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ON MULTIVARIATE WIDE-SENSE MARKOV

PROCESSES*

V. MANDREKAR

1. Introduction: The idea of multivariate wide-sense Markov processes

has been recently used by F.J. Beutler [1], In his paper, he shows that

the solution of a linear vector stochastic differential equation in a wide-

sense Markov process. We obtain here a characterization of such processes

and as its consequence obtain the conditions under which it satisfies Beutler's

equation. Furthermore, in stationary Gaussian case we show that these are

precisely stationary Gaussian Markov processes studied by J. Doob [5].

In their remarkable papers, T. Hida [6] and H. Cramer [2], [3] have

studied the representation of a purely non-deterministic (not necessarily

stationary) second order processes. We obtain such a representation for wide-

sense Markov processes directly, by using their theory. The interesting part

of our representation is that we are able to show that the multiplicity of

g-dimensional wide-sense Markov processes does not exceed q, as, in general,

even one-dimensional (not necessarily stationary) processes could have infi-

nite multiplicity (see H. Cramer [2] and T. Hida [6]). We also show that

the kernel splits (see Theorem 6. 1). As a consequence of this, we obtain

the classical representation of Doob [5],

The paper is divided into 7 sections. The next section is devoted to the

introduction of terminology and notation used in the rest of the paper.

2. Direct-product Hilbert-spaces: In this section we want to intro-

duce the idea of direct-product Hilbert-spaces as in [10]. If H is a Hilbert-

space we shall mean by H(q) the space of all vectors h — {hu h2, , hq)

where for each i, ht e H. In H{q) is introduced a norm ||| h\\\ = V Σ II ̂ i 11*
T 1

and an inner product given by the Gramian matrix [h,h*~\ = {< hi,hj>H }.
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V. MANDREKAR

A linear manifold in H(q) is a non-void subset ^ of H(q) such that if h,

hr e ^ then Ah + Bhr e ^ ^ for all # x q matrices A, B. A subspace of

H(q) is a linear manifold closed under the topology ||| |||. We recall here

a lemma due to N. Wiener and P. Masani [10] which proves the existence

of the projection of an element h and gives its structure.

LEMMA W M {Lemma 5. 8 [10]). (a) If\Jt is a subspace of H{q) then there

exists a subspace M of H such that ^^= M{q), where M{q) denotes the Cartisian product

M x x M with q-factors. M is a set of all components of all elements in

(b) If ^ is a subspace of H(q) and h e Hiq\ then there is a unique hr

such that HI h - hf | | | ^ ||| h- g\\\ for all g e ^ . For this h\ h\ = PMhi9 M

being as in (a). An element hr satisfies preceding condition iff [h — h', g\ — 0 for

all g e ^ .

The part (c), (d), and (e) of the original lemma are omitted since

they won't be referred to here.

DEFINITION 2. 1. The unique element hr of Lemma WM (b) is called

the orthogonal projection of h onto ^ and is denoted by ( ^ | ^ / ) .

Let (β, F,P) be a probability space. By a #-variate second-order stochastic

process on {Ω,F9P)9 we mean a family of random vectors [x{t)9 — co</< + oo}

where for each t, x(t) e Lψ{Ω), L2(Ω) denoting the Hilbert-space of complex-

valued square-integrable random variables L2{Ω). The past of the process

up to 5, L2(x;s) is defined to be the subspace of L2(Ω) generated by

{x(ι){τ) τ^s i = 1, z, - , q} with x(t) = {x(ί)(t), , x{q){t)}*. The following

definition extends to g-variate case, the idea of wide-sense Markov process

and that of wide-sense martingale [see Doob [4] pp. 90, 164],

DEFINITION 2. 2. (a) A #-variate process [x{t)} (—oo<ί<-foo) is a

wide-sense martingale if for each t, {x{t)\Lf\x\ s)) = xs for s< t.

