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Abstract

In this paper, we give general recommendations for successful application of the
Douglas–Rachford reflection method to convex and nonconvex real matrix completion
problems. These guidelines are demonstrated by various illustrative examples.
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1. Introduction

Matrix completion may be posed as an inverse problem in which a matrix possessing
certain properties is to be reconstructed knowing only a subset of its entries. A great
many problems can be usefully cast within this framework [34, 37].

By encoding each of the properties which the matrix possesses along with its known
entries as constraint sets, matrix completion can be cast as a feasibility problem. That
is, it is reduced to the problem of finding a point contained in the intersection of a
(finite) family of sets.

Projection algorithms comprise a class of general purpose iterative methods which
are frequently used to solve feasibility problems [7]. At each step, these methods
utilize the nearest point projection onto each of the individual constraint sets. The
philosophy here is that it is simpler to consider each constraint separately (through
their nearest point projections), rather than the intersection directly.
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Applied to closed convex sets in Euclidean space, the behaviour of projection
algorithms is quite well understood. Moreover, their simplicity and ease of
implementation have ensured continued popularity for successful applications in a
variety of nonconvex optimization and reconstruction problems [3, 9, 10]. This
popularity is despite the absence of sufficient theoretical justification, although useful
beginnings exist [2, 15, 29]. In many of these settings the Douglas–Rachford
method (see Section 2.1) has been observed, empirically, to perform better than other
projection algorithms and hence will be the projection algorithm of choice for this
paper. A striking example of its better behaviour is detailed in Section 4.3.

We do note that there are many other useful projection algorithms and many
applicable variants. See, for example, the method of cyclic projections [5, 8], Dykstra’s
method [6, 12, 17], the cyclic Douglas–Rachford method [16; Borwein and Tam, “The
cyclic Douglas–Rachford method for inconsistent feasibility problems”, J. Nonlinear
Convex Anal. (accepted March 2014)] and many references contained in these papers.

In a recent paper [3], the present authors observed that many successful nonconvex
applications of the Douglas–Rachford method can be considered as matrix completion
problems. The aim of this paper is to give general guidelines for successful application
of the Douglas–Rachford method to a variety of (real) matrix reconstruction problems,
both convex and nonconvex.

The remainder of the paper is organized as follows. In Section 2, we first describe
what is known about the Douglas–Rachford method and then discuss our modelling
philosophy. In Section 3, we consider several matrix completion problems in which
all the constraint sets are convex: positive-semidefinite matrices, doubly stochastic
matrices and Euclidean distance matrices; before discussing adjunction of noise. This
is followed in Section 4 by a more detailed description of several classes in which some
of the constraint sets are nonconvex. In the first two subsections, we first look at low-
rank constraints and then at low-rank Euclidean distance problems. In Section 4.3, we
present a detailed application by viewing protein reconstruction from nuclear magnetic
resonance (NMR) data as a low-rank Euclidean distance problem. The final three
subsections of Section 4 carefully consider Hadamard, skew-Hadamard and circulant-
Hadamard matrix problems, respectively. We end with various concluding remarks in
Section 5.

2. Preliminaries
Let E denote a finite-dimensional Hilbert space – a Euclidean space. We will

typically be considering the Hilbert space of real m × n matrices whose inner product
is given by

〈A, B〉 = tr(AT B),

where the superscript T denotes the transpose and tr(·) the trace of an n × n square
matrix. The induced norm is the Frobenius norm and can be expressed as

‖A‖F =
√

tr(AT A) =

√√ n∑
i=1

m∑
j=1

a2
i j.
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A partial (real) matrix is an m × n array for which only entries in certain locations
are known. A completion of the partial matrix A = (ai j) ∈ Rm×n is a matrix B =

(bi j) ∈ Rm×n such that if ai j is specified, then bi j = ai j. The problem of (real) matrix
completion is the following: given a partial matrix, find a completion having certain
properties of interest (for example, positive semidefiniteness).

Throughout this paper, we formulate matrix completion as a feasibility problem.
That is,

find X ∈
N⋂

i=1

Ci ⊆ R
m×n. (2.1)

Let A be the partial matrix to be completed. We take C1 to be the set of all completions
of A; the sets C2, . . . ,CN are chosen such that their intersection has the properties of
interest. In this case, (2.1) is precisely the problem of matrix completion.

2.1. The Douglas–Rachford method Recall that the nearest point projection onto
S ⊆ E is the set-valued mapping PS : E → 2S defined by

PS x =
{
s ∈ S | ‖s − x‖ = inf

y∈S
‖y − x‖

}
.

The reflection with respect to S is the set-valued mapping RS : E → 2E defined by

RS = 2PS − I,

where I denotes the identity map.
In an abuse of notation, if PS x (respectively RS x) is a singleton, we use PS x

(respectively RS x) to denote the unique nearest point.
We now recall what is known about the Douglas–Rachford method, specialized to

finite-dimensional spaces.

Theorem 2.1 (Convex Douglas–Rachford iterations [11, Theorem 3.13]). Suppose
A, B ⊆ E are closed and convex sets. For any x0 ∈ E, define

xn+1 = TA,Bxn, where TA,B =
I + RBRA

2
.

Then one of the following holds:

(a) A ∩ B , ∅ and (xn) converges to a point x such that PAx ∈ A ∩ B;
(b) A ∩ B = ∅ and ‖xn‖ → ∞.

The results of Theorem 2.1 can only be directly applied to the problem of finding
a point in the intersection of two sets. For matrix completion problems formulated as
feasibility problems with greater than two sets, we use a well-known product-space
reformulation.
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Example 2.2 (Product-space reformulation). For constraint sets C1,C2, . . . ,CN , define

D = {(x, x, . . . , x) ∈ EN | x ∈ E}, C =

N∏
i=1

Ci.

The set D is sometimes called the diagonal. We now have an equivalent feasibility
problem, since

x ∈
N⋂

i=1

Ci ⇔ (x, x, . . . , x) ∈ D ∩C.

Moreover, TD,C can be readily computed whenever PC1 , PC2 , . . . , PCN can be, since

PDx =

( 1
N

N∑
i=1

xi

)N
, PC x =

N∏
i=1

PCi xi.

