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Unsteady flow fields over a circular cylinder are used for training and then prediction
using four different deep learning networks: generative adversarial networks with
and without consideration of conservation laws; and convolutional neural networks
with and without consideration of conservation laws. Flow fields at future occasions
are predicted based on information on flow fields at previous occasions. Predictions
of deep learning networks are made for flow fields at Reynolds numbers that were
not used during training. Physical loss functions are proposed to explicitly provide
information on conservation of mass and momentum to deep learning networks. An
adversarial training is applied to extract features of flow dynamics in an unsupervised
manner. Effects of the proposed physical loss functions and adversarial training on
predicted results are analysed. Captured and missed flow physics from predictions
are also analysed. Predicted flow fields using deep learning networks are in good
agreement with flow fields computed by numerical simulations.
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1. Introduction

Observation of fluid flow in nature, laboratory experiments and numerical
simulations has provided evidence of the existence of flow features and certain,
but often complex, rules. For example, in nature, Kelvin—Helmholtz waves in
clouds (Dalin et al. 2010), von Kdrman vortices in ocean flow around an island (Berger
& Wille 1972) and the swirling great red spot on Jupiter (Marcus 1988) are flow
structures that can be classified as a certain type of vortical motion produced
by a distinct combination of boundary conditions and initial conditions for the
governing first principles. Similar observations have also been reported in laboratory
experiments and numerical simulations (Freymuth 1966; Ruderich & Fernholz 1986;
Babucke, Kloker & Rist 2008; Wu & Moin 2009). The existence of distinct and
dominant flow features has also been widely investigated by reduced-order models
(ROMs) using mathematical decomposition techniques such as the proper orthogonal
decomposition (POD) method (Sirovich 1987), the dynamic mode decomposition
(DMD) method (Schmid 2010) and the Koopman operator method (Mezi¢ 2013;
Morton et al. 2018).
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Owing to the existence of distinct or dominant flow features, animals such as
insects, birds and fish are reported to be able to control their body movements
in order to adapt their fluid dynamic environment and so improve their aero- or
hydrodynamic performance and efficiency (Wu 2011; Yonehara et al. 2016). This
suggests the possibility that they empirically learn to generate dominant fluid motions
as well as the nonlinear correlation of fluid motions and are able to estimate future
flow based on flow experienced in their environments. Such observations in nature
motivate us to investigate the feasibility of predicting unsteady fluid motions by
learning flow features using neural networks.

Attempts to apply neural networks to problems of fluid flow have been recently
made by Tracey, Duraisamy & Alonso (2015), Zhang & Duraisamy (2015) and Singh,
Medida & Duraisamy (2017), who utilized shallow neural networks for turbulence
modelling for Reynolds-averaged Navier—Stokes (RANS) simulations. Ling, Kurzawski
& Templeton (2016) employed deep neural networks to better model the Reynolds
stress anisotropy tensor for RANS simulations. Guo, Li & lorio (2016) employed a
convolutional neural network (CNN) to predict steady flow fields around bluff objects
and reported reasonable prediction of steady flow fields with significantly reduced
computational cost than that required for numerical simulations. Similarly, Miyanawala
& Jaiman (2017, 2018) and Mao et al. (2018) employed CNNs to predict aerodynamic
forces on bluff bodies, also with notably reduced computational costs. Those previous
studies showed the high potential of deep learning techniques for enhancing simulation
accuracy and reducing computational cost.

Predicting unsteady flow fields using deep learning involves extracting both
spatial and temporal features of input flow field data, which could be considered
to be learning videos. Video modelling enables prediction of a future frame of a
video based on information from previous video frames by learning the spatial and
temporal features of the video. Although deep learning techniques have been reported
to generate high-quality real-world-like images in image modelling areas (Denton,
Chintala & Fergus 2015; Radford, Metz & Chintala 2015; van den Oord et al.
2016a; van den Oord, Kalchbrenner & Kavukcuoglu 2016b), it is known that, for
video modelling, deep learning techniques have presented difficulties in generating
high-quality prediction due to blurriness caused by complexity in the spatial and
temporal features in a video (Ranzato et al. 2014; Mathieu, Couprie & LeCun 2015;
Srivastava, Mansimov & Salakhudinov 2015; Xingjian et al. 2015).

Mathieu et al. (2015) proposed a video modelling architecture that utilizes a
generative adversarial network (GAN) (Goodfellow et al. 2014), which combines a
fully convolutional generator model and a discriminator model. The GAN was capable
of generating future video frames from input frames at previous times. The generator
model generates images and the discriminator model is employed to discriminate
the generated images from real (ground truth) images. A GAN is adversarially
trained so the generator network is trained to fool the discriminator network, and
the discriminator network is trained not to be fooled by the generator network. The
Nash equilibrium in the two-pronged adversarial training leads the network to extract
underlying low-dimensional features in an unsupervised manner and, in consequence,
good quality images can be generated. The most notable advantage of using the
GAN is that, once it is trained, the network is able to generate predictions in a larger
domain. This leads to a memory-efficient training of videos because the network can
predict a frame with a larger size than that in training. A recurrent neural network
(RNN) based architecture lends itself to learning the temporal correlation among
encoded information in the past and thereby predicting future frames. It is also worth
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noting that, in the present study, the application of RNNs proposed by Srivastava
et al. (2015) and by Xingjian et al. (2015) has been attempted. However, it has
been found that the methods are practical only for low-resolution frames since the
number of weight parameters for the RNNs increases as a function of the square of
the resolution of a frame. Ranzato et al. (2014) proposed a recurrent convolutional
neural network (rCNN), which is also able to predict a frame with a larger size than
that in training. However, Mathieu et al. (2015) reported that the GAN improves the
capability for predicting future frames on a video dataset of human actions (Soomro,
Zamir & Shah 2012) compared to the rCNN, the predictions of which are more static
for unsteady motions.

Prediction of unsteady flow fields using deep learning could offer new opportunities
for real-time control and guidance of aero- or hydro-vehicles, fast weather forecasting,
etc. As the first step towards prediction of unsteady flow fields using deep learning,
the present study is an attempt to predict rather simple but canonical unsteady vortex
shedding over a circular cylinder using four different deep learning networks: GANs
with and without consideration of conservation laws and CNNs with and without
consideration of conservation laws. Consideration of conservation laws is realized
as a form of loss function. The aim of the present study is to predict unsteady
flow fields at Reynolds numbers that were not utilized in the learning process. This
differs from the aim of ROMs, which is to discover and understand low-dimensional
representation of flow fields at certain Reynolds numbers by learning them (Liberge
& Hamdouni 2010; Bagheri 2013).

The paper is organized as follows: the method for constructing flow field datasets
and deep learning methods are explained in §§2 and 3, respectively. The results
obtained using the present deep learning networks are discussed in § 4, followed by
concluding remarks in §5.

2. Construction of flow field datasets
2.1. Numerical simulations

Numerical simulations of flow over a circular cylinder at Reynolds number Rep =
U..D/v =150, 300, 400, 500, 1000, 3000 and 3900, where U,,, D and v are the free-
stream velocity, cylinder diameter and kinematic viscosity, respectively, are conducted
by solving the incompressible Navier—Stokes equations as follows:

du; = duu; 1 9p 9%u,

_ 2.1
T T TR @1

and

8u,~

=0, 22
ox, (2.2)

where u;, p and p are the velocity, pressure and density, respectively. Velocity
components and the pressure are non-dimensionalized by U,, and pU2, respectively.
A fully implicit fractional-step method is employed for time integration, where all
terms in the Navier—Stokes equations are integrated using the Crank—Nicolson method.
Second-order central-difference schemes are employed for spatial discretization and
the kinetic energy is conserved by treating face variables as arithmetic means of
neighbouring cells (You, Ham & Moin 2008). The computational domain consists
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FIGURE 1. The computational domain for numerical simulations. N denotes the number
of mesh points, where N,, =20, N,, =30, N,, =50, N,, =50 N,, =30, N,, =30, N,, =80
and N, = 150. The domain size and the number of mesh points in the spanwise direction
are 6D (mtD for flow at Rep > 1000) and 96, respectively.

of a block structured H-grid with an O-grid around the cylinder (figure 1). The
computational domain sizes are 50D and 60D in the streamwise and the cross-flow
directions, respectively, where D is the cylinder diameter. In the spanwise direction,
6D is used for flow at Reynolds numbers less than 1000, while D is used otherwise.
The computational time-step size AtUy /D of 0.005 is used for all simulations. The
domain size, number of grid points and time-step sizes are determined from an
extensive sensitivity study.