(b) A process {x(t)} is called wide-sense Markov if for each s<t,

3. Characterization of a wide-sense Markov process: The assump-

tion (D) given below will be made through this paper.

(D. 1) x(ί)-process is continuous in q.m.? i.e.,

lim HI ac(/) — x{s)\\\ = 0.

(D. 2) For all t, s real the covariance matrix Γ{t,s) is non-singular.
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MULTIVARIATE WIDE-SENSE MARKOV PROCESSES

The assumption (D. 2) and the definition of wide-sense Markov process

imply (x{t)\Lc£\x; s)) = A(t,s)xs where the matrix A(t,s) is given by A(t,s)

= Γ{t9s)Γ"1{s9s) for s<t. The function A(t9s) is called a transition matrix

function and is defined only for s^Lt. Observe that if x(t) is wide-sense

Markov, then for s ^ t ^ u A{u,s) = A{u,t)A{t,s).

The following is the main theorem of this section.

THEOREM 3. 1. A q-variate second order continuous parameter process satisfy-

ing (D) is wide-sense Markov if and only if x{t) = φ(t)ut with probability one,

where for each t, ψ{t) is a non-singular q x q matrix and ut is a q-dimensional

wide-sense martingale such that L2(u; t) = L2(%l t).

Proof Sufficiency. Let x(t) = φ(t)ut where φ(t) and ut are as described

above. Then for s^t (x{t)\Lψ(x\ s)) = {φ{t)ut\Lψ{xs)) = (Φ(t)ut\LT(u; s)) =

ψ(t)us. Since us = φ~1(s)xs with probability one, we obtain that the transi-

tion matrix function A(t,s) = φ{t)φ~λ(s).

Necessity. Let x(0-process be wide-sense Markov. Then denoting by A{t,s)

the transition matrix function we have for s^Lt,

(3. 1) {x(t)\Lψ{x\ s)) = A{t,s)xs with probability one.

(3.2) A{u9s) = A(u, t)A{t,s) for s^t^u.

Let us now define, following Hida [6], for every real t9 the function

φ(t) = A{t,Sf>) if sQ^t

= A'^soft) if t<sQ

where s0 is a fixed real number. We now show that for all 5, t(s^t) real

(3.3) A(t,s)

First of all, if s<so^t9 (3.3) is a restatement of (3.2): i.e., A{t,s) =

A(t9sΰ)A(sQ9s). If sϋ^s <t from (3.2) we have A(t,s)A(s, s0) = A(t9s^)9 i.e.,

A{t9s) = A(t,sQ)A~ι{s9s0) giving (3. 3) again. Finally if 5 < t ̂  s0 we again get

from (3. 3), A{s09s) = A{sQ9t)A{t9s) and hence A(t9s) = φ(t)φ~ι{s). φ(t) is non-

singular since A(t9s) is. Therefore from (3. 1) and (3. 3) we have for s<.t9

(3. 4) {x{t)\Lψ{x\ s)) = φ{t)φ~ί{s)x$ with probability one.

Hence ut - Φ~ι(t)x{t) is a martingale and L2(u; t) = L2{x\ t). The proof

of the Theorem is now complete.
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10 V. MANDREKAR

The characterization of Theorem 3. 1 will be used later to study purely

non-deterministic wide-sense Markov processes and their multiplicity.

However, as a first application we show that if xQ = 0 and φ{t) is

differentiable, then it satisfies the following differential equation with proba-

bility one.

(3.5) x(t) = Λ(t)x(t) + M(t)η(t)

where η{ ) is a multivariate "white noise" random process and

A(t) = φ{t)ψ-ι{t), M(t) = φ(t). The equation (3.5) is to be interpreted as

x(t) = ^A{t)x{t)dt + ^M{t)du(t)9 vt being the "fictitious derivative" of ut.

THEOREM 3.2. Let {x(t), 0^t<co] be a wide-sense Markov process

satisfying (D). If further x0 = 0 and φ(t) of Theorem 3. 1 is continuously differenti-

able then x{t) satisfies equation (3. 5) for t^O where j e is a q-variate white noise

process and the matrix function A(t) = ψ(t)ψ~λ{t), M{t) = φ(t).

