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1. In the analysis of mixed boundary value problems by the use of Hankel 
transforms we often encounter pairs of dual integral equations which can be 
written in the symmetrical form 

( L 1 ) f'r^MJMM = F(P), o < p < i 

f Y**tt)/,G*)<*É = G{p), P > 1. 

Equations of this type seem to have been formulated first by Weber in 
his paper (1) in which he derives (by inspection) the solution for the case in 
which a - 13 = i , v = 0, F = 1, G = 0. 

The first direct solution of a pair of equations of this type was given by 
Beltrami (2) for the same values of a —• $ and v with G(p) = 0 but with 
F(p) arbitrary. 

The general case but with G{p) = 0 has been considered by Titchmarsh 
(3), Busbridge (4) and Gordon (5). Recently, Copson (6) has given an elegant 
solution of this general case by using a method which is a generalization of 
an elementary method suggested by Sneddon (7) for the cases which are of 
physical interest. 

The solution of the pair of equations (1.1) with general values of a, fi 
satisfying — 1 < a — /3 < 1 was considered by Noble (8) who reduced the 
problem to that of solving an integral equation of Schlômilch type. Noble's 
analysis involves heavy manipulation and cannot be regarded as simple. 
Williams (9) has derived a solution, valid for the same range of parameters, 
by a formal application of the theory of Mellin transforms; the manipulation 
in this paper appears to be much simpler than that in Noble's paper, but this 
is because much of it has already been absorbed in the calculation of certain 
Mellin transforms. A straightforward extension of Copson's method (6) to 
the case in which G(p) is not identically zero has recently been given by 
Lowengrub and Sneddon (10). It should also be observed that a solution of the 
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pair of equations (1.1) in the special case a — ($ = dbl was given by Tranter 
(11), but it should be noted that his method is more cumbersome than Noble's. 

All of these methods are complicated and require an elaborate apparatus of 
integral transforms. For that reason it is difficult to see the relations which 
must exist among the various methods or even to appreciate precisely why 
a certain approach would prove to be fruitful. The purpose of the present 
paper is to point out that a systematic use of certain operators introduced into 
the theory of fractional integration enables us to see more clearly the basic 
structure of any such method of solving dual integral equations and to 
appreciate more easily the connections which exist among the various methods. 
The key relations between the operators of fractional integration and the 
modified operator of Hankel transforms, which form the basis of the method 
presented here, were first derived by Erdélyi and Kober (12) and by Erdélyi 
(13). They are summarized in §2 below. 

To get the equations into a form to which this theory is immediately 
applicable we make the substitutions 

(1.2) 4,(y) = y-^(2y?),f(x) = 22ax~aF(x^)f g(x) = 2^x~^G{x^) 

by means of which we transform the equations (1.1) to 

( L 3 ) x~" JVVOV)J,@V(xy))dy = f(x), 0 < x < l, 

J»oo 

y~^{y)Jv(2y/{xy))dy = g(x), 
o 

X > 1. 

The results of §2 are applied in §3 to the solution of this pair of equations ; the 
various types of solution, due to the authors cited above, are then clearly 
recognizable. In §5 one of the solutions obtained by this operational method 
is written out in explicit form and identified with Titchmarsh's solution 
(3; 4). 

Dual integral equations of a more complicated type arise in the discussion 
of mixed boundary value problems. They can be written in the form 

(1 4 ) J'0"
r2a[1 + K(M*(Z)Mi;p)di; = F(P), 0 < P < 1 

X r"*(t)J,(Zp)dZ = G(p), p > 1, 
0 

where the functions i£(£), F(p), and G(p) are prescribed in the ranges stated. 
A solution of these equations in the case v = 0 and G(p) = 0 was given 

by Tranter (14) in 1950, the solution for general v following four years later 
(15). Tranter's method consisted in expressing SF(£) as an infinite series of 
Bessel functions of the type 

771=0 
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and then deriving an infinite set of linear algebraic equations whose solution 
yielded the values of the coefficients am. Cooke (16) gave a solution which is 
the integral analogue of Tranter's method; in it the unknown function satisfies 
a linear integral equation of the second kind of Fredholm's type. A special 
case of physical interest was discussed by the same method derived independ­
ently by Lebedev and Ufliand (17). A general solution, derived by a different 
method, was also given by Noble (18). It should be noted that in all of those 
investigations it was assumed that G(p) = 0. 