For further details see, for example, [3, Section 3].

There are some useful theoretical beginnings which explain the behaviour of the
Douglas–Rachford method in certain nonconvex settings. For a Euclidean sphere
and an affine subspace, with the reflection performed first with respect to the sphere,
Borwein and Sims [15] showed that, appropriately viewed, the Douglas–Rachford
scheme converges locally. An explicit region of convergence was given by Aragón
Artacho and Borwein [2] for R2. Hesse and Luke [29] obtained local convergence
results using a relaxed local version of firm nonexpansivity and appropriate regularity
conditions, assuming that the reflection is performed first with respect to a subspace.
We note that varying the order of the reflection does not make a substantive difference.
In a recent preprint, Bauschke and Noll proved that the method is locally convergent,
applied to constraints which are finite unions of convex sets.

2.2. Modelling philosophy As illustrated for Sudoku and other NP-complete
combinatorial problems [3], there are typically many ways to formulate the constraint
set for a given matrix completion problem; for example, by choosing different sets
C2,C3, . . . ,CN , in (2.1), such that

⋂N
i=2 Ci has the properties of interest. To apply the

Douglas–Rachford method, these sets will be chosen in such a way that their individual
nearest point projections are succinctly simple to compute – ideally in closed form.
There is frequently a trade-off between the number of sets in the intersection and the
simplicity of their projections. For example, one extreme would be to encode the
property of interest in a single constraint set. In this case, it is likely that its projection
is difficult to compute.

To illustrate this philosophy, consider the following example, which we revisit in
Section 3.2. Suppose that the property of interest is the constraint{

X ∈ Rm×n
∣∣∣∣∣ Xi j ≥ 0,

n∑
k=1

Xk j = 1 for i = 1, . . . ,m and j = 1, . . . , n
}
.
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This set is equal to the intersection of C2 and C3, where

C2 = {X ∈ Rm×n | Xi j ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n},

C3 =

{
X ∈ Rm×n

∣∣∣∣∣ n∑
i=1

Xi j = 1 for j = 1, . . . , n
}
.

Here the projections onto the cone C2 and the affine space C3 can be easily computed
(see Section 3.2). In contrast, the projection directly onto C2 ∩C3 amounts to finding
the nearest point in the convex hull of the set of matrices having a one in each row
and remaining entries zero. This projection is less straightforward, and has no explicit
form [20].

The order of the constraint sets in (2.1) also requires some consideration. For matrix
completion problems with two constraints, we directly apply the Douglas–Rachford
method to C1 ∩ C2, with the reflection first performed with respect to the set C1. For
matrix completion problems with more than two constraints, we apply the Douglas–
Rachford method to the product formulation of Example 2.2, with the reflection with
respect to D performed first. In this case, the solution is obtained by projecting onto D
and, thus, can be monitored by considering only a single product coordinate.

In nonconvex applications, the problem formulation chosen often determines
whether or not the Douglas–Rachford scheme can successfully solve the problem at
hand always, frequently or never [3]. Hence, in the rest of this paper we focus on
naive or direct implementation of the Douglas–Rachford method while focusing on
the choice of an appropriate model and the computation of the requisite projections
or reflections. In a followup paper, we will look at more refined variants for our
two capstone applications, that is, to protein reconstruction and to Hadamard matrix
problems.

3. Convex problems

We now look, in order, at positive-definite matrices and correlation matrices, doubly
stochastic matrices and Euclidean distance matrices, before discussing adjunction of
noise.

3.1. Positive-semidefinite matrices Let S n denote the set of real n × n symmetric
matrices. Recall that a matrix A = (Ai j) ∈ Rn×n is said to be positive semidefinite if

A ∈ S n and xT Ax ≥ 0 for all x ∈ Rn. (3.1)

The set of all such matrices forms a closed convex cone [13, Exercise 1, Section 1.2]
and is denoted by S n

+. The Loewner partial order is defined on S n by taking A � B if
A − B ∈ S n

+. Recall that a symmetric matrix is positive semidefinite if and only if all
its eigenvalues are nonnegative.

Let us consider the matrix completion problem where only some entries of the
positive-semidefinite matrix A are known, and denote by Ω the location of these entries
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(that is, (i, j) ∈ Ω if Ai j is known). Without loss of generality, we may assume that Ω is
symmetric in the sense that (i, j) ∈ Ω if and only if ( j, i) ∈ Ω. Consider the convex sets

C1 = {X ∈ Rn×n | Xi j = Ai j for all (i, j) ∈ Ω}, C2 = S +
n . (3.2)

Then X is a positive-semidefinite matrix that completes A if and only if X ∈ C1 ∩C2.
The set C1 is a closed affine subspace. Its projection is straightforward and given

pointwise by

PC1 (X)i j =

{
Ai j if (i, j) ∈ Ω,
Xi j otherwise (3.3)

for all i, j = 1, . . . , n.

Theorem 3.1 [30, Theorem 2.1]. Let X ∈ Rn×n. Define Y = (A + AT )/2 and let Y = UP
be a polar decomposition [30, Theorem 1.1]. Then

PC2 (X) =
Y + P

2
. (3.4)

Remark 3.2. For X ∈ S n, Y = X in the statement of Theorem 3.1. If this is the case,
the computation of PC2 is also simplified.

If the initial matrix is symmetric, then the corresponding Douglas–Rachford iterates
are, too. This condition can be easily satisfied. For instance, if X ∈ Rn×n, then the
iterates can instead be computed starting at PS n (X) = (X + XT )/2 or XXT ∈ S n.

Of course, for symmetric iterates only the upper (or lower) triangular matrix needs
to be computed.

Remark 3.3. The matrices U and P can also be easily obtained from a singular value
decomposition [33, p. 205], because, if Y = WS VT is a singular value decomposition,
then

P = VS VT , U = WVT

produce P and U.