2.2. Datasets

Flow fields in different vortex shedding regimes are calculated for training and testing
deep learning networks. The following flow regimes and Reynolds numbers are
considered: two-dimensional vortex shedding regime (Rep = 150), three-dimensional
wake transition regime (Rep = 300, 400 and 500) and shear-layer transition regime
(Rep = 1000, 3000 and 3900). Simulation results of flow over a cylinder at each
Reynolds number are collected with a time-step interval of §t = 20AtU.,/D = 0.1.
Flow variables u;/Ux(= u/Uy), Uy/Uso(=v/Us), uz/Usx(=w/Uy) and p/,oUgO at
each time step in a square domain of —1.5D <x <5.5D, —3.5D <y <3.5D, z=0D
(7D x 7D sized domain) are interpolated into a uniform grid with 250 x 250 cells
for all Reynolds number cases. Thus, a dataset at each Reynolds number consists of
flow fields with the size of 250 x 250 (grid cells) x 4 (flow variables).

The calculated datasets of flow fields are divided into training and test datasets, so
that flow fields at Reynolds numbers in the training dataset is not included in the test
dataset. Flow fields in the training dataset are randomly subsampled in time and space
into five consecutive flow fields on a 0.896D x 0.896D domain with 32 x 32 grid
cells (see figure 2). The subsampled flow fields contain diverse types of flow, such as
free-stream flow, wake flow, boundary layer flow or separating flow. Therefore, deep
learning networks are allowed to learn diverse types of flow. The first four consecutive
sets of flow fields are used as an input (Z), while the following set of flow fields
is a ground truth flow field (G(Z)). The pair of input and ground truth flow fields
form a training sample. In the present study, a total of 500000 training samples are


https://doi.org/10.1017/jfm.2019.700

https://doi.org/10.1017/jfm.2019.700 Published online by Cambridge University Press

Deep learning prediction of unsteady flow over a cylinder 221

(@) u/Un

- —

v/ Uy

w/ Uy

p/pUZ, ’_"

(b) Uxt/D) =38t (Uxt/D) =26t (Uxt/D) — 8t (Uxt/D) (Uxt/D) + ét

FIGURE 2. (a) Instantaneous fields of flow variables u/Uy, v/Ux, w/Us and p/pU%
on a 7D x 7D domain with 250 x 250 grid cells. (b) The procedure of subsampling five
consecutive flow fields to the input (Z) and the ground truth (G(Z)) on a 0.896D x 0.896D
domain with 32 x 32 grid cells.

employed for training deep learning networks. The predictive performance of networks
is evaluated on a test dataset, which is composed of interpolated flow fields from
numerical simulations on a 7D x 7D domain with 250 x 250 grid cells.

3. Deep learning methodology
3.1. Overall procedure of deep learning

A deep learning network learns a nonlinear mapping of an input tensor and an output
tensor. The nonlinear mapping is composed of a sequence of tensor operations and
nonlinear activations of weight parameters. The objective of deep learning is to learn
appropriate weight parameters that form the most accurate nonlinear mapping of the
input tensor and the output tensor that minimizes a loss function. A loss function
evaluates the difference between the estimated output tensor and the ground truth
output tensor (the desired output tensor). Therefore, deep learning is an optimization
procedure for determining weight parameters that minimize a loss function. A deep
learning network is trained with the following steps.

(1) A network estimates an output tensor from a given input through the current state
of weight parameters, which is known as feed forward.

(2) A loss (scalar value) is evaluated by a loss function of the difference between
the estimated output tensor and the ground truth output tensor.

(3) Gradients of the loss with respect to each weight parameter are calculated through
the chain rule of partial derivatives starting from the output tensor, which is
known as back propagation.

(4) The weight parameters are gradually updated in the negative direction of the
gradients of the loss with respect to each weight parameter.
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FIGURE 3. Illustration of a fully connected layer.

(5) Steps 1 to 4 are repeated until weight parameters (deep learning network) are
sufficiently updated.

The present study utilizes two different layers that contain weight parameters: fully
connected layers and convolution layers. An illustration of a fully connected layer
is shown in figure 3. Weight parameters of a fully connected layer are stored in
connections (W) between layers of input (X) and output (¥Y) neurons, where neurons
are elementary units in a fully connected layer. Information inside input neurons is
passed to output neurons through a matrix multiplication of the weight parameter
matrix and the vector of input neurons as follows:

Y= Z WPiX7 + bias, 3.1

J

where a bias is a constant, which is also a parameter to be learned. An output neuron
of a fully connected layer collects information from all input neurons with respective
weight parameters. This provides strength to learn a complex mapping of input and
output neurons. However, as the number of weight parameters is determined as the
multiplication of the number of input and output neurons, where the number of
neurons is generally in the order of hundreds or thousands, the number of weight
parameters easily becomes more than sufficient. As a result, abundant use of fully
connected layers leads to inefficient learning. For this reason, fully connected layers
are typically used as a classifier, which collects information and classifies labels, after
extracting features using convolution layers.

An illustration of a convolution layer is shown in figure 4. Weight parameters (W)
of a convolution layer are stored in kernels between input (X) and output (Y) feature
maps, where feature maps are elementary units in a convolution layer. To maintain the
shape of the input after convolution operations, zeros are padded around input feature
maps. The convolution operation with padding is applied to input feature maps using
kernels as follows:

Fy—1F.—1

Z Z Z W" ! Xlk+rj+v + bias, (32)

c=0 r=0
Pdd included

where F, x F, is the size of kernels. Weight parameters inside kernels are updated to
extract important spatial features inside input feature maps, so an output feature map
contains an encoded feature from input feature maps. Updates of weight parameters
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FIGURE 4. Illustration of a convolution layer.

could be affected by padding as output values near boundaries of an output feature
map are calculated using parts of weight parameters of kernels, whereas values far
from boundaries are calculated using all weight parameters of kernels. However,
without padding, the output shape of a feature map of a convolution layer is reduced,
which indicates loss of information. Therefore, padding enables a CNN to minimize
the loss of information and to be deep by maintaining the shape of feature maps, but
as a trade-off it could affect updates of weight parameters.

Convolution layers contain significantly fewer parameters to update, compared to
fully connected layers, which enables efficient learning. Therefore, convolution layers
are typically used for feature extraction.

After each fully connected layer or convolution layer, a nonlinear activation function
is usually applied to the output neurons or feature maps to provide nonlinearity to a
deep learning network. The hyperbolic tangent function (f(x) = tanh(x)), the sigmoid
function (f(x) = 1/(1 + exp(—x))) and the rectified linear unit (ReLU) activation
function (f(x) = max(0, x)) (Krizhevsky, Sutskever & Hinton 2012) are examples of
typically applied activation functions. In the present study, these three functions are
employed as activation functions (see § 3.2 for details).

A max pooling layer is also utilized in the present study, which does not contain
weight parameters but applies a max filter to non-overlapping subregions of a feature
map (see figure 5). A max pooling layer can be connected to an output feature map
of a convolution layer to extract important features.

3.2. Configurations of deep learning networks

Deep learning networks employed in the present study consist of a generator model
that accepts four consecutive sets of flow fields as an input. Each input set of
flow fields is composed of flow variables of {u/Us, v/Ux, w/Ux, p/pU%}, to take
advantage of learning correlated physical phenomena among flow variables. The
number of consecutive input flow fields is determined by a parameter study. A high
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FIGURE 5. Illustration of a 2 x 2 max pooling layer.