The proof of the Theorem follows by substituting in (3. 5) xt — ψ(t)ut.

We now take up the study of covariance function of a stationary wide-

sense Markov process.

DEFINITION 3. 2. We say that a g-variate second order process

{x(t), —oo< t< +00} is stationary if Γ(t,s) = [x{t), a?(s)] = R(t — 5) for s < t.

By Theorem 3. 1 and the definition of wide-sense martingale we get

for

(3. 6) R(h) = [x(t + h), x(t)-\=φ{t + h)J(t,t)φ*(t), where J(t,s) = [u(t), u(s)-]Lcpw.

Let h = 0, we get

(3.7) R(O) = φ(t)J(t,tψ(t).

With t = 0 in (3. 6), one has

(3. 8) R(h) = φ(h)J(O,O)φ*(O).

Relations (3. 6) and (3. 8) imply h ^ 0, / ̂  0

(3. 9) R{h) = R{t +

With tfjU) = RWR-1®), (3. 9) reduces to

(3. 10) R,(t + h) =
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We prove now the following theorem.

T H E O R E M 3 . 3 . Let {x{t)} ( — o o < / < o o ) be a q-dimensional stationary

process satisfying assumption ( D ) . Then it is wide-sense Markov if and only if the

transition matrix function B{t) = etQ for t^O where B(t) = A{t9Q) and Q is

uniquely determined constant q x q matrix none of whose eigenvalues has positive real

part.

Proof Necessity. We have already shown that for R^t) = R^R-^O) the

equation (3. 10) holds. Further, from (D. l) it follows that R^t) is a con-

tinuous function and therefore Rλ(t) = etQ(t^:O) is the solution of (3.10)

where Q is a q x q constant matrix (see E. Hille and R.S. Phillips [11]).

The assumption (D. 2) implies that R^t) is non-singular and hence Q is

uniquely determined by R^t). Since B(t) = R^R'1®) for t^O we have

B(t) = etQ. Due to the fact that λ(t) = max λj{t) (where λό(t) is j t h eigen-
J^Li q

va lue of B{t)) satisfies for all t, \λ(t)\ < trlR'^O) (R-'iO))*] ( Σ £ | ^ ( 0 ) | 2 ) 2 it
ί' = l

follows that the eigenvalues of Q =lim ^ \~— has non-negative real parts.

The above result was first proved by J.L. Doob [5] for Stationary

Gaussian Markov processes. It was reproved by Beutler [1] for wide-sense

Markov processes. We have proved it because our proof is based directly

on the characterization of Theorem 3. 1. Furthermore it brings out the

form of φ(t) in stationary case which will be utilized in Theorem 5. 1. It

is also interesting to note that the fact that R{t — s) = ψ{t)J{s, s)ψ*{s) could

enable one to obtain a general form for the covariance function of station-

ary wide-sense Markov processes (see Kalmykov [8]).

4. Multiplicity of purely non-deterministic wide-sense Markov pro-

cesses: A second order #-variate process is called purely non-deterministic

if Π L2{x; t) = {0} where L2{x; t) is as defined in Section 2. Let us denote

by Ex(t) the projection operators from L2{x) (the subspace generated by

U L2{x; t)) onto L2(x; t). Then under assumption (D. 1) of Section 3 and

pure non-determinism, we obtain (see H. Cramer [3])

(i) L2{x) is separable

(ii) Ex{+oo) = I Ex(-oo) = o
(4. 1)

(lii) Ea(t)Ex(s) = Ex(s)Ex(t) = £Jmin(s, *))

(iv) Ea(t + 0) = lim Ea(t + - M = Ex{t)=Ex{t-b) = lim
n->oo \ Ύl / n-»o
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12 V. MANDREKAR

In other words {Ex{t), — co< t < + oo} is a resolution of the identity in L2(x).