Remark 3.4. (Positive-definite matrices) Recall that a real symmetric n × n matrix is
said to be positive definite if the inequality in (3.1) holds strictly whenever x , 0.
Denote the set of all such matrices by S n

++. Since S n
++ is not closed, the problem of

positive-definite matrix completion cannot be directly cast within this framework by
setting C2 = S n

++.
In practice, one might wish to consider a closed convex subset of S n

++. For example,
one could instead define

C2 = {X ∈ Rn×n | XT = X, xT Xx ≥ ε ‖x‖2 for all x ∈ Rn} (3.5)

for some small ε > 0. Then (3.5) is equivalent to requiring that the eigenvalues be not
less than ε.
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One can apply these methods to find semidefinite solutions to matrix equations. For
example, we have considered the problem

find X ∈ S +
n such that AX = B,

where A, B ∈ Rm×n.
By taking the constraint sets to be the affine subspace and the positive-semidefinite

matrices, we obtain a two-set feasibility problem. Test instances were generated by
choosing random A ∈ Rm×n and setting B = APS +

n (Y) for random Y ∈ Rm×n. Using the
Douglas–Rachford method, solutions could be found in 17 s for m = 50, n = 100 and
within 5 min for m = 100, n = 500.

It would also be interesting to incorporate these ideas in finding semidefinite
solutions to matrix Riccati equations, as discussed by Ammar et al. [1].

3.1.1. Correlation matrices An important class of positive-semidefinite matrices
is the correlation matrices. Given random variables Z1, Z2, . . . , Zn, the associated
correlation matrix is an element of [−1, 1]n×n whose (i, j)th entry is the correlation
between variables Zi and Z j. Since any random variable perfectly correlates with
itself, the entries along the main diagonal of any correlation matrix are all ones.
Consequently,

{(i, i) | i = 1, . . . , n} ⊆ Ω, and Aii = 1 for i = 1, . . . , n. (3.6)

Moreover, whenever (3.6) holds, A is necessarily contained in [−1, 1]n×n. This is a
consequence of the following inequality.

Proposition 3.5 [33, p. 398]. Let A = (ai j) ∈ S n
+. Then

aiia j j ≥ a2
i j.

Thus, if A is an incomplete correlation matrix, without loss of generality we may
assume that (3.6) holds. In this case, X is the correlation matrix that completes A if
and only if X ∈ C1 ∩C2, as defined in (3.2).

Consider now the problem of generating a random sample of correlation matrices.
This is the case, for example, when one uses simulation to determine an unknown
probability distribution [40].

The Douglas–Rachford method provides a heuristic for generating such a sample by
applying the method to initial points chosen according to some probability distribution.
In this case, the set of known indices, and their corresponding values, are

Ω = {(i, i) | i = 1, . . . , n}, and Aii = 1 for i = 1, . . . , n.

The distribution of the entries in 100 000 matrices of size 5 × 5, obtained from three
different sets of choices of initial point distribution, is shown in Figure 1.

https://doi.org/10.1017/S1446181114000145 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000145


306 F. J. Aragón Artacho et al. [8]

X0 = Y

(a)

(c)

(b)

X0 = (Y + YT)/2

X0 = YYT
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Figure 1. Distribution of entries in the collections of correlation matrices generated by different
initializations of the Douglas–Rachford algorithm. The initial point is X0 and Y is a random matrix
in [−1, 1]5×5. Note that (Y + YT )/2,YYT ∈ S 5.

3.2. Doubly stochastic matrices Recall that a matrix A = (Ai j) ∈ Rm×n is said to be
doubly stochastic if

m∑
i=1

Ai j =

n∑
j=1

Ai j = 1, Ai j ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n. (3.7)

The set of all doubly stochastic matrices is known as the Birkhoff polytope, and can be
realized as the convex hull of the set of permutation matrices [13, Theorem 1.25].

Let us now consider the matrix completion problem, where only some entries of a
doubly stochastic matrix A are known, and denote by Ω the location of these entries
(that is, (i, j) ∈ Ω if Ai j is known). The set of all such candidates is given by

C1 = {X ∈ Rm×n | Xi j = Ai j for all (i, j) ∈ Ω}, (3.8)

which is similar to (3.2). The Birkhoff polytope may be expressed as the intersection
of the three convex sets

C2 =

{
X ∈ Rm×n

∣∣∣∣∣ m∑
i=1

Xi j = 1 for j = 1, . . . , n
}
, (3.9)
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C3 =

{
X ∈ Rm×n

∣∣∣∣∣ n∑
j=1

Xi j = 1 for i = 1, . . . ,m
}
, (3.10)

C4 =
{
X ∈ Rm×n | Xi j ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n

}
. (3.11)

Then X is a double stochastic matrix that completes A if and only if X ∈ C1 ∩ C2 ∩

C3 ∩C4.
As in (3.3), the set C1 is a closed affine subspace whose projection is given

pointwise by

PC1 (X)i j =

{
Ai j if (i, j) ∈ Ω,
Xi j otherwise (3.12)

for all i = 1, . . . ,m and j = 1, . . . , n.
The projection onto C2 (respectively, C3) can be easily computed by applying the

following proposition row-wise (respectively, column-wise).

Proposition 3.6. Let S = {x ∈ Rm |
∑m

i=1 xi = 1}. For any x ∈ Rm,

PS (x) = x +
1
m

(
1 −

m∑
i=1

xi

)
e, where e = [1, 1, . . . , 1]T .

Proof. Since S = {x ∈ Rn | 〈e, x〉 = 1}, the result follows from the standard formula for
the orthogonal projection onto a hyperplane [23, Section 4.2.1]. �

The projection of A onto C4 is given pointwise by

PC4 (A)i j = max{0, Ai j}

for i = 1, . . . ,m and j = 1, . . . , n.

Remark 3.7. One can also address the problem of singly stochastic matrix completion.
The problem of row (respectively, column) stochastic matrix completion is formulated
by dropping the constraint C3 (respectively, C2).

Finally, let us mention a related work, where Takouda [43] applied Dykstra’s
algorithm to find the closest square doubly stochastic matrix to a given one in Rn×n by
considering the intersection of the two sets C2 ∩ C3 and C4. In particular, he showed
that PC2∩C3 (X) = WXW + J, where W = I − J and J = eeT/n [43, Proposition 4.4].

