBER FIELD

Recall the following classical definitions:

DEFINITION 2.8. Let X be a smooth variety defined over a number field k. We shall
say that X is a counterexample to the Hasse principle if X(Ay) # ¥ and X (k) = 0. If
X is proper, it is said to satisfy weak approximation if X(k) is dense in
X(Ax) = [1,cq X (k) (equipped with the product of the v-adic topologies). If X is
a finite subset of Q and X (k) is dense in ]_[W2 X(k,), then we shall say that weak
approximation outside ¥ holds for X.

Now let k be a number field and (X, Y, G) as in Subsection 2.1. Assume that
E C SAut (Y /X) satisfies (*) and that X(Ay) # @. Then by Theorem 2.5, the
obstruction CI(E) lies in the set of elements of H?(k, G, kz) which become neutral
for all completions of k. If CI(E) is not neutral, we get an elementary obstruction
to the Hasse principle.

Remark 2.9. A result by Borovoi ([Bo93], Proposition 6.5) shows that in the case
when G is a connected linear algebraic group and « is a k-lien on G, an element
of H?*(k,G,x) which is locally neutral is neutral if and only if its image in
H?(k, G'°") is trivial, where G'°' is the k-form of the toric part of G defined by
k. Thus, the most interesting case of elementary obstruction to the Hasse principle
for a non-abelian torsor is the case G finite.

3. Applications

In this section we review three realizations of the elementary obstruction treated in
the literature. We also establish a link with the elementary obstruction of
Colliot-Théléne and Sansuc.

3.1. TORSORS UNDER A FINITE GROUP SCHEME; GEOMETRIC FUNDAMENTAL GROUP

Let X be a reduced and geometrically connected k-variety equipped with a geometric
point x. In [Gr], IX.6.1, Grothendieck has proved that there is an exact sequence of
profinite groups

l > m(X,x) > m(X,x) > T =1 ()

which is split if X(k) # @.

Let Y be a connected and Galois étale covering of X and take for G the constant
k-group scheme Aut (Y/X) (as a scheme, it is a finite disjoint union of copies of
Speck). Chosing a point y € Y (k) above X, we realize Aut (Y/X) as a quotient
of m(X,x). Take for E the whole of Aut(Y/X) and assume that
g:Aut (Y/X) — T is surjective (this is equivalent to saying that the kernel of the
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corresponding map (X, X) — G(k) is stable under the outer action of I'); then, one
comes to consider the obstruction related to the splitting of the push-out of (w) by the
map 71;(X, X) — Aut (Y/X) = G(k), namely the elementary obstruction associated
to

1 — Aut(Y/X) — Aut(Y/X) > T — 1 (7)

This sequence is locally split because the étale covering Y — X admits a K-form for
some finite field extension K/k. Thus we obtain a k-lien x on G and a cohomology
class in H?(k, G, k). By Grothendieck’s result (or by Theorem 2.5), this class is
neutral if X(k) # ¢.

The general problem of determining whether a (possibly ramified) covering Y is
defined over k has been studied by Débes and Douai in [DD].

DEFINITION 3.1. We shall refer to the fact that the sequence () does not split as to
the fundamental obstruction to the existence of a k-rational point on X. Considering
the push-forward of () by the map 7;(X, X) — 7¢°(X)

1 - n?b(Y) —-P->TI -1 (m*®)

we shall speak of the abelianized fundamental obstruction if the sequence (7*°) does
not split.

If f:Y — X is a connected torsor under a finite k-group scheme G, then f is an
étale Galois covering ([Mi80], 1.5.4). Thus if G is finite, our general framework
essentially reduces to considering torsors arising from the geometric fundamental
group of X.

Remark 3.2. It can happen that for an étale connected Galois covering ¥ — X the
map Aut(Y/X)— I is not surjective, in other words, the normal subgroup
n1(Y, y) C m(X, X) is not stable under the action I' — Out (;(X)). However, there
always exists an étale connected Galois covering Z — X which factors through
Y — X and such that Aut(Z/X) — T is surjective (take the intersection of the
images of m1(Y, y) by T, this is an open normal subgroup of 7;(X, X) which is stable
under the outer action of I').

An example of this situation is an elliptic curve X containing two points of order 2
which are conjugate by an involution in I'. The corresponding double étale coverings
of X are conjugate varieties but they may not be isomorphic as k-varieties.

3.2. THE CASE WHEN X IS A HOMOGENEOUS SPACE OF AN ALGEBRAIC k-GROUP

Let G be an algebraic k-group. Let X be a left * homogeneous space under G, thatis, a
k-variety equipped with a left action of G which is transitive on X (k). Springer

*We have to take this convention to be consistent with Section 2.
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([Sp], 1.20) has constructed a k-lien Ly canonically associated to X and a class
axy € H*(k, Ly) which is neutral if and only if X is dominated by a principal
homogeneous space under G (in particular, X(k) # ¢ implies the neutrality of
oy ). This construction was taken up by Borovoi for the study of the Hasse principle
on homogeneous spaces ([Bo93], 7.7), and also by Flicker, Scheiderer and Sujatha
([FSS], (5.2)). In this subsection, we want to reinterpret Springer’s construction
as a special case of our general set-up.

Fix a point Xy € X (l_c) and let H be the stabilizer of xo. Let us call Y the k-variety G
(without the group structure) and put Y := Y x; k. Then the map f: ¥ — X which
sends m to m.Xo makes Y a right X-torsor under H. There is also the natural left
action of G on Y which makes Y a left k-torsor under G.

We define SAut (Y /k) (resp. SAut (Y /X)) as the subgroup of SAut (Y /k) (resp.
of SAut (Y /X)) consisting of the elements ¢ which are compatible with the left action
of G in the following sense:

p(5./m) = (q(9)(5))-0(m),

for any 5 € G(k),m € Y(k) (recall that ¢:SAut (Y /k) — I' is the map defined in
Subsection 1.2).

PROPOSITION 3.3. (1) The subgroup E := SAut (Y /X) of SAut (Y /X) satisfies (x)
(cf. 2.1) with respect to (X, Y, H).

(2) The k-lien kg (resp. the class C(E) € H*(k, H, kg)) coincides with the lien Ly
(resp. the class ay) constructed by Springer.

Proof. (1) The action of I on Y obviously defines a continuous and homomorphic
section of the map SAut g(Y/k) — I'. The kernel of this map consists of the
automorphisms ¢ of the k-variety Y satisfying o(5./m) =5.p(m) for any
(5,/m) € G x Y. Taking for m the unit element of G, we see that this kernel is
G(k) acting on the right on Y. Thus the following sequence is exact and splits:

1 = G(k) — Shut g(Y/k) —— T — 1

By definition, an element ¢, € SAut (Y /k) where g = g(¢,), belongs to SAut (Y/X) if
and only if it satisfies f (¢, (/) = g(f (7)) which is the same as ¢,(m).xo = g(m.Xo), for
any m € Y (k). Taking g to be the unit element of I" we see that the set of elements of
G(k) C SAut (Y /k) which belong to SAut (Y /X) is just H(k). It remains to show
that the map SAutg(Y/X)— I' is surjective. For any ge T there exists
Sg € E(l_c) such that g(xp) = 5,.X0 (because X is a homogeneous space under G).
Put ¢ (m) = g(m)s;, then ¢, € SAut ¢(Y/k) and gog(@).)‘co = g(m).(54.X0) =
g(m).g(xo) = g(m.xo), hence ¢, is a lifting of g to SAut g(Y/X). Therefore, the
following sequence is exact:

1 — H(k) — SAut g(Y/X) — T — 1 (11)
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It is locally split because it is split over K as soon as Xy is K-rational. Thus F satisfies
(x) with respect to (X, Y, H).

