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A barrel in a locally convex Hausdorff space E[t] is a closed absolutely
convex absorbent set. A o-barrel is a barrel which is expressible as a countable
intersection of closed absolutely convex neighbourhoods. A space is said to
be barrelled (countably barrelled) if every barrel (o-barrel) is a neighbourhood,
and quasi-barrelled (countably quasi-barrelled) if every bornivorous barrel
(o-barrel) is a neighbourhood. The study of countably barrelled and countably
quasi-barrelled spaces was initiated by Husain (2).

It has recently been shown that a subspace of countable codimension of a
barrelled space is barrelled ((4), (6)), and that a subspace of finite codimension
of a quasi-barrelled space is quasi-barrelled (5). It is the object of this paper
to show how these results may be extended to countably barrelled and countably
quasi-barrelled spaces. It is known that these properties are not preserved
under passage to arbitrary closed subspaces (3). Theorem 6 shows that a
subspace of countable codimension of a countably barrelled space is countably
barrelled.

Let {E,} be an expanding sequence of subspaces of £ whose union is E.

Then E’ < () E,, and the reverse inclusion holds as well (1) if either
1

(i) E'[o(E’, E)] is sequentially complete

or (i) E'[B(E’, E)] is sequentially complete, and every bounded subset of E is
contained in some E,,.

Theorem 1. Let E[7] be a locally convex space witht = u(E, E’) (the Mackey
0

topology). Suppose E = | ) E,, where {E,} is an expanding sequence of subspaces
1

o0
of E. IfE' = () E,, then E is the strict inductive limit of the sequence {E,}.
1

Proof. Let F[x] be any locally convex space, and T: E—F a linear mapping
whose restriction 7T, to E, is continuous. We show that 7 is then continuous,
which proves the resulit.

Let fe F'. Then the composite mapping fo T,: E,—K (scalars) is con-
tinuous, i.e. fo T, € E, for each n. Hence fo T e E’, so T is 6(E, E')—o(F, F’)

continuous, hence u(E, E')— u(F, F’') continuous, hence 7— x continuous.
E.M.S.—L
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The following result has been proved by M. de Wilde and C. Houet (9).

Theorem 2. Let E[<] be a locally convex space, with E = | ) E,, where {E,}
1

is an expanding sequence of subspaces. Then E is the inductive limit of {E,} in
either of the following cases:
(i) Eis countably barrelled,;
(ii) E is countably quasi-barrelled, and every bounded subset of E is contained
in some E,.

Note that Theorem 1 is not a generalization of Theorem 2, for although it
is true that the dual of a countably barrelled (countably quasi-barrelled) space
is weakly (strongly) sequentially complete, there exist countably barrelled spaces
E[r] witht 3+ u(E, E’). Infact, Theorem 1 is false if the condition t = u(E, E’)
is dropped. (Consider E = ¢ with the topology ¢(¢, w) and

E,={xe¢: x; =0Vi>n}.)
However, both Theorems 1 and 2 generalize Valdivia’s result ((6), Corollary
1.5).

Theorem 3. Let E be a countably barrelled (countably quasi-barrelled)
space, and F a closed subspace of E of countable codimension (of countable
codimension, and such that for every bounded subset B of E, F is of finite co-
dimension in span {FUB}). Then F is countably barrelled (countably quasi-
barrelled).

Proof. Let {x,} be a sequence in E forming a base for a complementary

@
subspace Gof F. PutE; = F, E, = span {E,_y, X,_;} (n>1). ThenE = (JE,

1
and by Theorem 2, E is the strict inductive limit of the sequence {E,}. Since F
is closed, each E, is closed.

Consider the projection map =n: E—F, parallel to G. The restriction
n,: E,—F is continuous, since F is closed and of finite codimension in E,.
Since E is the inductive limit of the sequence {E,}, = is continuous.

It follows that F has a closed complement in E, and that F is isomorphic
with a quotient of E by a closed subspace. Since the property of being countably
barrelled (countably quasi-barrelled) is preserved when passing to quotients
((2) Corollary 14), F is countably barrelled (countably quasi-barrelled).

Corollary. A closed subspace of finite codimension of a countably quasi-
barrelled space is countably quasi-barrelled.

A simple adaptation of Theorem 3 enables us to prove a corresponding
result for quasi-barrelled spaces:

Theorem 4. Let E be a quasi-barrelled space, and F a closed subspace of E

of countable codimension, such that for every bounded subset B of E, F is of finite
codimension in span {FUB}. Then F is quasi-barrelled.
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To illustrate the relevance of the condition on the bounded sets imposed
in Theorems 3 and 4, we give the following examples.

Example 1. Let E be a countably barrelled space and F a closed subspace
of countable codimension. Let B be a bounded subset of E. Let {F,} be
constructed as in Theorem 3. Since E is a strict inductive limit of closed
subspaces, it follows that B is contained in some F,. So Fis of finite codimen-
sion in span {FUB]}.

Example 2. Let E and F be subspaces of the sequence space I!, defined as
follows:

E = {xel': x,,,, = O for all but finitely many n}
F={xel': x,,,, = 0 for all n}.

Give E the topology of coordinatewise convergence. Then Fis a closed subspace
of countable codimension in E. If B = {xel': | x,} £ 1 for all n} then Bis a
bounded subset of E, but F is not of finite codimension in span {FUB}.

The main problem is to remove the hypothesis that Fis closed from Theorem
3. The countably barrelled case may be dealt with by means of a very useful
result, due to Saxon and Levin (4). Our proof is a simplified version of the
original.

Theorem 5. Let E be a locally convex space such that E'[6(E’, E)] is sequenti-
ally complete. If A is a closed absolutely convex subset of E such that span A
is of countable codimension in E, then span A is closed.