Generator model (Gz; — G, — G — Gy)

Generative CNN Numbers of feature maps Kernel sizes

G; 16, 128, 256, 128, 4 3%x3,3%x3,3x3,3x%x3

G, 20, 128, 256, 128, 4 5%x5,3%x3,3x3,5x%x5

G, 20, 128, 256, 512, 256, 128, 4 5x5,3x3,3x3,3x3,3x3,5x%x5
Gy 20, 128, 256, 512, 256, 128, 4 7x7,5%x5,5x5, 5x5,5x%x5,7x7

TABLE 1. Configuration of the generator model in GANs and multi-scale CNNs (see
figure 6 for connections).

number of input flow fields increases memory usage and therefore the learning
time. A low number might cause a shortage of input information for the networks.
Three cases with m =2, 4 and 6 are trained and tested for unsteady flow fields. No
significant benefit in the prediction is found with m beyond 4. The flow variables
are scaled using a linear function to guarantee that all values are in —1 to 1. This
scaling supports the usage of the ReLU activation function by providing nonlinearity
to networks and the hyperbolic tangent activation function by bounding predicted
values. Original values of the flow variables are retrieved by an inverse of the linear
scaling. The generator model utilized in this study is composed of a set of multi-scale
generative CNNs {Gy, G, G», G3} to learn multi-range spatial dependences of flow
structures (see table 1 and figure 6). Details of the study for determining network
parameters such as numbers of layers and feature maps are summarized in § C.1.

During training, a generative CNN G, generates flow field predictions (Gy(Z))
on the 0.896D x 0.896D domain with resolution of 32/2% x 32/2* through padded
convolution layers. G, is fed with four consecutive sets of flow fields on the domain
with 32/2% x 32/2* resolution (Z;), which are bilinearly interpolated from the original
input sets of flow fields with 32 x 32 resolution (Z), and a set of upscaled flow fields,
which is obtained by Ry, 0 Gy (Z) (see figure 6). Ri.; o () is an upscale operator that
bilinearly interpolates a flow field on a domain with resolution of 32/2¢! x 32/2k1 to
a domain with resolution of 32/2% x 32/2*. Note that domain sizes for 32/2% x 32/2F
and 32 x 32 resolution are identical to 0.896D x 0.896D, where the size of the
corresponding convolution kernel ranges from 3 to 7 (see table 1). Consequently,
G, is able to learn larger spatial dependences of flow fields than G;_; by sacrificing
resolution. As a result, a multi-scale CNN-based generator model enables the learning
and prediction of flow fields with multi-scale flow phenomena. The last layer of
feature maps in each multi-scale CNN is activated with the hyperbolic tangent
function to bound the output values, while other feature maps are activated with the
ReLU function to provide nonlinearity to networks.

Let Gy(Z) be ground truth flow fields with resized resolution of 32/2% x 32/2*.
The discriminator model consists of a set of discriminative networks {Dy, Di, D>, D3}
with convolution layers and fully connected layers (see table 2 and figure 7).
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FIGURE 6. (a) Schematic diagram of generator models. Z is the set of input flow fields
(see figure 2) and Z; denotes interpolated input flow fields on an identical domain with
1/(2% x 2%) coarser grid resolution. G; indicates a generative CNN which is fed with input
Ty, while Gi(Z) indicates the set of predicted flow fields from the generative CNN G;.
Ri o () indicates the rescale operator, which upscales the grid size twice in both directions.
(b) Example of input flow fields and the corresponding prediction of the flow field on a
test data.

A discriminative network D, is fed with inputs of predicted flow fields from the
generative CNN (G (Z)) and ground truth flow fields (Gi(Z)). Convolution layers of a
discriminative network extract low-dimensional features or representations of predicted
flow fields and ground truth flow fields through convolution operations. Then 2 x 2
max pooling, which extracts the maximum values from each equally divided 2 x 2
sized grid on a feature map, is added after convolution layers to pool the most
important features. The max pooling layer outputs feature maps with resolution of
32/2¢1 x 32/2%+1, The pooled features are connected to fully connected layers. Fully
connected layers compare pooled features to classify ground truth flow fields into
class 1 and predicted flow fields into class 0. The output of each discriminative
network is a single continuous scalar between 0 and 1, where an output value larger
than a threshold (0.5) is classified into class 1 and an output value smaller than the
threshold is classified into class 0. Output neurons of the last fully connected layer
of each discriminative network D, are activated using the sigmoid function to bound
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Discriminator model (convolution layers — max pooling layer — fully connected layers)

Dy D, D, D;
Convolution layers (top row: numbers of feature maps, bottom row: kernel sizes)
4,128,256,512,128 4,128,256,256 4,64,128,128 4,64
Tx71, Tx7,5x5 5x5 5x5,5%x5,5x%x5 3x3,3%x3,3x%x3 3x3

2 x 2 max pooling layer
Fully connected layers (neuron numbers)
16 x 16 x 128,1024,512,1 8 x 8 x 256,1024,512,1 4 x 4 x 128,1024,512,1 2 x 2 x 64,512,256,1

TABLE 2. Configuration of the discriminator model inside the GAN.

®

K. T r T
ng DD Gz(I)V DD CDD_ GI(S @D_ G(Z)A

‘T | ‘r n L r | L ‘r n
il il > -
G:(D) G (D) Gi(D gD

FIGURE 7. Schematic diagram of the discriminator model: D; indicates the discriminative
network which is fed with G,(Z) and Gy(Z), Gi(Z) indicates the set of predicted flow
fields from the generative CNN G;, while G, (Z) indicates the set of ground truth flow
fields.

the output values within O to 1, while other output neurons, including feature maps
of convolution layers, are activated with the ReLU activation function.

Note that the number of neurons in the first layer of fully connected layers (see
table 2) is a function of the square of the subsampled input resolution (32 x 32); as a
result, parameters to learn are increased in the order of the square of the subsampled
input resolution. Training could be inefficient or nearly impossible in a larger input
domain size with the equivalent resolution (for example, 250 x 250 resolution on the
domain size of 7D x 7D) due to the fully connected layer in the discriminator model
depending on computing hardware. On the other hand, parameters in the generator
model (fully convolutional architecture with padded convolutions) do not depend on
the size and resolution of the subsampled inputs. This enables the generator model to
predict flow fields in a larger domain size (7D x 7D domain with 250 x 250 resolution)
compared to the subsampled input domain size (0.896D x 0.896D domain with 32 x
32 resolution).

The generator model is trained with the Adam optimizer, which is known to
efficiently train a network, particularly in regression problems (Kingma & Ba 2014).
This optimizer computes individual learning rates, which are updated during training,
for different weight parameters in a network. The maximum learning rate of the
parameters in the generator model is limited to 4 x 107°. However, the Adam
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optimizer is reported to perform worse than a gradient descent method with a
constant learning rate for a classification problem using CNNs (Wilson et al. 2017).
As the discriminator model performs classification using CNNs, the discriminator
model is trained with the gradient descent method along with a constant learning rate
of 0.02. The same optimization method and learning rate have also been utilized in
the discriminator model by Mathieu et al. (2015). Networks are trained up to 6 x 10
iterations with a batch size of 8. Training of networks is observed to be sufficiently
converged without overfitting, as shown in figure 21 in §C.1.

3.3. Conservation principles

Let £2 be an arbitrary open, bounded and connected domain in R?, 9£2 be a surface of
which an outward unit normal vector can be defined as 7= (n', n?, n®). Also let p(t, x)
be the density, u(t, x) = (u;, uy, u3) be the velocity vector, p(¢, x) be the pressure and
7(¢, x) be the shear stress tensor (t; = pv(du;/dx;)) of ground truth flow fields as a
function of time ¢ and space x € R?. Then conservation laws for mass and momentum
can be written as follows:

d .
— [ pdV=-— / pur dS (3.3)
dr /g a0
and
d . . .
— / ou;dV = — / (puj)u;r dS — / (pdj)n’ dS + / T;n dS, (3.4)
dr Jg FYe) FYe) FYe)

where §; is the Kronecker delta. The present study utilizes subsets of three-
dimensional data (two-dimensional slices). Therefore, the domain 2 becomes a
surface in R? and the surface 32 becomes a line in R!. Exact mass and momentum
conservation cannot be calculated because derivatives in the spanwise direction are
not available in two-dimensional slice data. Instead, conservation principles of mass
and momentum in a flow field predicted by deep learning are considered in a form
that compares the difference between predicted and ground truth flow fields in a
two-dimensional space (R?).