3.3. Euclidean distance matrices A matrix D = (Di j) ∈ Rn×n is said to be a
distance matrix if

Di j = D ji

{
= 0 i = j
≥ 0 i , j for i, j = 1, . . . , n.

Furthermore, D is called a Euclidean distance matrix (EDM) if there are points
p1, . . . , pn ∈ R

r (with r ≤ n) such that

Di j = ‖pi − p j‖
2 for i, j = 1, . . . , n. (3.13)
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If (3.13) holds for a set of points in Rr, then D is said to be embeddable in Rr. If D is
embeddable in Rr but not in Rr−1, then it is said to be irreducibly embeddable in Rr.

The following result by Hayden and Wells, based on Schoenberg’s criterion [41,
Theorem 1], provides a useful characterization of Euclidean distance matrices.

Theorem 3.8. [28, Theorem 3.3]. Let Q be the Householder matrix defined by

Q = I −
2vvT

vT v
, where v = [1, 1, . . . , 1, 1 +

√
n]T ∈ Rn.

Then a distance matrix D is a Euclidean distance matrix if and only if the
(n − 1) × (n − 1) block D̂ in

Q(−D)Q =

[
D̂ d
dT δ

]
(3.14)

is positive semidefinite. In this case, D is irreducibly embeddable in Rr, where
r = rank(D̂) ≤ n − 1.

Remark 3.9. As a consequence of Theorem 3.8, the set of Euclidean distance matrices
is convex.

Let us consider now the matrix completion problem where only some entries of a
Euclidean distance matrix D are known, and denote by Ω the location of these entries
(that is, (i, j) ∈ Ω if Di j is known). Without loss of generality, we assume D and Ω to
be symmetric. Consider the convex sets

C1 = {X ∈ Rn×n | X is a distance matrix, Xi j = Di j for all (i, j) ∈ Ω}, (3.15)

C2 = {X ∈ Rn×n | X̂ � 0, where X̂ is the block in Q(−X)Q in (3.14)}. (3.16)

Then X is a Euclidean distance matrix that completes D if and only if X ∈ C1 ∩C2.
The projection of any symmetric matrix A = (Ai j) ∈ Rn×n onto C1 can be easily

computed as

PC1 (A) =


0 if i = j,
Di j if (i, j) ∈ Ω,
max{0, Ai j} otherwise.

(3.17)

The projection of A onto C2 is the unique solution to the problem

min
X∈C2
‖A − X‖F .

Using (3.14), if we denote

Q(−A)Q =

[
Â a
aT α

]
and Q(−X)Q =

[
X̂ x
xT λ

]
,
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then

min
X∈C2
‖A − X‖F = min

X∈C2
‖Q(A − X)Q‖F = min

X∈C2
‖Q(−A)Q − Q(−X)Q‖F

= min
x∈Rn,λ∈R

X̂=X̂T ,X̂�0

∥∥∥∥∥ Â − X̂ a − x
(a − x)T (α − λ)

∥∥∥∥∥
F
.

As a consequence of a result of Hayden and Wells [28, Theorem 2.1], the unique best
approximation is given by [UΛ+UT a

aT α

]
,

where UΛUT = Â is the spectral decomposition [28, p. 116] of Â, with Λ =

diag(λ1, . . . , λn−1) and Λ+ = diag(max{0, λ1}, . . . ,max{0, λn−1}). Therefore,

PC2 (A) = −Q
[UΛ+UT a

aT α

]
Q. (3.18)

Remark 3.10. The problem of finding the nearest EDM to a given matrix is related to
the problem of EDM completion. The former was considered by Glunt et al. [27] who
gave Dykstra’s method approach, based on the same EDM characterization used here.

3.3.1. Noise In many practical situations, the distances that are initially known
have some errors in their measurements, and the Euclidean matrix completion problem
may not even have a solution. In these situations, a model that allows errors in the
distances needs to be considered.

Given some error ε ≥ 0, consider the convex set

Cε
1 = {X ∈ Rn×n | X is a distance matrix and | Xi j − Di j| ≤ ε for all (i, j) ∈ Ω}. (3.19)

Notice that C0
1 = C1. The projection of any symmetric matrix A = (Ai j) ∈ Rn×n onto Cε

1
can be easily computed as

PCε
1
(A)i j =


0 if i = j,
Di j + ε if (i, j) ∈ Ω and Ai j > Di j + ε,
max{0,Di j − ε} if (i, j) ∈ Ω and Ai j < Di j − ε,
max{0, Ai j} otherwise.

(3.20)

This model could be easily modified to include different upper and lower bounds on
each distance Di j for (i, j) ∈ Ω.

4. Nonconvex problems

We now turn to the more difficult case of nonconvex matrix completion problems.

4.1. Low-rank matrices In many practical scenarios, one would like to recover a
matrix that is known to be low rank from only a subset of its entries. This is the case,
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for example, in various compressed sensing applications [14]. The main problem here
is that the low-rank constraint makes the problem nonconvex. For example, if we
consider

S = {A ∈ R2×2 | rank(A) ≤ 1},

then [1 0
0 0

]
,
[0 0
0 1

]
∈ S ,

but, for all λ ∈ (0, 1),

λ
[1 0
0 0

]
+ (1 − λ)

[0 0
0 1

]
< S .

4.1.1. Rank constraints Let us consider the problem of finding a matrix of minimal
rank, given that some of the entries are known. For given r, we define a rank constraint

Cr
2 = {X ∈ Rm×n | rank(X) ≤ r}.

Then X is a matrix completion of A with rank at most r if and only if X ∈ C1 ∩Cr
2.

The set of possible ranks of A is finite and bounded above by min{m, n}.
Furthermore, Cr

2 ⊆ C s
2 for r ≤ s. It follows that X is a completion of A with minimal

rank if and only if

X ∈ C1 ∩Cr0
2 and X < C1 ∩Cr

2 for any r < r0.

In this case, rank(X) = r0.
This suggests a binary search heuristic for finding the rank of a matrix. For

convenience, denote by P(r) the relaxation

find x ∈ C1 ∩Cr
2. (4.1)

The iteration can now be implemented as shown in Algorithm 1.