A subset A c L2{x) is called a generating subset of L2(x) with respect to E

if L2(x) is generated by {E{Δ)f, f e A and z/ a Borel subset of the real

line}. The idea of generating set is certainly not unique. However, it is

known (see Yosida [12] p. 321), that such sets A can be ordered through

their cardinality and there exists one with minimal cardinality. This mini-

mal cardinal number, which because of 4. 1 (i) is at most countable, is called

the multiplicity of E. Following H. Cramέr [3] and T. Hida [6] we call this

multiplicity the multiplicity of x(t). Our first result here is to show that

under assumption (D) every #-variate wide-sense Markov process has multi-

plicity not exceeding q. For this purpose we need the following Lemma.

LEMMA 4. 1. Let H be a separable Hilbert-space with Hl9 H2 be two sub-

spaces of H such that HλJLH2 and H= Hx® H2. Suppose {E^t)} is a resolution

of the identity in Hx and {E2(t)} be a resolution of the identity in H2 such that

E{t) = Ex{t) + E2{t) is a resolution of the identity in H. If Nt is the multiplicity

of Ei{i = 1, 2) then multiplicity of E does not exceed Nx + iV2.

Proof We are given Hi = ®{Ei(Δ)f, f e A Δ a Borel subset of the

real line}, where & denotes the ccsubspace generated by." Since card

A = N19 card A2 = iV2, and E(Δ)f = Et{Δ)f for / e At we get that

H= %{E{Δ)f, / e A U A29 Δ a Borel subset of real line}. Thus multiplicity

of E :< card (A U A) ^Nx-{- N2 completing the proof.

LEMMA 4. 2. Every purely non-deterministic univariate process {v{t); — oo< t

< + cχ>} with orthogonal increments has unit multiplicity.

Proof Let p(Δ) = ®\v{t) - v(s)\2, Δ = [s, t]. I t is well-known (see Doob

[4] Ch. IX) that L2{v) =\\+0° f(t)υ(dt)9 f e L2(p)} where V°° f(t)v(dt) is a sto-
I J —X J J -co

chastic integral in the sense of Doob ([4] Ch. IX). Let / e L2(p), where /

S +oo

f{t)v{dt) = fQ

generates L2(v) completing the proof.

THEOREM 4. 1. The multiplicity of a q-variate wide-sense Markov process

satisfying assumption (D) does not exceed q.

Proof By Theorem 3. 1, L2{u; t) = L2{x; t) for all t and hence in

particular L2(x) = L2{u). Therefore Ex{t), the projection from L2(x) onto

L2(x; t) is the same operator as Eu{t) from L2(u) onto L2{u; t). Therefore
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by definition of multiplicity, multiplicity of the process x(t) is the same as

that of u(t). For the sake of simplicity, we shall establish that the multi-

plicity of a 2-variate wide-sense martingale does not exceed two. The

general case being similar, this will conclude the proof. Define vί{t) = u1{t),

v2(t) = (/ — PLtCmjUzit). Since L2(ux) = L2(u191) © {ux{τ) — ux(t) τ^t} by mar-

tingale property. But since u2(t)±_{uί{τ) — u^t), τ^.t] we obtain that

v2(t) = {I — PLt^ tψUiit). H e n c e L2(u; t) = L2(v,; t)®L2(v2; t). I t c a n b e

easily seen that v2{t) - PL2(V2;f)u2(t). This implies that both {v^t) — oo < t

< + 00} and {v2{t) — 00 < t < + 00} are mutually orthogonal processes with

orthogonal increments. Hence each has multiplicity one by Lemma 4. 2.

But Eu(t) = EVl{t) + EVz(t) and L2{u) = LM ®L2{v2) and hence by Lemma

4. 1 we get multiplicity of Eu^2. Q.E.D.

Before we conclude this section we want to recall here some ideas of

Hida-Cramer theory. They are directly taken from G. Kallianpur and V.