Extension of the present deep learning methods to three-dimensional volume flow
fields is algorithmically straightforward. However, the increase of the required memory
space and the operation counts is significant, making the methods impractical. For
example, the memory space and the operation counts for 32 x 32 x 32 sized volume
flow fields are estimated to be increased by two-orders of magnitude compared to
those required for the 32 x 32 two-dimensional flow fields.

3.4. Loss functions

For a given set of input and ground truth flow fields, the generator model predicts
flow fields that minimize a total loss function, which is a combination of specific loss
functions as follows:

N—-1

Egenemtar = @ 2{112[’% + /lgdl[’];dl + /lph)'(ﬁﬁ + ﬁkmom) + /ladv[’acdﬁ}’ (35)
k=0

where N(= 4) is the number of scales of the multi-scale CNN and Ay~ = A; + Agr +

Aphy + Aqav. Contributions of each loss function can be controlled by tuning coefficients

Ap,y Agars Apny, and Aggy.
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Function £! minimizes the difference between predicted flow fields and ground
truth flow fields (see (A 1)), while E’;d, is applied to sharpen flow fields by directly
penalizing gradient differences between predicted flow fields and ground truth flow
fields (see (A2)). Loss functions £’§ and ﬁgdl provide prior information to networks
that predicted that flow fields should resemble ground truth flow fields. These loss
functions support networks to learn fluid dynamics that resemble the flow field, by
extracting features in a supervised manner.

Function L. enables networks to learn mass conservation by minimizing the
total absolute sum of differences of mass fluxes in each cell in an x—y plane as
defined in (A 3). Function L,,, enables networks to learn momentum conservation
by minimizing the total absolute sum of differences of momentum fluxes due to
convection, pressure gradient and shear stress in each cell in an x—y plane as defined
in (A4). Loss functions £. and L,,,, which are denoted physical loss functions,
provide explicit prior information on physical conservation laws to networks, and
support networks to extract features including physical conservation laws in a
supervised manner. Consideration of conservation of kinetic energy can also be
realized using a loss function, but it is not included in the present study since the
stability of flow fields predicted by the present networks are not affected by the
conservation of kinetic energy.

Function £¢, is a loss function with the purpose of deluding the discriminator
model into classifying generated flow fields as ground truth flow fields (see (AY)).
The loss function £¢, provides knowledge in a concealed manner that features of
the predicted and the ground truth flow fields should be indistinguishable. This loss
function supports networks to extract features of underlying fluid dynamics in an
unsupervised manner.

The loss function of the discriminator model is defined as follows:

N—1

1
Ldiscriminulor = N Z[Lbce(Dk(gk(I))a 1) + Lbce(Dk(Gk(I))a 0)]’ (36)

k=0

where L. is the binary cross-entropy loss function defined as
Lye(a, b) = —blog(a) — (1 — b) log(1 — a), (3.7)

for scalar values a and b between 0 and 1. Function L g iminaor 1S minimized so that
the discriminator model appropriately classifies ground truth flow fields into class 1
and predicted flow fields into class 0. The discriminator model learns flow fields in a
low-dimensional feature space.

4. Results
4.1. Comparison of deep learning networks

Four deep learning networks with different combinations of coefficients for loss
functions are discussed in the present section. Case A employs a GAN with physical
loss functions (A = Agy = 1.0, A5, = 1.0 and A,e, = 0.1); Case B employs a GAN
without physical loss functions (1, = Adgy = 1.0, A,y =0 and A,y = 0.1); Case C
employs a multi-scale CNN with physical loss functions (1, = A = 1.0, A, =1.0
and A5, = 0); Case D employs a multi-scale CNN without physical loss functions
(A = Agyy = 1.0, Ay =0 and Ay, =0). See §§C.2 and C.3 for the determination of
the weight parameters A,4, and A, respectively. All deep learning cases (Cases A-D)
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(@)

FIGURE 8. Comparison of the streamwise velocity (#/Uy) at Rep = 3900 predicted in
Cases A-D. (a) Input set; (b) after a single prediction step (157), and (c) nine more
recursive prediction steps (1067). 20 contour levels from —0.5 to 1.0 are shown. Solid
lines and dashed lines indicate positive and negative contour levels, respectively.

are trained with flow fields at Rep =300 and 500, which are in the three-dimensional
wake transition regime, and tested on flow fields at Rep = 150 (the two-dimensional
vortex shedding regime), 400 (the same flow regime with training) and 3900 (the
shear-layer transition regime).

Predicted flow fields at Rep = 3900 from Cases A-D are shown in figure 8. Flow
fields after time steps larger than &¢ are predicted recursively by utilizing flow fields
predicted at prior time steps as parts of the input. Flow fields predicted after a single
time step (18¢) are found to agree well with ground truth flow fields for all deep
learning cases, even though the trained networks have not seen such small-scale flow
structures at a higher Reynolds number. Note that the time-step size for network
prediction 8¢ corresponds to 20 times the simulation time-step size. Differences
between the predicted and the ground truth flow fields increase as the number of
recursive steps increases because errors from the previous predictions are accumulated
to the next time-step prediction. Particularly, dissipation of small-scale flow structures
in the wake region is observed, while large-scale vortical motions characterizing
Kéarman vortex shedding are well predicted.

Local distributions of errors for the streamwise velocity after a single time step for
four deep learning cases are compared in figure 9, while global errors such as L,,
Ly, L. and L, as a function of the recursive time step are compared in figure 10.
See appendix B for definitions of errors. All networks show that the maximum errors
are located in accelerating boundary layers on the cylinder wall or in the braid region
in the wake. Steep velocity gradients captured with relatively coarse resolution in
the deep learning prediction are considered as the cause for relatively high errors
in accelerating boundary layers. Magnitudes of the maximum errors at Rep = 400
are found to be smaller (see figure 9b) than those at Rep = 150 (figure 9a) and
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FIGURE 9. Local distributions of errors for u/U., after a single prediction step at
(@) Rep =150 (10 contour levels from 0 to 0.04), (b) Rep =400 (10 contour levels from
0 to 0.04) and (c) Rep = 3900 (10 contour levels from 0.0 to 0.33). Locations of L.,
L., (maximum error in mass conservation) and L,,,., (maximum error in momentum
conservation) are indicated by O, < and O, respectively.

3900 (figure 9c¢). This result implies that a network performs best in predicting
flow fields in a regime that has been utilized during training, while the network
shows relatively large errors in predicting flow fields in the flow regime with higher
complexity.

Interestingly, unlike errors at 16z, as the recursive prediction step advances, errors
at Rep = 150 are observed to increase more slowly than those at Rep = 400
(see figure 10). This implies that deep learning networks are capable of effectively
learning large-scale or mainly two-dimensional vortex shedding physics from flow in
three-dimensional wake transition regimes (Rep = 300 and 500), thereby accurately
predicting two-dimensional vortex shedding at Rep = 150, flow fields of which are
not included in the training dataset.

As also shown in figure 10, the multi-scale CNN with physical loss functions
(Case C) shows reduction of L. and L,,, errors, during recursive prediction steps,
compared to the multi-scale CNN without physical loss functions (Case D), indicating
the advantage of the incorporation of physical loss functions in improving the
conservation of mass and momentum. At the same time, however, L, and L., errors
at Rep = 400 and 3900 are found to increase in Cases C and D. Case A, which
employs the GAN with physical loss functions, shows similar error trends to Case C
but with smaller magnitudes of the L, error at Rep = 150.

On the other hand, the GAN without physical loss functions (Case B) shows smaller
L, and L,,, errors for all three Reynolds number cases than those in Case D which
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FIGURE 10. Comparisons of (a) L, (b) Ly, (¢) L. and (d) L,,, errors for Cases A-D.
See appendix B for definitions of the errors. The time-step interval between flow fields
is 8t =20AtUy/D =0.1. O and solid line: Case A; O and dashed line: Case B; A and
dash-dotted line: Case C; > and dotted line: Case D.

employs the multi-scale CNN without physical loss functions. The L., errors in Case
B at Rep = 150 and 400 are also significantly smaller than those in Case D. These
results imply that GANs (with and without physical loss functions, Cases A and B)
and the multi-scale CNN with physical loss functions (Case C) are more capable of
extracting features related to unsteady vortex shedding physics over a circular cylinder
than the multi-scale CNN without physical loss functions (Case D). The GAN without
physical loss function (Case B) is found to consistently reduce errors associated with
resemblance (L, and L.,) while error behaviours associated with conservation loss
functions are rather inconsistent. Effects of physical loss functions on reduction of
conservation errors are identifiable for networks with physical loss functions (Cases
A and C).