Algorithm 1: Heuristic for minimum-rank matrix completion.
input : Ω, Ai j for all (i, j) ∈ Ω, MaxIterations

1 rlb = 0, rub = min{m, n} and choose any r ∈ [rlb, rub] ∩ N;
2 while rlb < rub do
3 if Douglas–Rachford method solves P(r) within MaxIterations iterations

then
4 rub = r;
5 else
6 rlb = r + 1;
7 end
8 r = b(rlb + rub)/2c;
9 end

output: r

Of course there are many applicable variants on this idea. For instance, one could
instead perform a ternary search.
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Remark 4.1 (Connection to minimum-rank completion). A problem closely related
to (4.1) is the minimum-rank matrix completion problem. That is, the optimization
problem

min{rank(X) | X ∈ C1}. (4.2)

Indeed, (4.1) is a nonconvex relaxation of (4.2) in which one seeks a matrix with rank
less than some prescribed upper bound rather than a matrix having smallest rank.

In the literature, another popular relaxation of (4.2) is the so-called nuclear-norm
relaxation [19], which is given by

min{‖X‖∗ | X ∈ C1}. (4.3)

Here ‖X‖∗ denotes the nuclear norm, whose value is given by the sum of the singular
values of the matrix X. Since the nuclear norm is a convex function, this relaxation is
a convex optimization problem.

Some comments regarding the two different relaxations are in order. Since nuclear-
norm relaxation is convex, it can be solved by established convex optimization tools
(the most appropriate tool depends on various factors including the dimension of
the matrix to be recovered). Algorithms specific to this relaxation also exist [18].
While this approach does not require an a priori rank estimate on the matrix, rank
minimization is achieved by replacing the objective function with the nuclear norm –
a surrogate objective function.

The Douglas–Rachford approach directly solves a nonconvex feasibility problem
in which the rank objective is incorporated as a constraint, thus staying closer to
the original formulation of (4.2). While this method does require an a priori rank
estimate, initial overestimates are not necessarily detrimental to the reconstruction.
This is because the Douglas–Rachford algorithm can yield a matrix X∗ ∈ C1 ∩ Cr

2
having rank(X) < r.

4.2. Low-rank Euclidean distance matrices In many situations, the Euclidean
distance matrix D that one aims to complete is known to be embeddable in Rr, say
with r = 3. This is the case, for example, in the molecular conformation problem
in which one would like to compute the relative atomic positions within a molecule.
Nuclear magnetic resonance (NMR) spectroscopy can be employed to measure short-
range interatomic distances (that is, those less than 5–6 Å where 1 Å = 10−10 m stands
for Ångström) without structural modification of the molecule [44].

These types of problems are known as low-rank Euclidean distance matrix
problems. For any given positive integer r, we can modify the set C2 in (3.16) as
follows:

Cr
2 = {X ∈ Rn×n | X̂ � 0, where X̂ is the block in Q(−X)Q in (3.14) and rank(X̂) ≤ r}.

Unfortunately, as noted in [25, Section 5.3], the set Cr
2 is no longer convex unless r ≥

n − 1, in which case the rank condition is always satisfied and Cr
2 = C2. Nevertheless,

a projection of any symmetric matrix A onto Cr
2 can be easily computed (since Cr

2
is not convex, the projection need not be unique). Indeed, let us assume without
loss of generality that the eigenvalues λ1, . . . , λn−1 of the submatrix X̂ are given in
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nondecreasing order λ1 ≤ λ2 ≤ · · · ≤ λn−1 in the spectral decomposition X̂ = UΛUT ,
where Λ = diag(λ1, . . . , λn−1). Then PCr

2
(X) can be computed as in (3.18) but with Λ+

replaced by

Λr
+ = diag(0, . . . , 0,max{0, λn−r}, . . . ,max{0, λn−1}).

4.3. Protein reconstruction Once more, despite the absence of convexity in one
of the constraints, we have observed the Douglas–Rachford algorithm to converge.
Computational experiments have been performed on various protein molecules
obtained from the Research Collaboratory for Structural Bioinformatics (RCSB)
Protein Data Bank (available at http://www.rcsb.org/pdb/). The complete structure
of these proteins is contained in the respective data files as a list of points in R3,
each representing an individual atom. The corresponding complete Euclidean distance
matrix is computed using (3.13). A realistic partial Euclidean distance matrix is then
obtained by removing all entries which correspond to distances greater than 6 Å. From
this partial matrix, we seek to reconstruct the molecular conformation.

In Algorithm 2, we give details regarding our Python implementation for finding
the distance matrix and, in Algorithm 3, we reconstruct the positions from the matrix
completion.

Algorithm 2: Douglas–Rachford component of our Python implementation.
input : D ∈ Rn×n (the partial Euclidean distance matrix)

1 ε = 0.1, r = 3, N = 5000, k = 0;
2 X = (Y + YT )/2 ∈ S n for random Y ∈ [−1, 1]n×n;
3 while k ≤ N do
4 X = TCε

1,C
r
2
X;

5 k = k + 1;
6 end

output : X (the reconstructed Euclidean distance matrix).

Algorithm 3: Converting a Euclidean distance matrix to points in Rq [21,
Section 5.12].

input : X ∈ Rn×n (the reconstructed distance matrix)
1 L = I − eeT/n, where e = (1, 1, . . . , 1)T ;
2 τ = −(1/2)LDL;
3 US VT = SingularValueDecomposition(τ);
4 Z = first q columns of U

√
S ;

5 pi = ith row of Z for i = 1, 2, . . . , n;
output: p1, p2, . . . , pn (positions of the points in Rq).
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Table 1. Six proteins: average (maximum) errors from five replications (5000 iterations).

Protein #Atoms Relative error (dB) RMSE Max error
1PTQ 404 –83.6 (–83.7) 0.0200 (0.0219) 0.0802 (0.0923)
1HOE 581 –72.7 (–69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 –47.6 (–45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 –60.5 (–58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 –49.3 (–48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 –46.7 (–43.5) 9.69 (10.36) 58.6 (62.6)

The quality of the solution is then assessed using various error measurements. The
relative error, reported in decibels (dB), is given by

Relative error = 10 log10

(‖PCr
2
PCε

1
XN − PCε

1
XN‖

2
F

‖PCε
1
XN‖

2
F

)
, where ε = 0.1, r = 3.