In §4 of this paper we derive a solution of the pair of equations (1.4), with 
G(p) not identically zero, in the sense that we reduce the problem to that of 
solving a linear integral equation of the second kind of Fredholm's type. To 
be able to apply the methods of §2 we first write the equations (1.4) in the 
form 

(1.5) 

/»oo 

*~° y~a[l + k(y)W(y)J,{2V(xy))dy=f(.x), 0 < x < 1 

x* ry-*4,(y)M2V(xy))dy = g(x), x > 1 
«/ 0 

by making the substitutions (1.2) and the additional substitution 

(1.6) K(2Vy) = k(y). 

2. We shall give here a brief summary of the definitions and properties of 
the operators occurring in our work. A more detailed description will be found 
in (12) and (13). For the sake of simplicity all the relevant parameters will 
be taken to be real and the definitions will be given in a form appropriate for 
quadratically integrable functions. 

Let Ii denote the interval (0, 1), and I2 the interval (1, » ) , and let L2 

denote the space of functions which are quadratically integrable on (0, <»), 
two such functions being identified if they are equal almost everywhere. For 
a function / in Z2 we shall occasionally write / i + /2, where 

(2.1) / t - Z o n / f c - O o n / , 
v ' / 2 = 0 on / i , = / on 12. 

The operators Iv,a and KVt0C are defined by the formulae 

(2.2) JW(x) = ̂  f\x - yrVf(y)dy 
1 {a) «/ o 

i W ( * ) = ̂ y J"(y - x)a~Yv~af(y)<iy « > o, * > - *. 

If / belongs to L2 then Ir,,af and K^^f exist and belong to a subspace L2
( - a ) 

of L2. For a precise description of L2
(_a) see (13, p. 300). Here it will be suf­

ficient to recall that the elements of L2
(-0° are [a] times continuously 

differentiate.* 

*[a] is the largest integer < a. 
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For a — 0, 

A.o/ = /, ^TJ.O/ = /, 

and for a < 0 we define g = /„>a/and & = Kv>afas the solutions of the integral 
equations/ = Iv+a-ag a n d / = Kv+a_ah. These solutions exist if rj + « > — i 
and / belongs to L2

(a). 
We set L2

(a) = L2 if a > 0, and see that for any real a and under the con­
dition rj > — \ + max (0, —a), IVtaf and K^^f are defined and belong to 
L2

(~a) provided that / is in L2
(a). For the so extended operators 

(2.3) /,.«**/(*) = ofl^afix) 

7—-1 _ 7" 2 ? — ! 2 ^ 

provided all operations make sense. 
If w is a positive integer, 

K,.-J{x)= ( - l ) V ^ { * " ^ 7 ( x ) } 

by explicit computation, and this result in combination with (2.3) leads to 
explicit expressions for /„,«/, Kii,aj\ Kv,ag when a + n > 0, where n is a positive 
integer. /,,,« = J,+a+n,_n 7, i a+n and similarly for K, so that 

in 

(O A\ -Lri,<xj\X) ~ X ~~j~n \X 1 r},a+nj \X) \ 

KnJ(x) = ( - iTx^^^Ax-^K^nfix)]. 

For a > 0 we define the modified operator Sv>a of Hankel transforms by 

(2.5) s,,af(x) = *-+" f°By-*"Jr,rt«(2 V(«y))/Cyyy ; 
«^ 0 

and for a < 0, we define g = 5,,«/ as the solution of the integral equation 
/ = Sr,+a,-ag. If V > ~\ + max (0, — a), and / belongs to L2

(a\ then S,,*/ 
exists and belongs to L2

(~a). Also, 

(2.6) Sv,a ~ <Sri+a,-cc 

Between operators of fractional integration on the one hand and operators 
of Hankel transforms we have the following relations: 

(2.7) Iv±atp Sr,,a = ^ ,«+0 

(2.8) Kv,<* ày+a,0 — àVta+0 
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(2.10) Srj^Syj+a^ = KVt(X+p 

provided the conditions for the existence of the various operations are satisfied. 