(2) By Proposition 2.2, the lien kg corresponds to the map 0:I' — SAut (H)
defined by ¢, (m. h) qog(m) Hg(h) for any he H(k) and m € Y(k) where ¢, is a
lifting of g to SAut (Y /X).

By definition* ([Sp] 1.20; [FSS], (5.1)), the map f;: ' — SAut &'(H) defining Ly is
given by fg(h) =5, g(h) S¢s with 5,.X0 = g.X0. Choose the lifting ¢, defined by
Pq(m) = g(m)s,. Then Pq(m. h) g(m)g(h)sg = qog(m) fg(h) so the lien Ly coincides
with xg. According to ([FSS], (5.1)) the class ay is given by the extension

1> Hk)—> E >T > 1,

where E' is the subgroup of the semi-direct product G(k)x I" consisting of the prod-
ucts sg such that 5.xg = g.X9. The elements of E = SAut (Y /X) C SAut (Y /k) =
G(k)xT are precisely the products ¢, = sg satisfying ¢,(m).xo = g(m.xo). Taking
m to be the unit element we obtain that £ = E’ and CI(E) = ay. O

Here are two useful special cases:

EXAMPLE 3.4. Let X be a homogeneous space under G and assume that H'(k, G) is
trivial (e.g. G = GL,, G = SL,, or G is a semi-simple simply connected group over a
non-archimedean local field or a totally imaginary number field). Then X (k) # ¢
if and only if the class oy = CI(E) is neutral in H*(k, H, Ly) = H*(k, H, k).

PROPOSITION 3.5. Let N and Z be two algebraic k-groups with Z central in N. Let
X be a k-torsor under the algebraic k-group N/Z given by a cocycle ¢ € Z'(k, N/ Z).
Let us consider X as a homogeneous space of N. Then oy = 6([&]), where [&] is
the class of & in H'(k, N/Z), and 6: H'(k, N/Z) — H*(k, Z) is the connecting map.

Proof. Let c:T" — N be a continuous cochain which lifts &. Thereis a I_c-point X on
X such that g.xo = ¢,.xo. By ([FSS], (5.1)) the class ay is given by the 2-cocycle
he.i = cqglcr)cg. By [Se94], 1.5.6 and 1.5.7, the class of & in H?(k, Z) is just the image
of ¢ by the connecting map. OJ

3.3. THE ABELIAN CASE

Let X be a reduced and geometrically connected k-variety and Y an X-torsor under a
linear commutative algebraic k-group S. Any k-lien on S defines a unique k-form S
of S.

DEFINITION 3.6. Let S be a k-form of S. We denote by SAut (Y /X) the subgroup
of SAut (Y /X) consisting of the elements ¢ satisfying ¢(m.s) = ¢(m).(q(¢)(s)) for any
m € Y(k), 5 € S(k), where the Galois group acts on S = S x k via the second factor.

*For a right homogeneous space the formula would have been f, = int(s,) o g.
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The kernel of the natural map g¢:SAuts(Y/X)— I is the group of
X-automorphisms of Y which commute with the action of S. Since S is abelian,
this is just S(X) (cf. [Gi], 111.1.4.8, I111.1.5.7). Thus the following sequence is exact:

1 - S(X) - Saut 5(Y/X) - T )

Since any unipotent abelian group is cohomologically trivial ([Se94], I1.1.2,
Proposmon 1), let us further assume that S is of multlphcatlve type. Denote by
S the I'-module dual to S. Under the hypothesis k[X I k which is used in the
abelian descent theory ([CS], [Sk]), the two following sequences are exact and
canonically isomorphic:

H'(k, S) — H'(X,S)—> Homr(S, Pic X) —— H(k,S) — HX(X,S), (10)

WW&%W@&%W&W@E%&W@&%W@S.(m

Both sequences are functorial in k, X, and S. The first one was introduced by
Colliot-Théléne and Sansuc ([CS], 1.5.1) as the exact sequence of low degree terms
of the spectral sequence Ext! (S’ HY(X,G,,)) = H"*(X,S). The second one is
obtained from the Leray spectral sequence H”(k, HYX,S)) = H”*"(X S) using
the assumption S(X) = S(k) (which follows from H°(X,G,,) =k because S is of
multiplicative type). The comparison of the two spectral sequences is carried out
in Appendix B (if S is not a torus, then these two spectral sequences do not neces-
sarily coincide).

Recall that the type of an X-torsor Y under S is the image y([Y]) of [Y] in
Homr(S, Pic X). The following result shows that the obstruction O, (by definition
this is the class d(4)) of Colliot-Théléne and Sansuc ([CS], 2.2.8) is a particular case
of the elementary obstruction defined as in Section 2.

PROPOSITION 3.7. Let X be a reduced and geometrically connected k-variety such
that H(X, G,,) = k', and let S be a k-group of multiplicative type.

(1) Forany X-torsor Y under S, the map q: SAut s(Y/X) — T is surjective ifand only if
the image y([Y]) of [Y] € H\(X,S) in Hom(S, Pic X) is Galois equivariant.

(2) The set of X-torsors Y under S (up to isomorphism) such that E := SAut g(Y/X)
satisfies (*) is naturally identified with the group Homr(S' , PicX).

(3) Let A€ Homr(S‘, Pic X), and let Y — X be the corresponding torsor under S. Set
E := SAut 5(Y/X). Then the class CI(E) € H*(k, S) coincides (up to a sign) with
(). In particular, CI(E) = 0 if and only if (1) = O It is the unique obstruction
for the existence of X-torsors under S of type A.

Proof (1) The map g¢: SAut s(Y/X) — T is surjective if and only if for any g e T’
the X*-torsor Y* under S* is isomorphic to the X-torsor ¥ under S, the induced
isomorphism Y being defined by the form S. This is equivalent to saying that
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the class [Y] € H'(X, S) is Galois equivariant. Now the result follows from the fact
that the exact sequences (10) and (11) coincide.

(2) Since sequence (10) is functorial in k, on considering it over k we see that the
I'-modules H'(X, S) and Hom(S’, Pic X) are isomorphic. Now the result follows
from (1) and from the exact sequence (11) because S(X) = S(k).

(3) The element (1) € H?(k, S) is also the element (/) obtained via the exact
sequence (11). Let D(J) be the k-gerb associated to 1 € H'(k, H'(X, S)) as in ([Gi],
V.3.1.6). By definition, for any finite extension k C K C k, the fibre of D(A) at
Spec K is the category of Sg-torsors over Xx (where Sk :=3S x; K,
Xk := X x; K) which become isomorphic to the S-torsor Y after the extension
of scalars. By Proposition 2.2, the K-forms of the S-torsor Y over X correspond
to the sections of the exact sequence

1 - S(k) > E=Shut 5(Y/X) > T — 1. (12)

Therefore D(A) is the gerb of sections of (12). By ([Gi], V.3.2.1) the cohomology class
of the gerb D(/) coincides with §(4). On the other hand, the class CI(E) of (12) is also
the class of the gerb of sections of (12) (cf. Remark 1.14). O

3.4. THE ELEMENTARY OBSTRUCTION AND THE ABELIANIZED FUNDAMENTAL
OBSTRUCTION

The aim of this subsection is to show that after replacing a variety by some dense
open subset, the vanishing of the abelianized fundamental obstruction implies
the vanishing of the elementary obstruction of Colliot-Thélene and Sansuc. When
the geometric Picard group is of finite type, the two obstructions are essentially
equivalent.