Proof. Let E = span A@®span {x,} where {x,} is a linearly independent
sequence. We construct g, € E’ such that g,(x;) = §,; and g,(a) = O for each
ac A. The construction is as follows:

Let B, = T{4,xy, ..., X4y, Xyt 15 -.» X} (r>k). Then B, is absolutely
convex and closed, and x, ¢ rB,. By the Hahn-Banach Theorem, there exists

f,€ E’ such that f,(x;) = 1 and | f(x)| §1 for each xe B,. The sequence
r

{f.},> is easily seen to be o(E’, E)-Cauchy, hence converges to some g, € E’
which is as required.

Since span 4 = [ g; '(0), span 4 is closed.
1

If span A4 is of finite codimension, the same result holds with only minor
alterations in the proof.

Theorem 6. If F is a subspace of countable codimension of a countably
barrelled space E, then F is countably barrelled.

Proof. Since F is countably barrelled by Theorem 3, it is sufficient to

consider the case when F is dense in E. Let U = () U, be a o-barrel in F.
1
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(-4
Then Uc () U, =V, and each U, is a neighbourhood in E, since F is dense.
1

Since the dual of a countably barrelled space is weakly sequentially complete
((2) Theorem 5), span U is closed, hence U is absorbent. So V is a o-barrel,
therefore a neighbourhood in E. Since ¥nF = U, U is a neighbourhood in F.

Valdivia ((7), Theorem 4) has proved the following result: Let E be a
sequentially complete 2% space. If G is a subspace of E, of infinite countable
codimension, then G is a 9% space. Since a sequentially complete 2F space is
countably barrelled, and the property of having a fundamental sequence of
bounded sets is inherited by all subspaces, Theorem 6 above is an extension of
Valdivia’s result.

We now examine the problem of removing the hypothesis that F is closed
from the countably quasi-barrelled case of Theorem 3.

We denote by E* the set of all sequentially continuous linear functionals
on E (see (8)). Note that while the elements of E’ are given by closed hyper-
planes in E, the elements of E* are given by sequentially closed hyperplanes
in E.

Lemma 7. Let E be a locally convex space with E' = E*. Let F be a
sequentially closed subspace of E such that for every bounded subset B of E, F
is of finite codimension in span {FUB}. Then F is closed.

Proof. Let {x,: a € A} be a set of points in E linearly independent modulo
F, which, together with F, span E. For each a € A4, define

H, = F+span{x;: fe A, B + a}.
Then H, is a hyperplane in E. Let {a,} be a sequence in H, converging to a,.
Then there are points X, , ..., X5 (8; € A) such that

{a,}=F+span{xg, ..., x, }=H,.
Since F+span {xg,, ..., x5 } is sequentially closed, a, € H,, which shows that
H, is sequentially closed. Since E' = E*, H, is closed. But F= () H,, so

acA

F is closed.

Corollary 8. Let E be a locally convex space, with E' = E*. If Fis a
subspace of E such that for every bounded closed absolutely convex set B, FN\B
is closed, and F is of finite codimension in span {FNB}, then F is closed.

A similar result is proved by Valdivia ((7) Lemma 4) assuming that E is a
DF space, instead of E’ = E*. The above is not a generalization of Valdivia’s
result, for there exist @F spaces E with E’ & E* (see (8)).

Theorem 9. Let E be a countably quasi-barrelled space with E' = E*, If
F is a subspace of E such that F is of countable codimension in E, and such that
F is of finite codimension in span{FuUB} for every bounded set B, then F is
countably quasi-barrelled.
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Proof. Case 1: Fclosed. See Theorem 5.

Case 2: F dense in E. Let U= () U, be a bornivorous o-barrel in F.
1

Then Uc (U, Let G =spanU. We show (i) U is bornivorous in G,
1
(i) G = E.

(i) Let B be a bounded subset of G. Since GoF, there exists a finite-
dimensional subspace M of G such that Bc F+M = LcG. Now UnL is the
closure of U in L, F is of finite codimension in L and UnL is absorbent in L.
By a result of Valdivia ((7) Lemma 1) UnL is bornivorous in L, so U absorbs B.

(ii) Since GoF, and F is dense, it is sufficient to prove that G is closed.
Let B be a bounded absolutely convex closed subset of E. Then for some «,
GnBcal, so GnB is closed. By Corollary 8, G is closed.

Thus () U, is a bornivorous o-barrel in E, hence a neighbourhood. There-

fore U =

"8

N U,,) NF is a neighbourhood in F.
1

Case 3: Arbitrary F. This follows at once from Cases 1 and 2.

This result is a variation of one of Valdivia, who proves ((7) Theorem 2) that
a subspace F of a 9 space E, such that Fis of finite codimension in span { FUB}
for every bounded set B, is itself a 24 space. Such a subspace is necessarily
of countable codimension, while our result above requires only that the closure
of the subspace concerned be of countable codimension.

Corollary, If E is a countably quasi-barrelled space with E' = E™*, and F is
a subspace of finite codimension in E, then F is countably quasi-barrelled.

It is not known whether the condition *“ E’ = E* > can be omitted from
the Corollary.
An easy adaptation of the proof of Theorem 9 yields the following result:

Theorem 10. Let E be a quasi-barrelled space with E' = E*. If Fis a
subspace of E such that F is of countable codimension in E, and such that F is of
finite codimension in span {FUB} for every bounded set B, then F is quasi-
barrelled.

Corollary 11. Let E be a bornological space. If F is a subspace of E such
that F is of countable codimension in E, and such that F is of finite codimension in
span {FUB} for every bounded set B, then F is quasi-barrelled.

Proof. A bornological space E is quasi-barrelled and satisfies: E' = E* (8).

The author is indebted to the referee for several helpful suggestions.
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