3. Using the S-operator defined by equation (2.5) we write the dual integral 
equations (1.3) in the form 

( 3 . 1 ) Skv-at2a^ = / , 5^-/9,2/3^ = g 

where / is given on Iu and g is given on I2. Note that a — $ is determined 
uniquely, but increasing a and ft by the same amount means merely a change 
in the definition of / , g, if. 

Titchmarsh's solution of (3.1) is obtained by observing that by virtue of 
(2.7) and (2.8), 

-L%v+a,P-aJ — I±v+a,$-aS±V-ai2a1p = Ol„-a,a+/^/ ' 

K\v-ata-fig = KlV-a,a-pS±v-pt2& = SiV-a,a+$. 

If we now define a function h by 

(3.2) h = Iir+aj-af on Ih = Kt„-ata-pg on J2, 

then h can be calculated from the data. Also S\v-a,a+0^ = h, and so by Hankel's 
inversion theorem, or equation (2.6), 

(3.3) ^ = S\v+t-a-oh* 

Noble's solution is based virtually on the same computation. We have 
established that 

( 3 . 4 ) lip+a,0-af = Kl,-ata-fig 

is a consequence of (3.1). Set t ing/ = fi + /2, g = gi + gi as in (2.1), f1 and 
g2 are given so that (3.4) may be regarded as an equation for f2 and gi, viz. 

( 3 . 5 ) I%v+a,0-af2 — K^v-a,a-pgl = K^V-a>a-pg2 ~ I\v+afi-afl-

If this equation is evaluated on i"i, the first term on the left-hand side vanishes, 
and 

( 3 . 6 ) K±v-a,a-figl = I\v+a,fi-aj\ ~ Kkv_a>a_^g2 On IX 

determines gi. Hence gi + gi = g, from which, if desired, if may be obtained 
by Hankers inversion formula as 

if = Stv+p-wg. 

On the other hand, if we evaluate (3.5) on 72, the second term on the left-hand 
side vanishes, and 

( 3 . 7 ) I%p+a,0-af2 — Klv-a,a-0g2 ~ I\v+afi-afl On I2 

can be used for the computation of /2 and hence of / and if — Si„+at_2aJf. 
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Copson's (or Gordon's) solution is obtained if we regard (3.3) as a trial 
solution of (3.1), with an unknown h. Substitution of (3.3) into the first 
equation of the pair (3.1) results in 

j = S±v-a,1a S\v+$t-a-$h = Ilv+ptCt-ph 

by (2.9). This is a functional equation for h from which hi (that is, h on Ii) 
may be found. Similarly, 

by (2.10), and this determines h2 (that is, h on J2). If a > 0, hi is determined 
by an integral equation while h2 = i£§„_«,«_££2 on 72, is given explicitly; if 
a < j8, hi is given explicitly while h% is the solution of an integral equation. 

4. The same technique enables us to discuss the slightly more general dual 
integral equations (1.5) which may be written as 

(4.1) Si„_a,2«(l + k)i/ = / , 51 , -^ ,2^ = g 

where k = k(x) is a given function on x > 0, / is given on Ji, and g is given 
on 12. The solution we give here is essentially Cooke's (16) solution. 

We again use (3.3), with unknown h — h\ + h2, as a trial solution. Sub­
stitution of (3.3) in (4.1) results in 

/ = SiV-a,2aS\v+p,-a-ph + S±V-a,2a \kS± v+p t-a-ph) 

g = S±v-$t 2$S±v+ti t-a-ph = Kkv-ptp~ah. 

The second one of these equations determines h on J2, so that 

h2 = K$y-a,a-pg2 on 12 

may be regarded as known. The first equation, evaluated on 7lf then becomes 

7^+/S(,a_/sAl + S§p-a,2a(fcS$H-0,--a-|8^l) = / — Si „_a,2a (kS±v+0 -a-^) On J i . 