Let U be a geometrically connected and reduced k-variety, U := U x; k. We have
an exact sequence of I'-modules:

1 > k* = k[U]* = k[U)"Jk* — 1. (13)

Let R be the k-torus dual to the torsion-free I'-module l_c[ Ur* /l_c*. We rewrite (13) as
an extension of the I'-modules R by k'

1 > k* > k[U" > R— 1. (+v)

It is clear that a k-point of U (actually, even a 0O-cycle of degree 1 on U) defines a
splitting of (xy). Hence the class of this extension in Ext}((ﬁ, k*) = H'(k, R) is
an obstruction to the existence of k-points on U. The multiplication by n sequence
1 - R[n] - R — R — 1 defines the boundary maps 9,: H'(k, R) — H?(k, R[n]).
We thus get a family of elements 3,([*y]) € H*(k, R[n)).

On the other hand, we have the abelianized fundamental exact sequence

1 - 1°U)—-P—>T - 1. (n*?)
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Recall (cf. [KL]) that nﬁ‘b(U) with its I'-module structure is

7{°(0) = lim x{°(0)/n = lim Hom(H" (T, u,), k).
The Kummer sequence gives an exact sequence of I'-modules

0— fl/n — H'(T, w,) — Pic(U)[n] — 0.

Therefore we get a surjective map of I'-modules
7°(U) — Hom(R/n, k*) = R[n]. (14)

(It is surjective because Extlz(-, k*) = 0 since k* is divisible). Fix a geometric point &
of U. We define Z, — U as the connected étale covering corresponding to the
group homomorphism (U, it) — R(k)[n] with Galois invariant kernel. We get a
commutative diagram of group extensions

1l — mUuw — mUun — I — 1

| | | ®

1 — RKkMN — Atuwt(Z,)U) — T — 1.

Note that the I-module structure on R(k)[n] = Aut (Z,/U) given by the lower row of
(15) is its usual I'-module structure.

THEOREM 3.8. The class of the lower extension in (15) in H*(k, R[n]) coincides with
8,([xv]). The class [xy] vanishes if and only if the push-out of the extension (n*°) by the
map (14) is split for every n.

Proof. The second assertion follows from the first one since H'(k, R) contains no
divisible elements : indeed, let K be a finite extension of k& over which R is isomorphic
to G/. Now H'(K,G!)=0 by Hilbert’s Theorem 90, and we conclude by a

restriction-corestriction argument. O
We need the following general lemma:

LEMMA 3.9. Let Y be a k-torsor under R such that [Y] = —[xy] € H'(k, R). Then
there exists a morphism v:U — Y such that v*:l_c[ YI* — l_c[U]* is an isomorphism.
In particular, v* induces an equivalence of (xy) and (xyp).

Proof. By Rosenlicht’s lemma k[ Y]*/k* = R as abelian groups. Actually this is an
isomorphism of I'-modules (see [CS], 1.4). We get an extension of I'-modules

1> k" > k[Y]" > R—1 (xy)

The class [*y] in Ext}c(f{, k*) = H'(k, R) is the opposite of [¥] ([S], Section 6, [CS],
1.4.3), hence [*y] = [*y]. Therefore there exists an isomorphism of I'-modules
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p:k[YT* — k[UY", such that we have a commutative diagram

1 — kK — kY — R — 1
1l — k' — KU — R — 1

It is a general fact that p € Homg(k[Y]*, K[U]*) (homomorphisms of I-modules)
uniquely defines p € Homr’,;_ulg(l_c[ Y], k[U]) (T-equivariant homomorphisms _of
k-algebras) such that p gives p on invertible elements. Indeed, as Y := Y x; k is
isomorphic to a finite number of copies of Gy, k[Y]" generates the k-algebra

k[ Y], hence p is uniquely determined by p. To show that for any p there exists some
p we reason as follows. A k-point of Y realizes R inside k[ Y]* as functions y which
equal 1 at this point. As a k-vector space, k[ Y] is freely generated by the characters
%€ R. Thus p restricted to the subgroup RCKY] is a homomorphism
R— kU 1t uniquely extends to a morphism of k-algebras p:k[Y] — k[U], then
p restricted to K[Y]* is just p. It is clear that p is [-equivariant since such is its
restriction to k[ Y]*. (We thank J.-L. Colliot-Théléne for his help with this argument.)

Now we definev: U — Y = Spec (k[ Y]) as the morphism dual to the morphism of
k-algebras k[ Y] = k[Y]" — k[U]" = k[U] defined by p. O

We resume the proof of Theorem 3.8. To prove the theorem we can replace U by
Y. Indeed, by Lemma 3.9 we have [xy] = [*y]. On the other hand, the map (14)
is the composition of v,: 7¢(T) — 74>(Y) with 72*(Y) — n2*(Y)/n = R(k)[n]. The
last equality is a canonical isomorphism by the Kummer sequence and the fact that
PicY =0. Let y be the image of & by v. It is clear that Z, = U xy Y,, where
Y, is the unramified covering of Y corresponding to the surjection
(Y, y) — nlb(Y)/n We have an extension of abelian k-groups

l1— Rn— R—>R— 1.

The k-torsor Y under R can be viewed as a homogeneous space under R with
stabilizer R[n]. Let ay be its class as defined by Springer (see Subsection 3.2).
We observe that the exact sequence

1 - At (Y,/Y) = Aut (Y,/)Y) > T — 1 (16)

is (8) of Subsection 3.2 with H(k) = Aut (Y,/Y) = R[n](k). Indeed, since R is con-
nected we have SAut(Y,/Y)=Aut(Y,/Y), therefore E = SAut z(Y,/Y) must
coincide with this group. By Proposition 3.3 the class of (16) is the class ay.
Now Proposition 3.5 tells us that 9,([* y]) coincides with o y. This finishes the proof.[]

COROLLARY 3.10. Let X be a smooth and geometrically integral variety over k such

that l_c[X]’k = k. Assume that Pic X is of finite type, and let S be the k-group which is
dual to PicX. Let U C X be a dense open subset such that PicU = 0. Consider
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the image 3(1d) € H*(k, S) of 1d € Homr(S', Pic X). Then d(1d) = 0 if and only if the
push-out of (n*) for U by the maps n*®(U) — n*®(U)/n splits for all n.

The class d(Id) is the elementary obstruction for the existence of a k-point on X
introduced by Colliot-Théléne and Sansuc ([CS], Proposition 2.2.8). Its vanishing
is the necessary and sufficient condition for the existence of universal torsors on
X (by definition, these are torsors of type 1d).

Proof. Since Pic U = 0, we have an exact sequence of I'-modules

I — KUY /k* — Divg5(X) > PicX — 1

where Div 3, 7:(X) is the group of divisors with support in X \ U. Consider the dual
sequence of k-groups of multiplicative type

-S> Q00— R—1

Since DiVY\U(Y) is a permutation I-module, the connecting map
o: H'(k, R) — H?*(k,S) is injective by Shapiro’s lemma. It is proved in [CS],
pp. 417-419, that é([xy]) coincides with d(Id) up to a sign. It remains to apply
Theorem 3.8. O

4. Descent Obstructions

4.1. NON-ABELIAN DESCENT

Let (X, Y, G) be as in Section 2, and E a subgroup of SAut (Y /X) satisfying (%) (cf.
2.1). If CI(E) is neutral, we can choose a continuous homomorphic section of
¢: E — T. This defines k-forms G of G and Y of Y such that f: Y — X is a torsor
under G which is a k-form off:? — X (see Proposition 2.2 (3)).