Vortical structures at each Reynolds number predicted by the present four deep
learning networks appear to be similar to each other after a single prediction step
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as shown in figure 11(a). However, all deep learning cases have difficulties in
learning the production of small-scale vortical structures. At 1058¢, small-scale vortical
structures, which are not present in the ground truth flow field, are found to be
generated inside shed large-scale vortices at Rep = 150, while many small-scale
vortices are missed in the wake at Rep = 3900 (figure 11b). This observation
implies that a network has difficulty in predicting flow fields, especially in recursive
predictions as errors from previous predictions are accumulated, in flow regimes
which are different from the regime for training.

After a few recursive prediction steps, Case D, where the multi-scale CNN without
physical loss functions is applied, shows unphysical vortical structures near the front
stagnation point, which are not present in flow fields predicted by other cases at
the three considered Reynolds numbers (figure 115). The effect of the inaccurate
prediction in Case D on errors also appears in figure 10, where magnitudes are larger
than those in Cases A, B and C.

All deep learning cases are found to be capable of predicting future flow fields,
particularly in single-step predictions. However, networks with additional consideration
of physics in either a supervised or an unsupervised manner (Cases A-C) are
recommended for predicting further future flow fields with many recursive steps.
Especially, the GAN without physical loss functions (Case B) is found to be the
best among the considered networks for minimizing L, and L., errors (see figure 10)
while also satisfying the conservation of mass and momentum favorably.

4.2. Analysis on captured and missed flow physics

Discussion in the present section is focused on the GAN without physical loss
functions (Case B), which is trained with flow fields at Rep = 300 and 500 (the
three-dimensional wake transition regime) and tested on flow fields at Rep = 150
(the two-dimensional vortex shedding regime), 400 (the same flow regime with
training) and 3900 (the shear-layer transition regime), in order to assess what flow
characteristics the network captures or misses.

Contour plots of the spanwise vorticity calculated using ground truth velocity
fields and velocity fields predicted by the GAN are compared in figure 12 for three
Reynolds numbers at 157 and 105¢. First of all, laminar flow at the frontal face of the
cylinder as well as the separated laminar shear layers including lengthening of the
shear layers and detachment from the wall are observed to be well captured in all
three Reynolds number cases. Convection (downstream translation) and diffusion of
overall large-scale vortical structures in the wake are also well predicted at both 1§¢
and 108¢. However, as also mentioned in the previous section, prediction results show
differences in the generation and dissipation of small-scale vortices. After a number
of recursive prediction steps, along with the non-zero spanwise velocity, unexpected
smaller scale vortices than those present in the ground truth flow field are generated
at Rep = 150, in which Reynolds number regime, downstream vortical structures are
expected to be laminar and two-dimensional. Generation of smaller scale vortical
structures than those in ground truth flow fields after a few recursive predictions is
also noticed in the GAN prediction at Rep =400. On the other hand, it is found that
the GAN fails to accurately predict small-scale vortical structures inside large-scale
vortices at Rep = 3900. It is thought that the present results imply that the GAN is
not fully trained for predicting production and dissipation of small-scale vortices. The
lack of flow information along the spanwise direction is considered as a major cause
for this failure. Due to the reason mentioned in § 3.3, the spanwise information in
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[

FIGURE 11. Comparison of the spanwise vorticity after (a) a single prediction step (15¢)
and (b) nine more recursive prediction steps (105f). 20 contour levels from —10.0 to
10.0 are shown. Solid lines and dashed lines indicate positive and negative contour levels,
respectively.

the present training dataset includes only the spanwise velocity on a two-dimensional
sliced domain, and therefore misses variation of flow variables along the spanwise
direction.

The lack of spanwise information on flow variables seems to lead the network to
miss the mechanism for generation of small-scale vortices, which can be formulated
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FIGURE 12. Contours of the spanwise vorticity calculated using ground truth velocity
fields (G(Z)) and velocity fields predicted by the GAN (G(Z)) after (a) a single prediction
step (16¢) and (b) nine more recursive prediction steps (105¢) at Rep =150, 400 and 3900.
20 contour levels from —10.0 to 10.0 are shown. Solid lines and dashed lines indicate
positive and negative contour levels, respectively.

as the vortex stretching term in the spanwise vorticity (w,) equation. The stretching
term w,(0w/dz), which is associated with the generation of small-scale vortices, is
missed in the present training. On the other hand, convection and diffusion of the
spanwise vorticity are dominated by u(dw./dx) + v(dw./dy) and (1/Rep)(d*w./dxdx +
0%w,/0ydy), which can be rather easily trained using the given flow field data.
Convection and diffusion phenomena in flow around a cylinder are investigated
more quantitatively in the development of the velocity deficit. Profiles of the
streamwise velocity from ground truth flow fields (O) and flow fields predicted
by the GAN (solid lines) at three streamwise locations, x/D = 0, 1.0 and 2.0, are
compared in figure 13. Velocity profiles at x/D =0 show no identifiable differences
between ground truth and GAN flow fields at both 187 and 108¢ at all Reynolds
numbers (Rep = 150, 400 and 3900). This is because flow at x/D = 0 is laminar
two-dimensional boundary layer flow, the characteristics of which are rather easily
trained by the network. Noticeable differences in the velocity deficit are observed
in the comparison at 1056z in the wake region, x/D = 2.0, at Rep = 3900, where
small-scale oscillatory motions are not accurately captured by the GAN. Recursively
predicted velocity deficits at Rep = 150 and 400 are in good agreement with the
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(a) 15t . 15t . 15t
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FIGURE 13. Profiles of the streamwise velocity at three streamwise locations after (a) a
single prediction step (15¢) and (b) nine more recursive prediction steps (108f) at Rep =
150, 400 and 3900. Circles indicate ground truth results and solid lines indicate results
predicted by the GAN. Profiles at x/D=1.0 and 2.0 are shifted by —1.7 and —3.4 in the
vertical axis, respectively.

ground truth velocity deficit in terms of the peak, width and shape at both streamwise
locations.

Plots of the power spectral density (PSD) of the streamwise velocity along the
vertical axis (y) in the wake region at x/D =2.0 are shown in figure 14 to evaluate
the wavenumber content of wake flow. At Rep = 150 and 400, PSDs produced by
the GAN show good agreement with ground truth results in the single-step prediction
(16%), and are found to be still close to ground truth PSDs with marginal deviations
in the middle- to high-wavenumber contents (k > 10) after nine recursive predictions.
On the other hand, PSDs produced by the GAN at Rep, =3900 at both 16¢ and 105t
show deviations from ground truth PSDs, especially for high-wavenumber contents,
again indicating the difficulty in learning the mechanism for production of small-scale
vortices (high wavenumbers).

4.3. Training with additional data

The GAN without physical loss functions is trained with additional flow field data at
Reynolds numbers of 1000 and 3000, in order to investigate the effect of small-scale
contents in training data on the prediction of small-scale vortical motions in flow in
the shear-layer transition regime (Rep = 3900). Local distributions of errors for the
streamwise velocity after a single time step for the GAN and the GAN with additional
flow field data are compared in figure 15. Magnitudes of maximum errors, especially
the mass and momentum errors, are significantly reduced by training the network with
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FIGURE 14. Power spectral density of the streamwise velocity at x/D = 2.0 after (a) a
single prediction step (16¢) and (b) nine more recursive prediction steps (108f) at Rep =
150, 400 and 3900. Circles indicate ground truth results and solid lines indicate results
predicted by the GAN.
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FIGURE 15. Local distributions of errors for u/U,, after a single prediction step at Rep =
3900 (10 contour levels from 0.0 to 0.33). Locations of L., L., (maximum error in mass
conservation) and L., (Maximum error in momentum conservation) are indicated by O,
< and 0O, respectively.

flow fields in the same flow regime as that to be predicted. Nevertheless, maximum
errors are still larger than those at low Reynolds numbers (see figure 9a,b). The lack
of spanwise information in the input is considered to be the remaining cause for the
erTors.