Using (2.7), we may re-write this in the form 

(4.2) hi + Siv-a,a+fi(kS$r+fi-a-phi) 

= I±v+a,P-af — S±V-.at0t+p(kS±v+p t-a-ph2) = F, On Ih 

say. The second term on the left-hand side is a double integral. If the order 
of integrations in this double integral is interchanged, (4.2) turns out to be 
an integral equation of the second kind of Fredholm's type. 

Indeed, from (2.5), we have on Ii 

Sly-a.a+fiikSLp+p-a-phl) (x) 

•s 0 «^ 0 

= I K(x,y)h!(y)dy, 
•Jo 
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where 

(4.3) K(x,y) = (JJ JQ Va(2V(x2))^-a(2v /(^))iW d*. 

Equation (4.2) now takes the form 

(4.4) hx{x) + f K(x, y)hx{y)dy = F(*) 0 < * < 1, 
•Jo 

where F(x) is known. 

5. For the practical application of the results obtained in §3 we should 
wish to express the various forms of the solution in explicit form. The advantage 
of our approach is the avoidance of all intermediate explicit computations, 
combined with the utilization of the known analytic expression of the operators 
appearing in the final result. We shall illustrate this by considering Titch-
marsh's solution of (3.1). 

The solution (3.3) appears in the form 

(5.1) fix) = xha+¥ f ° ° ; ^ ( 2 v / t e ) ) ^ W ^ 
«Jo 

In the computation of h two cases must be distinguished. 
First let us assume 13 > a, and let n be the smallest integer >/3 — a. From 

(3.2) 

(5.2) Ax(x) = i^j^fix) = r (
x / l ' t t ) Jo*(* - yf'^y^mdy 

0 < x < 1 

k2(x) = Kïî-fi,0-ag(x) = Kl„-a,a-l3g(x) 1 < X < CO 

= ( - I)-***"** ^ {*"l'wg(*)} i f « - / 3 + W = 0 

/771 (̂  / v ^ - a 

^ ; dxn \ r ( a - 0 + w) 

J"(y - x)a-^-y^+^(^)^} if a - 0 + » > 0. 

The conditions for the existence of the operators involved in this work are 
satisfied if/ is quadratically integrable over (0, 1), g is n times continuously 
differentiate and g and g{n) are quadratically integrable over [1, oo), 2\a\ —I 
< v and a + ft + v >— 1. 

Secondly, if a > /?, and n is the least positive integer > a — f$, we have from 
(3.2) 
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(5.3) hi(x) = I$r+aiS-af(x) 0 < x < 1 

dn 

x^-" i-n {x*P+f)+nf(x)} i f n - a + j8 = 0 
ax 

if n - a + $ > 0 

1 < X < oo. 

All conditions are satisfied if / is n times continuously differentiate, / and 
f(n) are quadratically integrable on (0,1], g is quadratically integrable on 
(1, oo), -2\a\ - 1 < v <md v + a + P > -1. 

Added in proof, (i) An integral equation equivalent to (4.4) was considered 
in a special case by E. R. Love {The electrostatic field of two equal circular 
coaxial conducting disks, Quart. J. Mech. and Appl. Math. 2 (1949), 428); 
and Cooke's solution of (4.1) is based on Love's work. After seeing the manu­
script of the present paper, Professor Love {Dual integral equations, unpub­
lished) proved that when K(i-) = zbexp( — K£) in (1,4), the Fredholm integral 
equation (4.4) may be recast in a form which is a generalization of Love's 
integral equation, and proved that the kernel of the recast integral equation 
has norm less than unity so that the Neumann series converges in this case. 

(ii) Dual integral equations differing from (1.1) in that the Bessel functions 
appearing in the two equations are of different orders have been considered 
by A. S. Peters (Certain dual integral equations and Sonines integral. Technical 
Report IMM-NYU 285. Institute of Mathematical Sciences, New York 
University, August 1961). Such integral equations can also be solved by 
our method. 
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