We define a pairing H'(X, G) x X(k) — H'(k, G) by taking the pull-back with
respect to the inclusion of a k-point into X. If Y is an X-torsor under G and
P € X(k) we denote it by [Y].P. This is the same thing as the class of the fibre
of Y at P.

Let ¢ € Z'(k, G). There is an obvious commutative diagram

H'(X,G) —> H'(X,G")

.pl l.P (17)

H'(k,G) —s H'(k, G

where the horizontal maps are bijections which associate to a torsor its twist by ¢. In
particular, if [Y].P = [o], then [Y°].P is the trivial element of H'(k, G). In the
abelian case, the inner form G° can be identified with G and the map
H'(X,G) - H'(X,G%) is just the translation by —[a].

The following lemma is similar to classical descent statements:
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LEMMA 4.1.

e Forany field extension K /k the subset f°(Y°(K)) of X(K) depends only on the class
[0] € H'(k, G).
o We have:X(k) = Ujem .6/ (Y7 (k).

Proof. Let P e X(K). Then P e f°(Y°(K)) if and only if [Y°].P is trivial in
H'(K, G%), that is if and only if [¢] = [Y].P (by the commutativity of (17)). The last
condition depends only on [o].

In particular, let P € X (k) and put [¢] = [Y].P; then [Y?].P is trivial in H'(k, G°).
Thus the fibre of Y at P is a trivial torsor, and there exists a k-rational point
Q of Y7 such that f7(Q) = P. OJ

From now on let k£ be a number field. We suppose that X(Ax) # @. ‘Evaluating’
f:Y — X at an adelic point of X gives a map

0r: X(Ag) — ]‘[ H'(k,, G).
veQ

Note that if G is linear, then the set H'(k,, G) is finite ([Se94], 111.4). For each
o € Z'(k, G), we let g, denote its image in Z'(k,, G). (This image is defined by first
choosing a place w of k over v, and then restricting ¢ to the decomposition group
D,, of w. The union of completions at w of finite subextensions of k is an algebraic
closure of k,, and D, is its Galois group over k,, cf. [Se94], I1.6.1.).

DEFINITION 4.2. Let f: Y — X bea torsor under G. Define X(A;)/ as the subset of
X(Ay) consisting of adelic points whose image under 6y comes from an element of
H'(k, G)

XA = {J rm.

[oleH  (k,G)

We have X(k) € X(Ax)” C X(Ay). The emptiness of X(A;)/ is thus an obstruction to
the existence of a k-point on X, that is, an obstruction to the Hasse principle. We
shall call it the descent obstruction defined by - Y — X.

The motivation to introduce the descent obstruction in the non-abelian case is to
refine the classical Brauer—-Manin obstruction, as will become apparent in the explicit
examples given in the last section of the paper. Note that if G is a k-group of
multiplicative type, the diagonal image of H'(k,G) in the product
[Teo H I(k,, G) is described by the Poitou-Tate exact sequence (cf. [Mi86], 1.4.20
(b), 1.4.13). There is a generalization, due to Kottwitz, of this sequence to the case
when G is connected reductive (cf. [Bo98], Theorem 5.15):

Hl(k, G) g @veQHl(va G) - (nl(é)l")tors

where 7,(G) is the algebraic fundamental group of G (this is a I'-module which is of
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finite type as an abelian group, see [Bo98], 1.4) and 7;(G)y- is its coinvariant module.
Here ®,cqH'(k,, G) is the subset of the product [],.q H'(k,, G) consisting of (&,)
such that ¢, = 1 for almost all places v.

PROPOSITION 4.3. Let (X, Y, G) be as in Section 2, and let E be a subgroup of
SAut (Y/X) satisfying (*) (cf. 2.1), such that the class CI(E) € H?(k, G, k) is neutral
(that is, the elementary obstruction given by E is empty). Then for any k-form
f:Y — X of the torsor Y compatible with E, the set X(Ay)’ depends only on
c:=(X,Y,G,E) and not on f.

Proof. If we change the homomorphic section j: I' — E, then the forms G and Y
are respectively replaced by G° and Y° for some ¢ € Z'(k,G). Indeed, the
homomorphism gi—0, defining the action of I' on G is well defined up to
conjugation, and j,(m.5) = j,(m).0,(5) (with Y =7Y/ji(I') and G = G/0(')) by
Proposition 2.2. [

Because of Proposition 4.3 we shall sometimes write X(Ay)¢ for X(Az) where
f:Y — X is a k-form compatible with E, with the convention X(Ay)" =@ if
CI(E) is not neutral.

Now we are going to prove the following ‘non-abelian’ version of [Sk],
Theorem 3(b).

PROPOSITION 4.4. Let f: Y — X be a torsor under a linear algebraic group G and
assume that X is a proper k-variety. Fix a finite set of places £ C Q and let A,% denote
the image of Ay by the projection to [ | s ky. Then there are only finitely many classes
[6] € H'(k, G) such that Y°(A}) # 0.

Proof. Let G° be the connected component (of unity) of G. Then F = G/G’ is a
finite k-group.

For a finite set of places £’ D X containing the Archimedean ones let Oy s> C k be
the ring of Y'-integers of k (integers away from X’). Let us fix ¥’ large enough
so that the following properties hold:

G extends to a smooth group scheme G over Spec (O x),
X extends to a proper scheme X over Spec(O y),
Y extends to an X-torsor ) under G.

We denote by G° and F the group schemes over Spec (Or.y) extending G° and F
respectively. Up to enlarging X’ we can assume that the these group schemes fit into
an exact sequence

1-¢—>¢—> F—>1
Let [¢] € H'(k, G) be such that Y“(A,%) # (). The condition Y?(k,) # ¥ implies that