Mandrekar [7]. The following theorem of Hellinger-Hahn is well-known

(see T. Hida [6]).

THEOREM H-H. Let L2{x) be the separable Hilbert-space and E(t) be any

resolution of the identity in L2{x) (i.e., satisfies 4. 1 (ii), (iii), (iv)) then

M

(i) Li(x) = Σ ® ^ / ( 0 where ̂ ff{i) = @{£(z/)/ω, Δ a Borel subset of the

real line}.

(ii) If pf(i) is the measure denoted by pf(i) (Δ) = \\E{Δ)f(i)\\2 for each Borel

set Δ, then pf(l) » pf(2) > .

(iii) ^tf(i) = \\*y(u)Zt(du);feL2(pf(i))} where Zt(t) = E(t)f(ί) (-co< f

< + oo, i = l, 2, , M) are mutually orthogonal processes with orthogonal

increments.

(iv) {/Cl), , fW) is the minimal generating sequence.

The processes with orthogonal increments are defined in Doob [4]

Chapter IX.

The above theorem is essentially the main theorem of Hida [6] and

Cramer [3]. It is quoted here in the form as to bring out the connection

of multiplicity as defined by us and the multiplicity of a representation as

defined by Hida and Cramer.

Applying the above theorem we get
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14 V. MANDREKAR

M Λ+oo M P+oo

(4.2) α ( ί ) ( * ) = Σ Fίj(t9u)Zj(du) where ΣJ\ |F0(ί,^)|2P f(j)(du)< oo.

Equation (4. 2) gives the Hίda-Cramer representation of a stochastic

process where M is its multiplicity. It has the property (s< t)

M ps

(4.3) Ex(s)xψ(t) = H\ Fij{t,u
1 J-oo

A representation satisfying (4. 3) is called a canonical representation. A

canonical representation is called proper canonical if

M

(4.4) L2(x;t)=J}

Note that L2{Zό\ t) = ̂ tf(i){t) = &{E{J)f(ί\ Δ a Borel subset of (-oo,f)}.

It is proved by Kallianpur and Mandrekar ([7] Theorem 3. 1) that every

canonical representation can be assumed to be proper canonical.

Now by Theorem 4. 1 we get that for wide-sense Markov process M < q.

Hence one can write representation (4. 3) in the form of a vector stochastic

integral. In the next section we define this concept following M. Rosenberg

[9] and obtain an analytic characterization so that a canonical representa-

tion be proper canonical.

5. Vector stochastic integrals and analytic characterization of

proper canonical representations: Let P, Q be q x M (Λf ̂  q) matrix-

valued functions of real numbers. We say that (P,Q) is integrable with

respect to an M X M hermitian-matrix-valued function p if the matrix Pp'Q*

is integrable elementwise with respect to trp where pr denotes the matrix

of densities of elements of p, with respect to tr^. We then define

^PdpQ* = ̂ Pp'Q*trp(du). P is said to be square-integrable [p] if tr([pdpP*)

is finite. If we denote by ^fz{p) the class of all measurable P square

integrable with respect to |>] where functions P, Q such that {P{u)—Q(u)}p'(u)=0

a.e. [trp] are identified. Then Jgftp) is a complete Hubert space with

gramian [[P,QJ] = tr^PdpQ* and tr[[P,P]] = norm P. We shall call f an

orthogonally scattered random vector-valued measure on the real line of

dimension M if for each Borel set B, ξ(B) e Vm{Ω) and for Borel sets A and

B [ί{B)9 i(A)] = p(A Π B) where p is a Hermitian-matrix-valued measure on

the real line. With this setup, Rosenberg [9] defined the vector stochastic
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S +oo

P(u)ξ(du) for P G JS?(/O) in the same way as Doob does for the

case M = q ([4], p. 596). Further, if we denote by jg?f(f) the subspace of

L2

{M){Ω) generated by {ξ{B), B(Ξ&} with qxM matrices as coefficients,

then he has the following theorem, with J& denoting the Borel subsets on

the real line.