Contours of the spanwise vorticity calculated by ground truth flow fields, flow
fields predicted by the GAN trained with data at Rep =300 and 500 and flow fields
predicted by the GAN trained with additional data at Rep = 1000 and 3000 are
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FIGURE 16. Contour plots of the spanwise vorticity calculated using ground truth
velocity fields and velocity fields predicted by the GANs at Rep = 3900 after (a) 16t
and (b) 106¢. Solid lines and dashed lines denote positive and negative contour levels,
respectively. (c) Plots of the power spectral density at 16¢ and 108¢. 20 contour levels from
—10.0 to 10.0 are shown. Circles indicate ground truth result, while the dashed line and
the solid line correspond to predicted results using the GAN and the GAN with additional
data, respectively.

compared in figure 16(a,b). Training with additional data in the same flow regime is
found to clearly improve the prediction of small-scale motions after a single prediction
step (18¢). The spanwise vorticity predicted by the GAN trained with additional data
is found to agree much better with the ground truth vorticity than that predicted by
the GAN trained with flow fields only at Rep =300 and 500 after nine more recursive
prediction steps (108¢) as shown in figure 16(b). However, as discussed in the previous
section (§4.2), the GAN trained with additional data also suffers from a lack of
production of small-scale vortical structures. PSDs produced by the GAN trained
for Rep =300 and 500 and the GAN trained with additional data are close to the
ground truth PSD at 167, while the GAN trained with additional data better predicts
small-scale high-wavenumber contents. Differences among predicted and ground truth
PSDs become larger at 105¢, where reduced small-scale high-wavenumber contents
are clearly observable for both GANs (figure 16c¢).
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FIGURE 17. Two-point correlations of the streamwise velocity at three downstream
locations (x/D=1.0, 2.0 and 3.0) at Rep =3900. Circles indicate ground truth results and
solid lines indicate predicted results by the GAN. Two-point correlations at x/D =2.0 and
3.0 are shifted by —1 and —2 along the vertical axis, respectively.

4.4. Training with a large time-step interval

To investigate the potential of using a GAN in practical applications, where predicting
large-scale flow motions is important, the GAN without physical loss functions is
trained with a large time-step interval of 256t = 500AtU,,/D = 2.5. This time-step
interval is 25 times larger than the previous deep learning time-step interval and
500 times larger than the simulation time-step interval. Figure 17 shows plots of
two-point correlations of the streamwise velocity along the y direction, which provide
information on the large-scale fluid motions at three downstream wake locations at
Rep = 3900. After a single step with 256¢, it is found that two-point correlations
predicted by the GAN are in good agreement with correlations of the ground
truth flow field. After four additional recursive large steps (1256¢f), however, small
deviations of correlations from ground truth results are observed in the downstream
wake region (x/D = 3.0). Note that 1256t corresponds to 2500 time steps of the
numerical simulation conducted for the ground truth flow field.

Contour plots of the streamwise velocity predicted by the GAN at Rep = 3900 are
shown in figure 18 (see figures 28-30 in appendix E for contour plots of the other
flow variables). Flow fields at 508z, 756¢, 1006t and 1256t are recursively predicted.
As shown in figure 18, large-scale oscillations of the streamwise velocity behind the
cylinder are well predicted, while small-scale flow structures are found to be rather
rapidly dissipated compared to those in ground truth flow fields. This may be partly
due to the dynamics of small-scale flow structures, the time scales (r) of which are
smaller than the training interval size (t =nD/U,8¢t, where n is an integer), and are
disregarded from input information. The time scale of a small-scale flow structure can
be approximated as

DA 172
z~ (7) (4.1)

€
according to Tennekes & Lumley (1972), where v is the kinematic viscosity and € is
the dissipation rate per unit mass that is approximated as

l/t3 U3
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FIGURE 18. Contour plots of the streamwise velocity (u/Us) at Rep = 3900 after 256¢,
508¢t, 756t, 1006t and 1258t, where 16t = 20AtU.,/D = 0.1. Flow fields at 508¢, 756t,
1006t and 1256t are recursively predicted (utilizing flow fields predicted from prior time
steps as part of the input). (@) Input set, (b) ground truth flow fields and (c) flow fields
predicted by the GAN. 20 contour levels from —0.5 to 1.0 are shown. Solid lines and
dashed lines indicate positive and negative contour levels, respectively.

where u is the velocity scale and [ is the length scale of a large-scale flow motion.
The ratio of the time-scale for a small-scale flow structure to the training interval size
can be derived as follows:

v tUs 1 (UD\™? 1
v _n5t«/ReD'

t  nD§t  nét

The ratio of the time scale for a small-scale flow structure to the training interval
size decreases as the Reynolds number and the integer n increase. Therefore,
small-scale flow structures are reasonably well captured by the network trained with
a small training-step interval (see figures 24-27), while it is found that small-scale
flow structures predicted by the network trained with a large training-step interval of
254t, rapidly disappear in the wake (see figures 18, 28-30).

Regardless of the rapid loss of small-scale flow structures in the wake, flow fields
predicted after a single large prediction-step interval of 25§¢ exhibit lower errors
compared to flow fields recursively predicted at 25 small prediction steps of 25 x 1§¢
(see table 3). The reduction of errors implies that predicting with a network trained
with a large time-step interval enables the network to focus more on energetic
large-scale flow motions by disregarding small-scale flow motions.

4.3)

5. Conclusion

Unsteady flow fields around a circular cylinder at Reynolds numbers that were not
informed during training were predicted using deep learning techniques. Datasets of
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Variable Time-step interval Number of recursive steps Ly L,
u/Us ot 25 1.74 £0.28 0.062 + 0.002
2568t 1 0.93+£0.19 0.025+0.001
v/Us ot 25 1.72+0.39  0.064 £ 0.003
2568t 1 0.95+0.15 0.032+0.002
w/Us ot 25 0.91+£0.19 0.030£0.003
2568t 1 0.74£0.11 0.015+0.001
p/pU% ot 25 0.94+0.17 0.040 £ 0.004
2568t 1 0.56+0.11 0.012+0.001

TABLE 3. Comparison of errors for each flow variable at Rep = 3900 from predictions
obtained after 25 small time-step intervals of 157 and after a single large time-step interval
of 256t. 15t =20AtU,/D =0.1. Errors are composed of the mean and standard deviations
determined by 32 independent prediction results.

flow fields have been constructed using numerical simulations in three different flow
regimes: a two-dimensional laminar vortex shedding regime, a three-dimensional
wake transition regime and a shear-layer transition regime. The present deep learning
techniques are found to well predict convection and diffusion of large-scale vortical
structures, while the mechanism for production of small-scale vortical structures
is difficult to account for. Depending on the training scheme, the present deep
learning techniques are found also to be capable of successfully predicting large-scale
flow motions with large time-step interval sizes, which can be two to three orders
of magnitude larger than the time-step interval size for the conventional unsteady
numerical simulations. Predictions using the present deep learning networks can be
conducted with significantly lower computational cost than numerical simulations
regardless of the Reynolds number. A wall-clock time of 0.3 s is required for a
time-step advance using a single graphic processing unit (NVIDIA Titan Xp).

Four deep learning networks, GANs with and without physical loss functions and
multi-scale CNNs with and without physical loss functions, have been trained and
compared for their predictive performance. The physical loss functions proposed
in the present study inform the networks with, explicitly, the conservation of mass
and momentum. Adversarial training in the GAN allows the deep learning network
to extract various flow features in an unsupervised manner. All four deep learning
techniques are shown to be capable of predicting flow fields in the immediate future.
However, for long-term prediction using a recursive technique, which employs the
predicted flow fields as part of the input dataset, GANs and the multi-scale CNN with
physical loss functions are shown to be better predictors than the multi-scale CNN
without physical loss functions. It has been found that the GAN without physical
loss functions is the best at achieving a good resemblance to the ground truth flow
field during recursive predictions. Especially, GAN-based networks take advantage of
unsupervised training, so they can be applied to problems where underlying physics
is unknown a priori. The present deep learning methods are expected to be useful
in many practical applications, such as real-time flow control and guidance of aero-
or hydro-vehicles, fast weather forecasting, etc., where fast prediction of energetic
large-scale flow motions is important.