there exists a k,-point M, € X(k,) such that [Y,,] =[o,]. By the properness of
X/Oy s for all v ¢ X' we have X(k,) = X(O,). By our choice of X', for all v ¢ &'
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the class [a,] is the image of [Vy;,] under the natural map H'(0,, G) — H'(k,, G).
Thus the image of [¢,] in H'(k,, F) comes from H'(O,, F) for all v ¢ ¥’. The image
of [¢]in H'(k, F) can be represented by a k-torsor Z under F. This is a 0-dimensional
k-scheme, hence Z = Spec (k[Z]). The étale k-algebra k[Z] is a product of field
extensions of k. The fact that the image of [s,] in H'(k,, F) comes from
H'(O,, F) implies that all of these fields are not ramified at all v ¢ '. The degrees
of these extensions of k are bounded by |F(k)|. There are only finitely many
extensions of k of bounded degree, which are unramified away from X’ ([Lan86],
V.4, Theorem 5). In particular, there exists a finite Galois field extension k’/k which
contains all these extensions. Thus the image of [s] in H'(k, F) is contained in a
finite subset (the image of H'(Gal(k'/k), F) in H'(k, F)), which we can take to
be the image of a finite subset ® C H'(k, G) consisting of elements coming from
H'(0,, G) for all v¢X'. On replacing G with its twist by a cocycle representing a class
in @, it is now enough to prove that the set of classes [¢] € H'(k, G) going to zero in
H'(k, F), and such that for all v ¢ ¥ we have [s,] € Im[H'(O,, G) - H'(k,, G)],
is finite. Let [p,] € H'(O,,G) be a class mapping to [s,]. We claim that [p,] goes
to zero in H'(O,, F). For this it is enough to show that the kernel of the map
HY(O,, F) — H'(k,, F) is trivial. To prove this we observe that a Spec O,-torsor
under a finite (hence proper) group F is proper over Spec O,, hence, by the valuative
criterion of properness, a section over the generic point Speck, C Spec O, extends to
a section over the whole of Spec O,. Therefore [p,] goes to zero in H'(O,, F), and
hence comes from H'(O,,G"). However, every Spec O,-torsor under the smooth
and connected group G° is trivial by Lang’s theorem [Lan56] (which allows one
to a find a rational point in the closed fibre) and Hensel’s lemma (which allows
one to lift it to a section over Spec®,). Thus H'(O,, ") is trivial, and [s,] = 0
for all v ¢ X'. Since every set H!(k,, G) is finite, ([g,]) belongs to the finite subset
of HveQ\E H'(k,, G) consisting of (,) such that o, is arbitrary for v € £'\ X, and
o, = 0 otherwise. By a theorem of Borel-Serre ([Se94], I11.4.6; [BS], 7.1) the natural
diagonal map H'(k, G) — HveQ\Z H'(k,, G) has finite fibres, hence the inverse image
of our finite subset is also finite. Thus the set of classes [¢] € H'(k, G) such that
Y°(k,) # 0 for any v ¢ X is finite. O

4.2. OBSTRUCTIONS TO WEAK APPROXIMATION

Throughout this subsection we assume that X is a proper, smooth, and geometrically
connected variety over a number field k, with X (k) # @. Let G be a linear algebraic
k-group. Let f: Y — X be a torsor under G.

DEFINITION 4.5. Let X be a finite set of places of k. We let X (A,f)/ denote the
subset of X (Af) consisting of points whose image under the evaluation map
0;‘ X(AY) — [Tcq\x H'(ky, G) comes from an element of H'(k, G). We have:

XAy = |J rorap).

[oleH  (k,G)
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Recall the following result (which is well known when G is abelian):

LEMMA 4.6. Let k, be a completion of k and [Y] € H' (X, G). Then the evaluation
map 0: X(k,) — H'(k,, G) induced by [Y] is locally constant.

Proof. (cf. [Du], I1, (0.31)). Let m € X(k,). We want to find a v-adic neighbourhood
V of m such that 0 is constant on V. Twisting G and Y by a cocycle representing 0(m1)
if necessary, we can assume that 6(m) is trivial. Let 4 be the Henselization of the local
ring of X at m, then the restriction of [Y] to H'(A4, G) is trivial. Since A4 is the
inductive limit of the étale ring extensions B D Oy, such that the fibre of
Spec B — Spec Oy, contains a point over k(m) = k,, there exists an étale morphism
p:Z — X such that m € p(Z(k,)) and the restriction p*[Y] of [Y] to H'(Z, G) is
trivial. By the implicit function theorem, the map Z(k,) — X(k,) induced by p is
open. Therefore, its image contains a v-adic neighbourhood V' of m. For any point
m' €V there exists a k,-point »n' € Z(k,) such that p#)=m'. Then
[Y].m' = (p*[Y]).n is trivial. O

THEOREM 4.7. Let mz be the closure of the image of X (k) in X(Af), then
Xk C X(AZY.

Proof. To begin with, let us show that f'( Y(Af)) is a closed subset of X(Af). Let
(M,) be an adelic point of X which belongs to the closure of f( Y(A,f)). Then for
any place v ¢ Z, there exists a k,-point P, of Y such that N, := f(P,) is arbitrary
close to M,. As [Y].N, is trivial, so is [Y].M, by Lemma 4.6. Similarly
1 Y”(A,f)) is closed for any ¢ € Z'(k, G) (this argument does not use the assumption
X proper).

Since X is proper, Proposition 4.4 applies and X(k) is a subset of
U[G]ES‘fJ(Y”(Af)), where S is a finite subset of H!(k, G). A finite union of closed
subsets is closed, hence the closure of X(k) in X (A,f) is a subset of

U[J]eSfJ(YO-(AE))' O

COROLLARY 4.8. The condition X(Ay) # X(Ax) (resp. X(A,%)’[ # X(AY)) is
an obstruction to weak approximation (resp. to weak approximation outside X)
on X.

We shall call this condition the descent obstruction to weak approximation (resp.
to weak approximation outside X) associated to f: Y — X.

4.3. RELATION WITH THE BRAUER-MANIN OBSTRUCTION

Recall that for any number field k, local class field theory gives an injective map
Jv:Brk, — Q/Z which is an isomorphism for v finite. Let X be a smooth and
geometrically integral k-variety, and Br X := H?*(X, G,,) the cohomological Brauer
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group of X. Set

X(AO™ = {(M,) € X(Ar). VA eBrX, » j(A(P) =07
veQ

(The sum is well-defined, [CS], III.) The reciprocity law of global class field theory
implies X (k) C X(Ax)®". In particular, the condition X(Ax)®" = ¢ is an obstruction
to the existence of a k-rational point on X, this is the Manin or Brauer—Manin
obstruction.

If X is proper, we let X(k) denote the closure of X (k) embedded diagonally in
X(Ax) =[l,cq X(ky). In this case we have X (k) C X(A»P", and the condition
X(Ak)Br #+ X(Ay) is the Brauer—Manin obstruction to weak approximation.

If B is a subset of Br X, we set

X(A»? = (M) € X(Ay), VAe€B, Y jl(AP)) = o}.
veQ
We also set Br X := Ker[Br X — Br X].

We now reformulate Theorem 3 (a) of [Sk] (which is an extension of one of the
main results of [CS]) as the equivalence of the Brauer—Manin obstruction related
to BriX and the descent obstructions given by all torsors under groups of
multiplicative type. More precisely:

THEOREM 4.9. Let X be a smooth and geometrically integral variety over a number
field k such that k[XT* = K (e.g. X proper). Denote by T,y the set of quadruples
c=(X,Y,S, E)such that S is a k-group of multiplicative type, Y is an X -torsor under
S, and E = SAut 5(Y/X) satisfies (*) (cf. 2.1). Then:

XAP Y = () XA

CETub

(Recall that X(A;) has been defined after the proof of Proposition 4.3).
Proof. Let r:Br1 X — H'(k,Pic X) be the map given by the Hochschild—Serre
spectral sequence ([CS], (1.5)):

0 — PicX — (PicX)" — Brk — Br1 X—— H'(k, PicX) — 0

By ([Se94], 1.2.2, Corollary 2) for any o € Br; X there exists a I'-submodule
J:M<—PicX of finite type such that r(o) € A (H'(k, M)). Thus X(A;)B¥ =
N, X(Ax)®*, where Br; = r ' J,(H'(k, M)) C Br; X. Let S be the k-group dual to
M, and let Y be an X-torsor of type 4. We have k[X]* =k, then
E :=SAut 3(Y/X) satisfies (*) by Proposition 3.7. Set ¢=(X,7Y,S, E), then
X (AP = X(Ar)¢ by [Sk], Theorem 3 (a) (note that X(Ag)®'* is empty if the
elementary obstruction does not disappear, which is a nontrivial fact: see [Sk], proof
of Theorem 3 (a)). This finishes the proof. O
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The set X(A;)®" can be empty even if X(Ax)®"'¥ is not, because elements of Br X
which are not killed in BrX can give a Brauer—Manin obstruction; see [Ha96]
for an example of this situation. Now we are going to show that such a
‘transcendental’ Manin obstruction, at least when it is realized by an Azumaya
algebra on X, is still equivalent to a descent obstruction provided one uses
non-abelian torsors.