S +oo

P(u)ξ{du) is an isomorphism from

&&P) to £%(ξ).

In our context Z(B) = (Z^B), , ZN(B))* and F(t,u) will be denoted

by the matrix {Fij{t,u)}. We then have from (4. 2) and Theorem 4. 1 that

r PAD
(5.1) x(t) = J* F(t,u)Z(du); F ^ a2(p) where p(u) = '

L 0 Pf(M) J

If we denote by <&{Z\ t), the subspace of jg?(Z) generated by {Z(B), B a

Borel subset of (— oo, t)}, then we trivially have

(5. 2) Lψ(Z; t) = &&Z; t).

We now give an analytical characterization of a proper canonical represen-

tation. This is a direct generalization of Theorem 1. 7 of [6].

THEOREM 5. 1. A canonical representation (5. 1) is proper canonical if and

only if

(5.3) V P{u)dp{u)F*(t,u)=Q for t<tQ implies P{u) = 0 a.e. [p] on (—oo,t)
J —OQ

where P

Proof Sufficiency. Let (5. 3) hold and suppose that there is a tQ with

L2(Z; tQ)φ L2(x; tQ). Since by canonical property Lψ{x\ tQ) c L2{Z; tQ) we

have a V e ^?(Z; ί) (see 5. 2) such that [F, a?(0] = 0 for t^ tQ. By Theorem

R we have F = Γ° P(u)Z{du) and =^0 and Γ P (u) Z (du) F*(t, u) = 0 for
J -co J -oo

(5. 3) this implies P[u) = 0 a.e. [p] contradicting VφO.

Necessity. Suppose that L2(Z; t) — L2{x; t) for each t and let t0 be a

real number such that

(5. 4) V P(u)Z{du)F*{t,u) = 0 for t<tQ.
J-oo
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16 V. MANDREKAR

Observe that from the proper canonical property Lψ{x\ t0) = H(9) (x; tQ) -

jgf(Z; *„)- Hence the vector V = Γ P(u)Z(du) belongs to Lψ{x\ t0). But
J —CO

(5. 4) implies that [V, x{t)] = 0 for all / ^ f 0. Hence V = 0 giving P(M) = 0

a.e. [p]. This proves the theorem.

In the next section we use this theorem to obtain the representation of

purely non-deterministic processes.

6. Representation of a purely non-deterministic wide-sense Mar-

kov process and the result of Doob: In this section we obtain the

representation of a purely-nondeterministic Markov process and as a con-

sequence obtain the representation [(4. 3. 2 of [5]). The main theorem is

as follows.

THEOREM 6. 1. Let x(t) be a continuous parameter purely non-deterministic

process satisfying (D). Then it is wide sense Markov if and only if

(6. 1) x{t) = Γ φ(t)G(u)Z(du)

where

(i) φ(t) is as in Theorem 3. 1,

(ii) Z is an orthogonally scattered vector random function with

' p,{A ΓΊ B) 0 N

[Z(B), Z(A)] = ' . = p(AΠB)

, o pM(A n B) <

for A, B Borel subsets of the real line,

(iii) G e £%(p)

(iv) L2(Z;t) = Lt(x;t).

S t

G(u)Z(du). Then it suffices to prove

that u(t) is a wide-sense Martingale. As then by Theorem 3. 1 the result

will follow. Consider s<t and Lψ[u\ s). Then

(6. 2) (u(t)\LT(u; s)) = (u(t)\LT(x; s)) = (u(t)\LT(Z; s)),

where the first equality follows from non-singularity of ψ{t) and the second

(iv) of the hypothesis. Hence
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MULTIVARIATE WIDE-SENSE MARKOV PROCESSES 17

(6. 3) (u(t)\LT(u; s)) = (^^G{u)Z(du)\Lψ{Z; s)) = ^G(u)dZ(u).