Physical interpretability of deep learning techniques is still an open problem and,
therefore, further research is necessary to enhance our understanding of the underlying
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mechanisms of deep learning networks for prediction of fluid flow, especially in
transitional and turbulent flow regimes.
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Appendix A. Loss functions

Function £% minimizes the difference between the predicted and the ground truth
flow fields as follows:

LE=Gu(T) — G (D13 (A1)

Also, L%, is a second-order central-difference version of the gradient difference loss
function proposed by Mathieu et al. (2015), which is applied to sharpen flow fields
by directly penalizing gradient differences between the predicted and the ground truth
flow fields as follows:

NG @D) 1) — Ge@) -1,) ‘
2

|G @Dy — G D) ij-1)
2

2

ﬁgdl = ZZ
i

4 Z Z H G@D)ij+1) — Ge@D) i j-1)
i

‘ G D iv1h — G D) i-1,)

> , (A2)

where the subscript (i, j) indicates grid indices in the discretized flow domain, and n,
and n, indicate the number of grid cells in the x and y directions, respectively.

Let u*, v, wf and p* be non-dimensionalized flow variables retrieved from
ground truth flow fields (Gy(Z)) and u*, v*, w* and p* be non-dimensionalized flow
variables retrieved from predicted flow fields (G,(Z)). Flow variables on the right,
left, top and bottom cell surfaces are calculated by the arithmetic mean between two
neighbouring cells as ¢, = 5 (Buj + Pur1)s ¢1=75(Duj +Pi-1))s ¢ =13 (Pip + Pijin)
and ¢, = %((j)(,-,j) + ¢ j—1)) for a variable ¢ which is a function of the grid index (i, j).
Function £, enables networks to learn mass conservation by minimizing the total
absolute sum of mass flux differences in each cell in an x—y plane as follows:

k k k k ~k k k ~k ~k
AConk ) = (uf — uf) — Gl — )| + | — vf) — @ — T,

£f = Z Z ACon.’(‘i’j). (A3)
i J

Function L,,, enables networks to learn momentum conservation by minimizing
the total absolute sum of differences of momentum fluxes due to convection, pressure
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gradient and shear stress in each cell in an x—y plane as follows:
AMom.f, ) = [((ul)> — uH)?) — (G2 — @) + | (vt — ufvf) — QT — @)
+ (@9 = WD) — (@ = BH) + | (vfuf — vub) — @itk — Tph)|

+1(pk =5 — @ = PO+ 1(pF — pb) — @Bk =D

k k k ~k ~k ~k
n 1 Vit ~ 2V T %1y | [ Vi — 2V t V1)
Rep A, A,

k k k ~k ~k ~k
Vigen — 2V, + Vi, Vigen — 2V, T VG,
_.I_ i
A, A,

k k k ~k ~k ~k
U jpn = 2Uy gy | [ Wy = 26, T UG,
A,V A)’

k k k ~k ~k ~k
U1y = 2UGj UG Uiy — 2UGj + UG
+ - )
A, A,

L,k = Z Z AMom.’(‘i.j),
i J

+

(A4)

where A, and A, are grid spacings in the x and y directions, respectively.
Function £¢ is a loss function with the purpose of deluding the discriminator

adv

model to classify generated flow fields as class 1 as follows:
L3, = Lice(D(Gi(D)), 1). (A5)

adv

Appendix B. Error functions

Let u, v, w and p be non-dimensionalized flow variables retrieved from ground truth
flow fields and u, v, w and p be non-dimensionalized flow variables retrieved from
predicted flow fields. Error functions are defined as follows:

1 ~ ~
fe= <4n n Z Z {(ap =) + Wiy — Vap)’
xtty i j

172
+ Wiy — Wip)’ + (Paj) _ﬁ(i,j))2}> , (B1)
1 - -
Ly = 7\ max lugj — uijl +max |vg ) — vi,)l
ij LJ
+ H}E}X |W(i,j) - VNV(t,j)| + n’%é}x |p(i,j) —ﬁ(i,j)|> s B2)
1
L. = ACon. ;, B3
Z Z i (B3)
1
Lmom = nxny Z Z AMom.(i,j), (B 4)

i

where ACon.;, and AMom.j are defined in equations (A 3) and (A 4), respectively.
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GMi6
Generative CNN Numbers of feature maps Kernel sizes
G; 16 N7 N, 4 3x3,3x3,3x%x3
G, 20 N7 N 4 5x5,3x%x3,5x%x5
G, 20 N7 Mo My N 4 5x5,3x%x3,3x%x3,3x%x3,5x5
Gy 20 N7 Mo Na NG 4 Tx7, 5%x5, 5x5, 5x5, 7x7
Generative CNN Numbers of feature maps Kernel sizes
G; 16 Ni My N, 4 3x3,3x3,3x3,3x%x3
G, 20 N7 M2 N, 4 5x5,3x3,3x3,5x%x5
G, 20 My M2 A, N 4 5%x5,3x3,3%x3,3x%x3,5x%x5
Gy 20 Ni Ny Ny N 4 Tx7,5x5, 5x5, 5%x5, 7x7
GMZ()
Generative CNN Numbers of feature maps Kernel sizes
G; 16 N7 N> N, 4 3x3,3x%x3,3x3,3x3
G, 20 Vi Na N 4 5%x5,3x%x3,3x%x3,5x%x5
G, 20 Mi Vo N Ny NG 4 5%x5,3x3,3%x3,3x%x3,3x%x3,5x%x5
Gy 20 M7 No M N, N 4 Tx7, 5%x5,5%x5,5x5, 5x5,7Tx7

Number sets
N3y Nea Niag

NI =32, N\b=64, N5=128, N, =64, N\, =128, N;=256 N, =128, N, =256, N;=512

TABLE 4. Configurations (GM,s, GM3 and GM,y) and number sets (N3, Ngs and Niog)
of generator models used in the parameter study.

The present loss functions and error functions for conservation of mass and
momentum are not identical to the original forms of conservation laws, but are
formulated using the triangle inequality. Therefore, the minimization of the present
physical loss functions satisfies conservation of mass and momentum more strictly.
In fact, smaller errors are calculated using the original forms of conservation laws,
while the errors behave similarly to L. and L,,, as a function of §t.

Appendix C. Parameter study
C.1. Effects of numbers of layers and feature maps

Errors as a function of the number of convolution layers of the generator model are
calculated by training three generator models with configurations of GMs, GM 3 and
GM,, with the number set of Njg (see table 4 for these configurations), while errors
as a function of the number of feature maps of the generator model in multi-scale
CNNs are calculated by training the generator model with number sets Ns;, Ngy and
Ny with the configuration of GM,,. All networks are trained with flow fields at
Rep =300 and 500. Magnitudes of errors in configurations considered in the present
study are found not to be reduced monotonically with the increase of numbers of
layers and feature maps. The configuration with the largest number of convolution
layers (GMy) tends to show smaller L, and L, errors, while showing L. and L,,;
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(a) 0.118 0.135 0.185
L, 0.060 0.070 | 0.099 1
0.003 12~ 000418%F | (014 {0
8t 38t 58t 78t 94t
(b) 0.559 0.698 1.151
L., 02921 0362 | 0.679 1
0.026 18 0.026 122 0.207
(¢) 0.009 0.015 0.028
L. 0.005 1 0.008 | 0.017 1
I Rep = 3900
0.001 12 0.001 & 0006 &
St 38t 55 18t 96t
(d) 0.009 0.009 0.015
g
5 0:005 4 0.005 | 0.010 |
0.001 1% 1 0001 1z~ 0.004 L&

st 38t S5t T8t 98t st 38t S8t st 98t st 38t 58t 78t 96t

FIGURE 19. Configuration dependence of the generator model. (a) L,, (b) L, (¢) L. and
(d) Lyom errors from the multi-scale CNN without physical loss functions as a function
of recursive prediction steps 6¢, where 6t = 20AtU /D = 0.1. Symbol O and solid line
denote errors from GMs; O and dashed line denote errors from GM,s; /\ and dash-dotted
line denote errors from GMo.

errors of magnitudes similar to or smaller than those in configurations with smaller
numbers of convolution layers (GMs and GM,g) (figure 19).