We denote by Bra, X the Brauer group of X, defined as the group of similarity
classes of Azumaya algebras on X. By a theorem of Grothendieck there is an
injection Bra, X — Br X. More precisely, the exact sequence of étale sheaves

l1-G,—~GL,—-PGL, —>1

gives rise to the exact sequence of pointed sets

H'(X,G,) — H'(X,GL,) - H'(X,PGL,) — BrX,

and Bra, X is the union (for n > 0) of the images of H'(X, PGL,) by d (cf. [Mi80],
IV.2.5). It is conjectured that in fact Bra, X = Br X. (There are results by O. Gabber
and R. Hoobler in this direction.) For any field K it is well known that
Br K = Bry, K; moreover the map d: H'(K,PGL,) —, BrK is injective ([Se68],
X.5). Note that for any field K of characteristic zero, we have
.BrK = H*(K, u,) by Kummer theory, and y, is the fundamental group of
PGL,. If K is a number field or the completion of a number field, then the map
d: H'(K,PGL,) — H*(K, j,) =, BrK is an isomorphism (this is also well-known,
and can be viewed as a special case of [Bo98], 5).

We want to relate the Brauer—Manin obstruction associated to the subgroup
Bra, X of Br X to the obstruction defined by X-torsors under the groups PGL,,
n=1,2,.... Let Tpgr, denote the set of PGL,-torsors f: ¥ — X considered up
to isomorphism, and set 7pgr = U, 7 pGL,-

THEOREM 4.10. We have

XA = () X(An'.
Se€TraL

Proof. Letf: Y — X be a torsor under PGL,, and o := d([Y]) be the corresponding
element of ,Bra, X. Let (M,) € X(Ay). The following diagram is commutative:

H'(X,PGL,) —% Brx

) |,

H'(k,, PGL,) —  Brk,

and the canonical maps d: H'(k, PGL,) —, Brk and d: H'(k,, PGL,) —, Brk, are
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isomorphisms. Now it follows from the commutativity of this diagram that

([Y].M,) € Im |:H1(k, PGL,) — [ [ H' (k.. PGLH):|
veQ

if and only if (x(M,)) € Im [Brk — [],.o Brk,]. This implies X(A;)* = X(A.) . Since
Bra, X is the union of the images of H'(X,PGL,) in BrX forn=1,2,..., we are
done. O

Remark 4.11. The already mentioned example [Ha96] of a smooth and projective
k-variety X with X(Ap)P™** =@ and X(Ax)®'¥ # @, shows (by Theorems 4.9
and 4.10) that the descent obstruction to the Hasse principle for a connected linear
algebraic group does not necessarily reduce to the corresponding obstruction for
its toric part. From this point of view, the case of the descent obstruction differs
from the case of the elementary obstruction (cf. [Bo93], Theorem 6.5).

5. Examples

5.1. A COUNTEREXAMPLE TO THE HASSE PRINCIPLE NOT ACCOUNTED FOR BY THE
MANIN OBSTRUCTION

The first example of (proper, smooth, and geometrically integral) k-variety which
does not satisfy the Hasse principle, but for which there is no Manin obstruction,
was recently given by the second author in [Sk]. We are going to revisit this
counterexample using the obstruction associated to a non-abelian torsor.

Let C and D be the curves of genus one over kK = Q, and f: C x D — X be the
quotient by a fixed point free involution, as defined by equations in ([Sk], Section
2). Let E be the Jacobian of C. We have [C] € II(E), D(k) # @, hence X has points
everywhere locally. Let C’ be the principal homogeneous space under E given by
equations in ([Sk], App. A). We have [C'] € I(E) and 2[C’] = [C]. Finally, let C”
be a principal homogeneous space under E whose class [C"] € H!(k, E) is such that
2[C"] = [C'] (any element in the Tate-Shafarevich group II(E) is divisible by any
prime number in H'!(k, E), if E is an elliptic curve, [Mi86], 1.6.18). Consider the
tower of finite étale coverings

Y =C"xD 2 y—cxp 2 y—cxp-Ls x,
where the morphisms & and ¢ are induced by multiplication by 2 on E. Let
fl=fo(ExId), f"=fo (¢ xId) o (& x Id). Let E[4] be the group of points of
E of order dividing 4. The map f” makes Y” an X-torsor with respect to a k-group
scheme G whose underling group is E[4]xZ/2, where the non-trivial element of
Z./2 acts on E[4] as multiplication by —1. G contains E[4] as a normal k-group sub-
scheme. Suppose that [C] € TI(E)[2] is not divisible by 4 in II(E). (It follows from
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the Birch—-Swinnerton-Dyer conjecture that M(E) = (Z/4)?, so it should be the case
here.)

PROPOSITION 5.1. Assume that the Birch—Swinnerton-Dyer conjecture is true
for the elliptic curve E. Then no twisted form of the torsor f”:Y" — X has points
everywhere locally.

Without assuming the Birch—-Swinnerton-Dyer conjecture the same result remains
true if one chooses [C'] € I(E) such that [C] =2/[C'] with i maximal with this
property, and then defines C” and Y” in the same way as above. (The group
II(E) is finite by Rubin’s theorem, see [Sk], the proof of Proposition 2.)

Proof. Leto € Z'(k, G), and let (Y”)° — X be the twist of Y” — X by . Since E[4]
is normal in G, G° contains its twisted group E[4]°. The quotient of (Y”)? by E[4] is
an X-torsor under Z/2. This is the same thing as the twist Y of ¥ — X by the
image 1t € Z'(k, Z/2) of ¢. It is shown in ([Sk], the proof of Theorem 2 (a)) that
if Y'(Ag)# ¥, then [tf]=1 and Y* is isomorphic to Y. Hence the morphism
(Y")? — X factors as (Y”)” - Y — X. From the exact sequence of pointed sets

H'(k, E[4]) — H'(k, G) - H'(k,Z/2)

it follows that there exists p € Z'(k, E[4]) such that [4] is the image of [p]. Then
(Y”) — Y can be considered as the twist of Y = C” x D — Y by p. The action
of E[4] on Y”" = C” x D is given by the natural action on C” and the trivial action
on D. Thus (Y”) = (C")? x D. It is clear that (C”)’ is an 8-covering of E which
is a lifting of the 2-covering C — E. Since MI(E)=(Z/4) by the
Birch—Swinnerton-Dyer conjecture, we conclude that (C”)? cannot represent an
element of M(E) for any class [p] € H'(k, E[4]). Thus no twist of Y” — X has an
adelic point. [

We thus have X(Ax) = . Note that it is shown in [Sk] that X (Ax)B" = ¢ : the point
is that in this case Br X = Br; X, hence the Brauer—-Manin obstruction is controlled
by abelian torsors over X (cf. Theorem 4.9). But although the coverings ¥ — X
and Y” — Y are abelian, the covering Y” — X 1is not; the condition that
Y*(Ar)®" is empty for any twisted form Y7 of ¥ — X (this is the ‘refined obstruction’
defined in [Sk]) follows from the fact that (Y”)°(Ax) is empty for any twisted form
(Y")? of Y” (apply Theorem 4.9 to the abelian torsor Y — Y).