Let p1, p2, . . . , pn ∈ R
3 denote the positions of the n atoms obtained from the

distance matrix XN , and let ptrue
1 , ptrue

2 , . . . , ptrue
n denote the true positions of the n atoms

(both relative to the same coordinate system). It is possible for both sets of points to
represent the same molecular conformation without occupying the same positions in
space. Thus, to compare the two sets, a Procrustes analysis is performed. That is, we
(collectively) translate, rotate and reflect the points p1, p2, . . . , pn to obtain the points
p̂1, p̂2, . . . , p̂n which minimize the least squared error to the true positions.

Using the fitted points, we compute the root-mean-square error (RMSE) defined by

RMSE =

√√
1

number of atoms

m∑
i=1

‖ p̂i − ptrue
i ‖

2
2

and the maximum error defined by

Max error = max
1≤i≤m

‖ p̂i − ptrue
i ‖2.

Our computational results are summarized in Table 1. An animation of the
algorithm at work constructing the protein 1PTQ can be viewed at http://carma.
newcastle.edu.au/DRmethods/1PTQ.html. Next we make some general comments
regarding the performance of our method.

• 1PTQ and 1HOE, the two proteins with fewer than 600 atoms, could be reliably
reconstructed to within a small error. A visual comparison of the reconstructed
and original molecules shows that they match well; they are indistinguishable.
See Figures 2 and 3.
• The reconstructions of 1LFB and 1PHT, the next two smallest proteins

examined, were both satisfactory although not as good as their smaller
counterparts. A careful comparison of the original and reconstructed images
in Figure 3 shows that a large proportion of the proteins have been faithfully
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Figure 2. (Colour available online) Reconstructions (displayed in Swiss-PdbViewer) of the protein 1PTQ
obtained from the Douglas–Rachford algorithm (a)–(e) and from the method of cyclic projections (f)–(j),
together with their relative errors after given numbers of steps. The protein prior to the reconstruction is
shown in (k) and its actual structure in (l). Only interatomic distances below 6 Å have been used as input.
This represents 14,370/162,812 distances (8.83% of the nonzero entries of the distance matrix). Entry
(m) shows the positions of the original (respectively, reconstructed) atoms in red (respectively, blue) –
coincidence is frequent.

reconstructed, although some finer details are missing. For instance, one should
look at the top right corners of the 1PHT images.
• The reconstructions of 1POA and 1AX8, the largest two proteins examined,

were poor. The images of the reconstructed proteins show that some bond
lengths are abnormally large. We discuss possible approaches to this issue in
Remarks 4.2 and 4.3.
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Figure 3. (Colour available online) The five proteins not shown in Figure 2. The first column shows
positions of original (respectively, reconstructed) atoms in red (respectively, blue), the second and third
columns show the original protein and a reconstructed instance (displayed in Swiss-PdbViewer), as
reported in Table 1.

• Some alternative approaches to protein reconstruction are reported in [24].
Three of them are:

– a ‘build-up’ algorithm placing atoms sequentially (Buildup),
– a classical multidimensional scaling approach (CMDSCALE),
– global continuation on Gaussian smoothing of the error function

(DGSOL).
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For 1PTQ and HOE, the RMS error of the Douglas–Rachford reconstruction
was slightly smaller than the reconstruction obtained from either the buildup
algorithm or CMDSCALE. For 1LFB and 1PHT, the RMS errors were
comparable, and for 1POA and 1AXE they still had the same order of
magnitude. DGSOL performed better than all three approaches (Douglas–
Rachford, Buildup and CMSCALE).
• For the proteins examined, computational times for the full 5000 iterations,

except for 1POA, ranged from 6 to 18 h. This time is mostly consumed by
eigendecompositions performed as part of computing PCr

2
, and could perhaps be

dramatically reduced by using a cheaper approximate projection. For 1POA we
used up to 50 h for a full reconstruction.

Remark 4.2 (An upper bound on distances). The constraint C1 can be easily modified
to incorporate additional distance information. For instance, upper and lower bounds
could be placed on the distance between (not necessarily adjacent) carbon atoms on a
carbon chain. Note that each carbon–carbon bond is approximately 1.5 Å in length.

Remark 4.3 (Two-phase approach). In our implementation, the Douglas–Rachford
method encountered difficulties applied to the reconstruction of the two larger proteins.
Therefore, it would be reasonable to consider an approach in which one partitions the
atoms into sets and applies the Douglas–Rachford method to these subproblems. The
reconstructed distances obtained from these subproblems can then be used as the initial
estimates for distances in the original master problem (which considers all the atoms).
An iterative version is outlined in Algorithm 4.

Algorithm 4: A two-phase algorithm for protein reconstruction.
input : D ∈ Rn×n (the partial Euclidean distance matrix)

1 Choose random X ∈ [−1, 1]n×n;
2 Γ = {1, 2, . . . , n} (each index represents an atom);
3 while continue do
4 if doPhase1 then // generate and solve subproblems (phase 1)

5 Choose a partition of Γ into the sets Γ1,Γ2, . . . ,Γm;
6 for k = 1, 2, . . . ,m do
7 Apply Algorithm 2 to atoms indexed by Γk to obtain Xk (that is, the

distance matrix for the atoms indexed by Γk); Update X with the
reconstructed distances in Xk;

8 end
9 else // solve master problem (phase 2)

10 Apply Algorithm 2 to all atoms (that is, index by Γ) to obtain X;
11 end
12 end

output: X (the reconstructed distance matrix).
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We continue to work on such problem-specific refinements of the Douglas–
Rachford method: in most of our example problems a natural splitting is less
accessible.

It would also be interesting to apply the methods of this section to sensor network
localization problems requiring the reconstruction of an incomplete distance matrix
[22, 26, 35].