S t
G{u)dZ{u) _L

s

Lψ{Z\ s). Hence u(t) is a wide-sense Martingale completing the sufficiency

part.

Necessity, By wide-sense Markov hypothesis we obtain that s < t

(6. 4) x(t) - A(t, s)xs±LT(x σ) for σ ̂  s.

Equivalently (6. 4) gives

(6. 5) J* [F(t, u) - A(t, s)F(s, u)]p(du)F*(σ, u) = 0 for σ ̂  s.

By Theorem (5. 1) we have

(6.6) F(t,u) = A{t,s)F(s,u) a.e. [>] on (-oo,s).

However, as in Theorem 3.1 A(t,s) = ψWψ^is) and hence F(t,u) =

φ{t)φ~1(s)F(s,u) a.e. |>] on (-00,5) i.e.,

(6. 7) φ-ι(t)F(t,u) = φ-ί(s)F(s,u) a.e. |>] on (-00,5).

From equation (6. 7) and the fact that || F(t,u) — F{s,u) \\ ^f2{p) ->0 as 5 -> t.

From (D. 1) we obtain that G(u) = φ~ι(t)F(t,u) is independent of ί. Hence

F{t,u) = φ{t)G(u) on (—00, ί) a.e. [/?]. This completes the proof since (ii),

(iii) and (iv) are consequences of the properties of proper canonical re-

presentation.

Now to obtain the result of Doob we appeal to the following theorem

THEOREM K M (G. Kallianpur and V. Mandreker [7] Theorem (5. 1)). If

x(t) is a q-variate purely non-deterministic stationary process satisfying (D. 1), then

(6. 7) x ( t ) = j ' K ( t - u ) ξ ( d u ) where L 2 ( x ; t) - L 2 ( ξ t ) ;

(i) fW)-(fi(^/), f2W), , fjf(J)) with

for each Borel set ά on the real line,

(ii) K(t - ) e ccM,
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(iii) M is the multiplicity of x{t).

We would like to remark that as a consequence of (i) [f(J), £(J')] =

μ{Δ Π Δ')I where μ is the Lebesgue measure on the real line and Δ, Δr are

Borel subsets. / denotes M x M identity matrix. From (6. 1) and (6. 7) we

obtain that

(6. 8) K(t - u) = φ{t)H(u) a.e. μ

where the equality is taken elementwise and H(u) - G{u) where

ΣW =

j

dμ

0 MxM dμ

0

Without loss of generality we can

assume that (6. 8) holds at u = 0, otherwise the change is multiplication by

a constant non-singular matrix. Putting u = 0 in (6. 8) we get

We have thus,

(6.9) F(t) = φ(t)H(0)

i.e., F{t) = etQS where S = ψ{0)H{0) from Theorem 3. 3.

THEOREM 6. 2. Let x(t) be a purely non-deterministic process satisfying

(D. 1). It is widesense stationary Markov if and only if

(6. 10)
= SI

where Q is as in Theorem (3.3), [ξ{Δ), ξ{Δ')]L2{q)(s) = μ(Δ Π Δr)L I is an

MxM identity matrix where M is the rank of the process.

The fact that M is the rank of the process from the representation

(6. 10).

In comparing (6. 10) to Doob ([5]) we observe that Doob does not use

Gaussian hypothesis. If we denote by ζ(t) — \ eUQSξ{du) then ξ(t) is the

f-process of equation (4. 3. 14) of Doob. M will then correspond to the

number of ones occuring in his diagonal matrix U (see (4. 3. 18) In [5]).

7. Concluding Remark and Acknowledgements:
Remark. Theorem 3. 1 opens up the question of what processes can

N _

be represented at 'Σψi(t)ui(t) where ψ^t) are some matrix functions and
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are widesense martingales. It has been established by the author
[AMS (1965) Abstract] that these lead under suitable conditions to con-
tinuous parameter iV-ple Markov processes. Extension to such processes of
the analytic questions studied here are being investigated and will be pub-
lished later.
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