This example shows that the descent obstruction associated to a non-abelian
torsor can be finer than the Manin obstruction.

5.2. COUNTEREXAMPLES TO WEAK APPROXIMATION RELATED TO NON-ABELIAN
FUNDAMENTAL GROUPS

The following result is proven in [Ha99]:
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Let X be a proper, smooth, and geometrically integral variety over a number field k
such that X(k) # 0. Assume that (BrX)' is finite (e.g. HX(X,Ox) =0) and that
the geometric fundamental group m\(X) is non-abelian. Assume further that
H'(X,0x)=0 or_that the tangent bundle Ty of X is nef. Then,
PE(X (AP ¢ mz for any finite set T C Q, where p* is the canonical projection
X(Ap) — X(AD).

This statement can be reinterpreted using the obstruction to weak approximation
defined in Subsection 4.2. Indeed, the assumption 7;(X) non-abelian gives a torsor
f:Y - X under a finite non-abelian group scheme G (cf. 3.1). Now, using the
additional hypothesis and abelian descent theory as in Theorem 4.9 ([CS], [Sk]),
one shows that infinitely many elements of p*(X(Ax)®) do not belong to
X (A,%)f. Thus the fact that G is not abelian implies that the descent obstruction
to weak approximation (or to weak approximation outside X) can be finer than
the Brauer—Manin obstruction.

This result applies for example to étale quotients of abelian varieties, in
particular, to bielliptic surfaces (this is not surprising in view of the counterexample
in the previous subsection). It is worth noting that in this case, X(K) is Zariski-dense
in X for some finite field extension K/k. See ([Ha99], Section 6) for more
details.

5.3. HOMOGENEOUS SPACES OF BOROVOI AND KUN YAVSKII

In this subsection we apply the general machinery of the elementary obstruction to
homogeneous spaces constructed by Borovoi and Kunyavskii. In particular, we
show how to find adelic points on such a space X, which satisfy the Manin conditions
with respect to Br X.

Let & be a field of characteristic zero. Consider a finite k-group F with center Z. Let
A be a finite abelian k-group containing Z and define N := (F x A)/Z, where Z is
embedded into (F x A)/Z by the map zi—(z, z~!). For some m, N can be realized
as a subgroup of SL,, x. Note that Z = FN A4, A4 is central in N, and F is normal
in N. Let X be the homogeneous space of SL,, ; defined by twisting (cf. [Se94], 1.5.3)
SL,.x/F by a cocycle ¢ € Z'(k, A/Z) (the natural right action of N on SL,,+/F
induces an action of N/Z on SL,,/F, hence an action of 4/Z on SL,,+/F). Let
n be the image of [é]e H'(k,A/Z) by the connecting homomorphism
H'(k,A)Z) — H*(k,Z), and denote by A the connecting map of pointed sets
H'(k,F/Z) — H?(k, Z). Since Z is the center of F, we have a simply transitive action
(b, W) —b.o. of H*(k, Z) on H*(k, F) (Remark 1.15). Then we have:

PROPOSITION 5.2. The variety X has a k-point if and only if n € Im A.

We use the following lemma:
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LEMMA 5.3. Let vy be the neutral class in H*(k, F) corresponding to the extension
Ey = F(l_c)xu I', and let ay be the Springer class of the homogeneous space X. Then
Oy =NnN.Vf. B

Proof. Fix a continuous cochain gi— ¢,: I' = A(k) which is a lifting of the cocycle
&. Let B be the subgroup of N(l_c) xI" consisting of the elements ng withnZ = ¢,Z, and
E the subgroup of N(]_C)Xlr consisting of the elements ng with nF = ¢, F. Then
(cf. Proposition 3.5) 5 is the class in H*(k, Z) of the exact sequence

1> Zk)— B—>T > 1. (18)

Applying the results of Subsection 3.2. with Xy = eF, we see that oy is the class in
H?(k, F) of the exact sequence:

1> Fk)» E—>T—>1 (19)

(We have Ly = lien(F) because 4 is central in N). Now, by [FSS], (1.24), the class
n.vr is represented by the exact sequence:

1> Flk)—> E > T > 1, (20)

where E' = B xr Ey/D and D is the subgroup (z, z '), z € Z(k), of the fibre product.
An element of B xr E, corresponds to a triple (ny,n,g), where n, € A(k),
m € F(k) and mZ = ¢gZ. The map ®: B xr Ey — E sending (ny, n2, g) to (mnz, g)
is well defined because ninyF' = cgno I = ¢ F (recall that A4 is central in N). Since
FNA=2Z, the kernel of ® is D. On the other hand ® is clearly surjective so ®
identifies £ with E and oy = .vF. O

COROLLARY 5.4. The class axy € H*(k, F) is neutral if and only if n € ImA.
Proof. For any « € H*(k, F) there exists a unique b € H?(k, Z) such that o = b.vp.

By [B093], Proposition 2.3, b.vp is neutral if and only if 5 belongs to the image

of A. Now the result follows from Lemma 5.3. O

Since H'(k,SL,,) is trivial, Proposition 5.2 follows from Corollary 5.4 and
Example 3.4. O

PROPOSITION 5.5. Let k be a number field. Suppose that the restriction of n to
H2(k,, Z) is trivial for any v € Q. Then the set X(A)® X is not empty.

Proof. The map SL, ; — X is a finite étale Galois covermg with group F (k). We
have PicSL, ; =0 ([S ] 6 9), and HO(SLmk, G,) = k*. Now the Hochschild-Serre
spectral sequence ([Mi80], I11.2.20) H?(F(k), H!(SL,, ;. Gn)) = HP*(X, G,,) shows
that Pic X is the group of characters of F (k) hence is F' db(k) F/'/\Z(]_C)

Let T be the tw1st of SL,, x/Z by &, then f: T — X is an X-torsor under the k-group
F/Z. Its type A: F/Z — PicX is injective because T is connected, hence it is an
isomorphism (F/Z and Pic X have the same cardinality). In other words, T is a
universal torsor over X. Using ([Sk], Theorem 3 (a)) we obtain X (A5 " = X(A)/.
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For each place v of k, set T, = T x k,. Since the image of n in H*(k,, Z) is trivial,
by Lemma 5.3 there exists a 7)-torsor Y, — T, under Z x k,, which is a principal
homogeneous space under SL,, x,. Since H (K, SL,, x) = 0 for any field K, we have
Y,(k,) # 9. Hence, T(k,) # @ for any place v of k. Thus X(Ay) # ¢ and we are
done. O

Remark 5.6. It is possible to choose the data above such that Br X< = 0, where X¢
is a smooth compactification of X (Borovoi-Kunyavskii, personal communication).
Then it follows from Proposition 5.5 that X(A5)®" is not empty. It is an interesting
question whether one can arrange that X(k) =@ or X¢(k) = 0.

Appendix A: Extensions of Topological Groups

The following result is useful to deal with the various topological conditions used in
the paper for exact sequences of groups.

PROPOSITION. With the assumptions of Subsection 1.4 consider an exact sequence
of topological groups, where the first inclusion is continuous (i.e. open onto its image):

1> Gk) > E—>T — 1 3)
Then,

(1) The map q is open onto its image if and only if it admits a continuous set-theoretic
section. This is in particular the case if (3) is locally split.

(2) Let x be a k-lien on the algebraic group G. Assume that the induced homomorphism
I' > Out(G(k)) is x:T — SOut (G) followed by the canonical map

S0ut (G) — Out(G(k)). Then the sequence (3) is compatible with « if and only
if it is locally split.