4.4. Hadamard matrices Recall that a matrix H = (Hi j) ∈ {−1, 1}n×n is said to be
a Hadamard matrix of order n if

HT H = nI. (4.4)

We note that there are many equivalent characterizations. For instance, (4.4) is
equivalent to asserting that H has maximal determinant (|det H| = nn/2) [32, Ch. 2].
A classical result of Hadamard asserts that Hadamard matrices exist only if n = 1, 2 or
a multiple of 4. For orders one and two, such matrices are easy to find. For multiples of
four, the Hadamard conjecture asks the converse: If n is a multiple of four, does there
exist a Hadamard matrix of order n? Background on Hadamard matrices can be found
in [32]. Thus, an important completion problem starts with structure restrictions, but
with no fixed entries.

Consider now the problem of finding a Hadamard matrix of a given order. We define
the constraints

C1 = {X ∈ Rn×n | Xi j = ±1 for i, j = 1, . . . , n}, (4.5)

C2 = {X ∈ Rn×n | XT X = nI}. (4.6)

Then X is a Hadamard matrix if and only if X ∈ C1 ∩C2.
The first constraint, C1, is clearly nonconvex. However, its projection is simple and

is given pointwise by

PC1 (X)i j =


−1 if Xi j < 0,
±1 if Xi j = 0,
1 otherwise.

(4.7)

The second constraint, C2, is also nonconvex. To see this, consider the mid point of
the two matrices (√

2 0
0

√
2

)
,

(
0

√
2

√
2 0

)
∈ C2.

Nevertheless, a projection can be found by solving the equivalent problem of finding a
projection onto the set of orthogonal matrices, which is a special case of the Procrustes
problem described above.

Proposition 4.4. Let X = US VT be a singular value decomposition. Then
√

nUVT ∈ PC2 (X).
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Proof. Let Y = X/
√

n. Then

min
X∈Rn×n

AT A=nI

‖X − A‖F =
√

n
(

min
Y∈Rn×n

BT B=I

‖Y − B‖F
)
.

Any solution to the latter is a projection of Y onto the set of orthogonal matrices. One
such matrix can be obtained by replacing all singular values of Y by ‘1’ [42]. Since

Y = UŜ VT , where Ŝ = S/
√

n,

is a singular value decomposition, it follows that UV is a projection of Y onto the set
of orthogonal matrices. The result now follows. �

Remark 4.5. Any A ∈ PC2 (X) is such that tr(AT X) = maxB∈C2 tr(BT X).

Remark 4.6. Consider instead the matrix completion problem of finding a Hadamard
matrix with some known entries. This can be cast within the above framework by
appropriate modification of C1. The projection onto C1 only differs by leaving the
known entries unchanged.

We next give a second useful formulation for the problem of finding a Hadamard
matrix of a given order. We take C1 as in (4.4) and define

C3 = {X ∈ Rn×n | XT X = ‖X‖F I}.

If X ∈ C1, then ‖X‖F = n; hence, C1 ∩ C2 = C1 ∩ C3. It follows that X is a Hadamard
matrix if and only if X ∈ C1 ∩ C3. A projection onto C3 can be computed using a
similar approach to the projection onto C2.

Proposition 4.7. Let X = US VT be a singular value decomposition. Then√
‖X‖F UVT ∈ PC3 (X).

Proof. This is a straightforward modification of Proposition 4.4. �

Remark 4.8. (Complex Hadamard matrices) It is also possible to consider complex
Hadamard matrices. In this case,

C1 = {X ∈ Cn×n | |Xi j| = 1}.

The projection onto C1 is straightforward, and is given by

PC1 (X)i j =

{
Xi j/|Xi j| if Xi j , 0,
z ∈ C, |z| = 1 otherwise.

Note that the real solutions to |Xi j| = 1 are ±1.
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Table 2. Number of Hadamard matrices found from 1000 instances.

Order Ave time (s) Solved Distinct Inequivalent
Proposition 4.4 formulation

2 1.1371 534 8 1
4 1.0791 627 422 1
8 0.7368 996 996 1

12 7.1298 0 0 0
16 9.4228 0 0 0
20 20.6674 0 0 0

Proposition 4.7 formulation
2 1.1970 505 8 1
4 0.2647 921 541 1
8 0.0117 1000 1000 1

12 0.8337 1000 1000 1
16 11.7096 16 16 4
20 22.6034 0 0 0

Example 4.9. (Experiments with Hadamard matrices) Let H1 and H2 be Hadamard
matrices. We say that H1 and H2 are distinct if H1 , H2. We say that H1 and
H2 are equivalent if H2 can be obtained from H1 by performing a sequence of row
or column permutations, and/or multiplying rows or columns by −1. The number
of distinct (respectively, inequivalent) Hadamard matrices of order 4n is given in
the On-Line Encyclopedia of Integer Sequences (OEIS) sequence A206712: 768,
4954521600, 20251509535014912000, . . . (respectively, A007299: 1, 1, 1, 1, 5, 3,
60, 487, 13710027, . . .). With increasing order, the number of Hadamard matrices
is a faster than exponentially decreasing proportion of the total number of {+1,−1}
matrices (of which there are 2n2

for order n). This is reflected in the observed
rapid increase in difficulty of finding Hadamard matrices using the Douglas–Rachford
scheme, as order increases.

We applied the Douglas–Rachford algorithm to 1000 random replications, for each
of the above formulations. Our computational experience is summarized in Table 2
and Figure 4. To determine if two Hadamard matrices are equivalent, we used a Sage
implementation of the graph isomorphism approach outlined in [39].

We make some brief comments on our results.

• The formulation based on Proposition 4.7 was found to be faster and more
successful than the formulation based on Proposition 4.4, especially for orders
eight and 12, where it was successful in every replication. For orders less
than or equal to 12, the Douglas–Rachford scheme was able to find the unique
inequivalent Hadamard matrix under either formulation (except for n = 12,
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Proposition 4.4 formulation). Moreover, the Proposition 4.7 formulation was
able to find four of the five inequivalent Hadamard matrices of order 16 (all five
can be found at http://www.uow.edu.au/∼jennie/hadamard.html).
• From Figure 4, we observed that if a Hadamard matrix was found, it was usually

found within the first few thousand iterations. The frequency histogram for order
16, shown in Figure 4(f), varied significantly from the corresponding histograms
for lower orders.