The generator model with the largest number set Nj,g tends to show smaller errors
(except for the L, error at Rep = 150) on recursive prediction steps compared to
smaller number set models (N3, and Ngy) (figure 20). Therefore, the present study
utilizes generator models with the configuration of GM,, and with the number set of
Nigs.

Figure 21 shows variations of L,, L., L. and L,,, errors as a function of training
iteration number for the multi-scale CNN without physical loss functions. All errors
are found to converge without overfitting.
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(a) 0.096 0.124 0.182
L, 0.049 | 0.064 0.098 |
0.003 127° 0.004 1%~ 0.014 1
(b) 0462 0.680 1.153
Lo, 0.243 1 0.354 0.682
0.025 18 0.029 {&~® 0211 1€~
(c) 0011 0.015 0.029
L, 0.006 0.008 | 0.017 {
0.001 18~ 0.001 1 0.006 &
(d) 0011 0.011 0.018
pal A
P :
= A g i
S 0.006 | ; 0.006 | 0.011 |
~
Rep = 150 | Rep = 3900
0.001 A 0.001 1@ 0.004 8

st 38 St 75t 95t st 35t S5t 75t 95t st 35t S5t 75t 95

FIGURE 20. Number set dependence of (a) L,, (b) L, (¢) L. and (d) L, errors from
the multi-scale CNN without physical loss functions as a function of recursive prediction
steps 8¢, where 8t =20AtUy /D =0.1. Symbol O and solid line denote errors from Ns;;
O and dashed line denote errors from Ng4; /\ and dash-dotted line denote errors from Njyg.
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(a) 0.790 (b) 1934
0.592 + 1.450
Lz 0.395 ~ Loo 0.967 -
0.197 1 0.483
01 ' o ® 'Q‘.o @ ' Q 4@ 0L 'QBA 2 'J __%@?
0 20 40 60 0 20 40 60
(x 10% (x 10
(c) 0.016 (d) 0.021
0.012 A 0.016 1
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L. 0.008 1 $ 0011 4
~
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FIGURE 21. Errors from the multi-scale CNN without physical loss functions as a
function of the number of training iterations. The network is trained with flow fields at
Rep =300 and 500. The errors are evaluated for flow predictions at Rep = 400.

C.2. Effects of Ada

Errors L, Ly, L. and L,,, from the GAN without physical loss functions using
different adversarial training coefficients (A, =0, 0.05, 0.10, 0.15) are compared in
figure 22. For the present parameter study, Ap and Aoy are fixed to 1 and A, is
fixed to 0. The GAN is trained with flow fields at Rep, =300 and 500 and tested on
flow fields at Rep = 150, 400 and 3900. The value of A, of 0.10 is selected for the
present analysis in the results section because that case shows small L., errors at all
Reynolds numbers and the smallest L,, L. and L,,,, errors at Rep = 3900.

C.3. Effects of Ay

Errors L, Ly, L., and L,,, from the multi-scale CNN with physical loss functions
using different coefficients (4,4, =0, 0.10, 0.50, 1.00) are compared in figure 23. The
values of A, and A,y are fixed to 1 and A,y is fixed to 0. The multi-scale CNN is
trained with flow fields at Rep, =300 and 500 and tested on flow fields at Rep = 150,
400 and 3900. The value of A,, of 1.00 has been selected for the analysis in the
results section because it shows relatively small L. and L,,, errors at all Reynolds
numbers (see figure 23).
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FIGURE 22. Errors as a function of A,,,: O, O, and x indicate errors after 15¢, 45t and

104¢, respectively.
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FIGURE 23. Errors as a function of A,,: O, O, and x indicate errors after 15¢, 46¢ and
1051, respectively.

Appendix D. Flow fields predicted by the GAN trained with a small time-step
interval

Contour plots of the cross-stream velocity, the spanwise velocity and the pressure
predicted by the GAN at Rep =3900 with prediction-step intervals of 15¢ are shown
in figures 24-27.
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FIGURE 24. Contour plots of the streamwise velocity (u/Us) at Rep = 3900 after 16t,
268t, 36t, 48t and 56t, where 16t =20AtUy /D =0.1. Flow fields at 25¢, 36¢, 46t and 55¢
are recursively predicted (utilizing flow fields predicted from prior time steps as part of
the input). (@) Input set, (b) ground truth flow fields and (c) flow fields predicted by the
GAN. 20 contour levels from —0.5 to 1.0 are shown. Solid lines and dashed lines indicate
positive and negative contour levels, respectively.

(@)

05t

)
15t 25t 35t 45t 568t

FIGURE 25. Contour plots of the cross-stream velocity (v/Uy) at Rep = 3900 after 16¢,
268t, 36t, 45t and 58t, where 16t =20AtU, /D =0.1. Flow fields at 28¢, 356¢, 45t and 561
are recursively predicted (utilizing flow fields predicted from prior time steps as parts of
the input). (a) Input set, (b) ground truth flow fields and (c) flow fields predicted by the
GAN. 20 contour levels from —0.7 to 0.7 are shown. Solid lines and dashed lines indicate
positive and negative contour levels, respectively.
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(a) 36t 25t 16t

®) 18t 38t 45t 568t

(©

FIGURE 26. Contour plots of the spanwise velocity (w/Uy,) at Rep =3900 after 15z, 26¢,
36t, 46t and 56t, where 16t =20AtU/D =0.1. Flow fields at 26z, 36¢, 45t and 55t are
recursively predicted (utilizing flow fields predicted from prior time steps as part of the
input). (a) Input set, (b) ground truth flow fields and (c) flow fields predicted by the
GAN. 20 contour levels from —0.5 to 0.5 are shown. Solid lines and dashed lines indicate
positive and negative contour levels, respectively.

(@)

FIGURE 27. Contour plots of the pressure (p/,oUgo) at Rep = 3900 after 167, 26t, 36¢,
45t and 56t, where 18t = 20AtUy /D = 0.1. Flow fields at 25¢, 38¢, 46t and 56t are
recursively predicted (utilizing flow fields predicted from prior time steps as part of the
input). (a) Input set, (b) ground truth flow fields and (¢) flow fields predicted by the
GAN. 20 contour levels from —1.0 to 0.4 are shown. Solid lines and dashed lines indicate
positive and negative contour levels, respectively.
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Appendix E. Flow fields predicted by the GAN trained with a large time-step
interval
Contour plots of the cross-stream velocity, the spanwise velocity and the pressure

predicted by the GAN at Rep =3900 with prediction-step intervals of 25§¢ are shown
in figures 28-30 (see figure 18 for contour plots of the streamwise velocity).

FIGURE 28. Contour plots of the cross-stream velocity (v/Us) at Rep =3900 after 256¢,
506t, 756t, 1008t and 1256t, where 18t = 20AtU,/D = 0.1. Flow fields at 508t, 7561,
1008t and 1256t are recursively predicted (utilizing flow fields predicted from prior time
steps as part of the input). (@) Input set, (b) ground truth flow fields and (¢) flow fields
predicted by the GAN. 20 contour levels from —0.7 to 0.7 are shown. Solid lines and
dashed lines indicate positive and negative contour levels, respectively.
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(@)

(b)

(©

FIGURE 29. Contour plots of the spanwise velocity (w/Uy) at Rep = 3900 after 255¢,
508¢t, 756t, 1006t and 1258t, where 16t = 20AtU.,/D = 0.1. Flow fields at 5058¢, 756¢,
1006t and 1256t are recursively predicted (utilizing flow fields predicted from prior time
steps as part of the input). (@) Input set, (b) ground truth flow fields and (c) flow fields
predicted by the GAN. 20 contour levels from —0.5 to 0.5 are shown. Solid lines and
dashed lines indicate positive and negative contour levels, respectively.

(@)

(b)

FIGURE 30. Contour plots of the pressure (p/,oUgo) at Rep =3900 after 258¢, 508¢, 756¢,
1006¢, and 1256¢, where 15t =20AtU.,/D=0.1. Flow fields at 505¢, 756¢, 1005¢ and 1256¢
are recursively predicted (utilizing flow fields predicted from prior time steps as part of
the input). (a) Input set, (b) ground truth flow fields and (c) flow fields predicted by the
GAN. 20 contour levels from —1.0 to 0.4 are shown. Solid lines and dashed lines indicate
positive and negative contour levels, respectively.
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