Proof. (1) Assume that ¢ admits a continuous set-theoretic section s. Let U be an
open subset of E. Take any g € ¢(U), say, g = ¢q(u) for some u € U. We may assume
s(g) = u (translating s by an element of ker ¢ if necessary). Now s~ !(U) is an open
subset of ¢(U) which contains g. Since g is arbitrary in g(U), the set g(U) is open.

Conversely, assume that ¢ is open. Since G(k) is discrete, one can find an open
neighbourhood U of e such that U ﬁ@(l_c) = {e}. Shrinking U if necessary, we
may assume that the restriction of ¢ to U is injective (consider the inverse image
of U by the continuous map (x, y)—x"'y: E x E — E; it is an open neighbourhood
of {e} x {e} which contains a set of the form V' x V, where V' C E is an an open
neighbourhood of {e}. Then replace U by U N V). Since ¢ is open, the image of
¢(U) contains T'x := Gal(k/K) for some finite Galois field extension K/k, and
(on replacing U by U N g ' (I'x)) we shall assume ¢(U) = I'x. Then the bijective
map ¢: U — 'k (which is open) admits a continuous inverse map. In particular
the restriction gx:Ex :=ENg '(I'x) - I'x admits a continuous set-theoretic

https://doi.org/10.1023/A:1014348315066 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014348315066

270 DAVID HARARI AND ALEXEI N. SKOROBOGATOV

section. Note that if we had supposed (3) locally split instead of ¢ open, such a section
would have existed by definition, so it just remains to prove that ¢ admits a con-
tinuous set-theoretic section if gg does.

Suppose that gx admits a continuous set-theoretic section sg. Then T is the finite
disjoint union of cosets g;I'x (g; € I', 1 <i < n). Take an arbitrary lifting ¢, € E
of g;; any g € I' admits a unique decomposition g =g:i (1 <i<n, heTk), put
s(g) = @;sx(h). Let g € I', for each finite field extension L/K, any element of the
open neighbourhood gI'; of g belongs to the same I'x-coset as g. Since h— sk (h)
is continuous on I'k, so is g—s(g) on I

(2) Using (1), it remains to prove that if (3) is compatible with k, then it is locally
split, and by Proposition 1.13, this is equivalent to saying that any class in
H?(k, G, ) becomes neutral after a finite field extension of k. To do that, we
may assume that G admits a k-form G, which defines a continuous homomorphic
splitting 0: ' — SAut ¢ (G) of (1). The lien  lifts to a continuous set-theoretic section
S of (1), which can be written f, = 0;¢,, where the map ¢:I" — Aut &(G) is locally
constant by [FSS], (1.7). Let K be a finite field extension of k such that ¢ becomes
constant on [k, then this constant must be trivial in SOut (G/K) because x and
0 are homomorphic. So we may assume that the k-lien x is trivial. Now any element
of H*(k, G, ) can be represented by a cocycle which is given by a pair of maps
(f,s), where f:I — SAut®(G) is a homomorphic section of (1) and
s T xI'— @(I_c) is locally constant ([FSS], (1.17)). If s is constant, say s = «a, then
the cocycle (f,s) is equivalent to (f',s), where f; = intl@ ) ofy, and s =1 (by
the formula (6) in [FSS], (1.17)), so any cocycle is locally equivalent to a neutral
cocycle (we are indebted to C. Scheiderer for this argument). O

Appendix B: Comparison of Two Spectral Sequences

In this appendix we relate the spectral sequence used by Colliot-Thélene and Sansuc
to obtain the exact sequence (10) of Subsection 3.3 to the Leray spectral sequence
which gives the sequence (11).

PROPOSITION. Let k be a field of characteristic zero, and p: X — Speck a reduced
and geometrically connected variety. Let S be a k-group of multiplicative type
and M = § the T-module which is dual to S. Then there is a canonical morphism
of the Leray spectral sequence ESY = HP(k, HI(X, S)) to the spectral sequence
E%? = Ext}(M, Rp.G,,), both sequences converging to H'(X, S). When S is a torus,
this morphism is an isomorphism. If S is an arbitrary k-group of multiplicative type,
and X is a k-variety such that K[XT* is divisible (for example, K[XT =k*), then
the exact sequences of the first five low degree terms of these two spectral sequences
are canonically isomorphic.

Proof. We write Homy for Hom of sheaves on X, and Homy for Hom of sheaves
on Speck. The sheaf of abelian groups on X given by S can be written as
Homy(p*M, G,,) (M is a G-module of finite type, and checking it locally one sees
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that here homomorphisms of sheaves over X are the same thing as morphisms of
group X-schemes). We have

psHomy(p*M, F) = Homy (M, p.JF)

since p* and p, are adjoint (this is a sheaf version of Homy(p*M,F) =
Homy (M, p,F)). This implies that there is a natural isomorphism of functors from
the derived category DT (X) of sheaves on X to the derived category D* (k) of
sheaves on Speck (complexes of G-modules)

Rp.RHomy(p*M, -) = RHomi (M, Rp,(-)).

Let us apply this to the sheaf G,. By Lemma 1.3.3(ii) of [CS], we have
Extl(p*M, G,) = 0 for any i > 0, hence the complex RHomy(p*M, G,,) consists
of the sheaf S = Homy(p*M, G,,) in degree 0. We obtain

Rp.(S) = RHomi (M, Rp..G,,).

Now we apply the derived functor H(k, -) of the functor Ai— A4 to both sides. On the
left-hand side we get H(k, Rp,S) = H(X,S) (H(X,-) is the derived functor of
H'(X,.)). The resulting spectral sequence of composed functors is

H?(k, Rp,S) = H"*(X, S).

On the right-hand side we get RHomy (M, Rp,G,,) which gives rise to the spectral
sequence

Ext’(M, R'p,G,,) = H"™(X, S).

Let us relate these spectral sequences.
Let G be a complex of sheaves on Xg which is an injective resolution of G,,,. There is
a natural map of complexes of G-modules (=sheaves over Speck)

p«Homx(p*M, G) — Homy(M, p.G). )]

Let I = I'** be a bicomplex which is a Cartan—Eilenberg resolution of p,.G, and let 7
be the total complex of Homy(M,I). The complex 7 represents
RHomi (M, p.G,,) in D* (k) (W], 10.5.6). The resolution p,.G — I induces a natural
map of complexes Homy(M, p,G) — 7, and on combining with (1) a map

psHomy(p*M,G) — T. (2)

This gives a map between the corresponding hypercohomology spectral sequences,
which is a natural morphism we are looking for. (We have actually proved more:
the image of this morphism is contained in the image of the natural map
H"(k, Hom (M, R*p,G,,)) — Ext}(M, R*p.G,,).)

If S is a torus, then M is locally in the étale topology isomorphic to a finite direct
sum of copies of Z. Then (1) is an identity map, and the second assertion of the
proposition becomes obvious. To prove our last assertion it is enough to prove that
(2) induces isomorphisms on H° and H' (in other words, (2) induces a
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quasi-isomorphism of complexes truncated at 1). We can check it locally and
suppose that M =Z/n. Then on the level of H’ we have H°(X,u,)—
Hom(Z/n, H'(X, G,,)) which is always an isomorphism. On the level of H' we have
H'(X, ,) — Hom(Z/n, H' (X, G,,)). This map is always surjective, and its kernel
is H°(X, G,,)/n which is trivial under our assumptions. This finishes the proof of
the proposition. O
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