For orders 20 and above, it is possible that another formulation might be more
fruitful, but almost certainly better and more problem-specific heuristics will again be
needed.

Remark 4.10. Since C2 is nonconvex, when computing its projection we are forced to
make a selection from the set of nearest points. In our experiments we have always
chosen the nearest point in the same way. It may be possible to benefit from making
the selection according to some other criterion.

We now turn our attention to some special classes of Hadamard matrices.

4.4.1. Skew-Hadamard matrices Recall that a matrix A = (ai j) ∈ Rn×n is skew
symmetric if AT = −A. A skew-Hadamard matrix is a Hadamard matrix, H, such that
I − H is skew symmetric. That is,

H + HT = 2I.

Skew-Hadamard matrices are of interest, for example, in the construction of
combinatorial designs [36]. The number of inequivalent skew-Hadamard matrices of
order 4n is given in OEIS sequence A001119: 1, 1, 2, 2, 16, 54, . . . (for n = 2, 3, . . .).

In addition to the constraints C1 and C2 from the previous section, we define the
affine constraint

C3 = {X ∈ Rn×n | X + XT = 2I}.

A projection onto C1 ∩C3 is given by

PC1∩C3 (X)i j =


1 if i , j and Xi j ≥ X ji,
−1 if i , j and Xi j < X ji,
1 otherwise.

Then X is a skew-Hadamard matrix if and only if X ∈ (C1 ∩C3) ∩C2.
Table 3 shows the results of the same experiment as Section 4.4, but with the skew

constraint incorporated.

Remark 4.11. Comparing the results of Table 3 with those of Table 2, it is notable that
by placing additional constraints on the problem, both methods now succeed at higher
orders, method two is faster than before and we can successfully find all inequivalent
skew matrices of order 20 or less.
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n = 4, Proposition 4.4 formulation. n = 4, Proposition 4.7 formulation.

n = 8, Proposition 4.4 formulation. n = 8, Proposition 4.7 formulation.

n = 12, Proposition 4.7 formulation. n = 16, Proposition 4.7 formulation.
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Figure 4. Frequency histograms showing the number of iterations required to find a Hadamard matrix, for
different orders and formulations (solved instances only).
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Table 3. Number of skew-Hadamard matrices found from 1000 instances.

Order Ave time (s) Solved Distinct Inequivalent
Proposition 4.4 formulation

2 0.0003 1000 2 1
4 1.1095 719 16 1
8 0.7039 902 889 1

12 14.1835 43 43 1
16 19.3462 0 0 0
20 29.0383 0 0 0

Proposition 4.7 formulation
2 0.0004 1000 2 1
4 1.6381 634 16 1
8 0.0991 986 968 1

12 0.0497 999 999 1
16 0.2298 1000 1000 2
20 20.0296 495 495 2

In contrast, the three-set feasibility problem C1 ∩C2 ∩C3 was unsuccessful, except
for order two. This is despite the projection onto the affine set C3 having the simple
formula

PC3 (X) = I +
X − XT

2
, (4.8)

which allows for its efficient computation.

4.4.2. Circulant Hadamard matrices Recall that a matrix A = (ai j) ∈ Rn×n is
circulant if it can be expressed as

A =


λ1 λ2 . . . λn

λn λ1 . . . λn−1
...

...
. . .

...
λ2 λ3 . . . λ1


for some vector λ ∈ Rn.

The set of circulant matrices forms a subspace of Rn×n. The set {Pk | k = 1, 2, . . . , n},
where P is the cyclic permutation matrix

P =


0 0 . . . 0 1
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 ,
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forms a basis. Consequently, any circulant matrix, A, can be expressed as a linear
combination of the form

A =

n∑
k=1

λkPk.

Remark 4.12. Right (respectively, left) multiplication by P results in a cyclic
permutation of rows (respectively, columns). Hence, P2,P3, . . . ,Pn represent all cyclic
permutations of the rows (respectively, columns) of P. In particular, Pn is the identity
matrix.

Proposition 4.13. [31, Exercise 6.7] For X ∈ Rn×n, the nearest circulant matrix is given
by

n∑
k=1

λkPk, where λk =
1
n

∑
i, j

Pk
i jXi j.

A circulant Hadamard matrix is a Hadamard matrix which is also circulant.
The circulant Hadamard conjecture asserts: No circulant Hadamard matrix of order

larger than four exists. For recent progress on the conjecture, we refer the reader to
a paper of Leung and Schmidt [38]. Consistent with this conjecture, our Douglas–
Rachford implementation can successfully find circulant matrices of order four, but
fails for higher orders.

5. Conclusion

We have provided general guidelines for successful application of the Douglas–
Rachford method to (real) matrix completion problems, both convex and nonconvex.
The message of the previous two sections is the following. When presented with a
new (potentially nonconvex) feasibility problem, it is well worth seeing if Douglas–
Rachford can deal with it, since it is both conceptually very simple and usually
relatively easy to implement. If it works, one may then think about refinements if
performance is less than desired.

Moreover, this approach allows for the intuition developed for continuous
optimization in Euclidean space to be usefully repurposed. This also lets one profitably
consider nonexpansive fixed point methods in the class of so-called CAT(0) metric
spaces – a far-ranging concept introduced 20 years ago in algebraic topology, but
now finding applications to optimization and fixed point algorithms. The convergence
of various projection-type algorithms to feasible points is under investigation by
Searston and Sims among others in such spaces [4] – thereby broadening the constraint
structures to which projection-type algorithms apply to include metrically rather than
algebraically convex sets.

Ongoing and future computational experiments could include the following aspects.

• Implementation of the modified protein reconstruction formulation outlined in
Remarks 4.2 and 4.3.
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• Considering similar reconstruction problems arising in the context of ionic liquid
chemistry and, as mentioned, in sensor location problems.
• Likewise, for the discovery of larger Hadamard matrices to be tractable by

Douglas–Rachford methods, a more efficient implementation is needed and a
more puissant model.
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