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1. Introduction

The present paper is mainly concerned with decomposition theorems of the Jordan,
Yosida—Hewitt, and Lebesgue type for vector measures of bounded variation in a
Banach lattice having property (P). The central result is the Jordan decomposition
theorem due to which these vector measures may alternately be regarded as order
bounded vector measures in an order complete Riesz space or as vector measures of
bounded variation in a Banach space. For both classes of vector measures, properties
like countable additivity, purely finite additivity, absolute continuity, and singularity can
be defined in a natural way and lead to decomposition theorems of the Yosida—Hewitt
and Lebesgue type. In the Banach lattice case, these lattice theoretical and topological
decomposition theorems can be compared and combined.

This paper is organized as follows:

In Section 2 we consider order bounded vector measures in an order complete Riesz
space. We first note that the class of all order bounded vector measures is an order
complete Riesz space itself. From this fact, the Jordan decomposition theorem of Faires
and Morrison [5] is immediate, and further decomposition theorems can be deduced by
pure Riesz space techniques. We thus obtain the Yosida—Hewitt band decomposition
theorem of Congost Iglesias [2] and a new Lebesgue band decomposition theorem. We
also generalize the Lebesgue null-set decomposition theorem of Pavlakos [8] and
Congost Iglesias [2] for vector measures in a super Dedekind complete Riesz space.
These two Lebesgue decompositions usually differ from each other; for order countably
additive vector measures they coincide if and only if the dimension of the Riesz space is
equal to one.

In Section 3 we recall some known results on bounded vector measures and vector
measures of bounded variation in a Banach space. In particular, we state the Yosida—
Hewitt decomposition theorem of Uhl [14] and the Lebesgue decomposition theorem of
Rickart [9] and Uhl [14] for vector measures of bounded variation. These results are
included for reference and in the form they will be needed in Section 4.

In Section 4 we study vector measures of bounded variation in a Banach lattice
having property (P). As remarked before, the key result of this section is the Jordan
decomposition theorem of [11], which generalizes results of Diestel and Faires [3] and
Faires and Morrison [5]. The Jordan decomposition theorem is used to prove that the
Yosida—Hewitt and Lebesgue decompositions are band decompositions. Furthermore, it
is shown that the decomposition theorems of the Yosida—Hewitt type and those of the
Lebesgue type differ considerably in the coincidence of their lattice theoretical and
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topological versions: In a weakly sequentially complete Banach lattice, the Yosida—
Hewitt band decomposition and the Yosida-Hewitt decomposition (of Uhl) always
coincide, whereas the Lebesgue band decomposition and the Lebesgue decomposition
(of Rickart and Uhl) coincide if and only if the dimension of the Banach lattice is equal
to one. For (order) countably additive vector measures, however, the Lebesgue null-set
decomposition always coincides with the Lebesgue decomposition.

We conclude with some remarks and complements in Section 5.

Let us now fix some notation which will be used throughout this paper.

Let & be an algebra of subsets of some set Q. If the sets A, Be & are disjoint, then
their union will be denoted by A+ B. For a set A€ %, define .9“'(A):={B69’|B c 4} A
finite collection {A4,,A,,...,A;} of mutually disjoint sets in F(A) is a partition of A4 in
Z if it satisfies A=A, + A, + - + A,. Let P(A) denote the class of all partitions of A in
& . The characteristic function of 4 will be denoted by y,. A map g:Q—R is a simple
Junction if it can be written in the form g=ox, +ayx,,+ " +uy,, Wwhere
{Ay,A,,..., A} is a partition of Q in & and a,,a,,...,u are real scalars. Let D denote
the sup-norm completion of the Riesz space of all simple functions Q— R, endowed with
the canonical order. Then D is an AM-space with unit y.

Let E be a real vector space. A set function u: % — [ is additive or a vector measure if
u(A+ B)=pu(A)+ u(B) holds for each pair of disjoint sets A, Be #. Let a(#, E) denote the
class of all vector measures # —E. For a vector measure uea(#,E) and a set A%, let
R ,u denote the restriction of u to #(A). -

For detailed information on vector measures, Riesz spaces, and Banach lattices, we
refer to the books by Diestel and Uhl [4], Luxemburg and Zaanen [6], and Schaefer

[10].

2. Vector measures in a Riesz space

Throughout this section, suppose that E is an order complete Riesz space.

A vector measure uea(&,E) is positive if y(A)eE, holds for all Ae#, and it is order
bounded if supg Ip(A)l exists in E. Let oba(#,E) denote the class of all order bounded
vector measures in a(%,E). Endowed with the canonical order, the class oba(#, ) is an
ordered vector space. More precisely, we have the following result:

Theorem 2.1. The class oba(#,E) is an order complete Riesz space, and the identities
(1 v ¢)(A)=supg 4 (1(B) + $(A\B))
(1 A §)(A)=infg,, (u(B)+ ¢(A\B))

hold for all p, ¢ coba(#,E) and Ae F. Moreover, if {u,coba(Z,E)|yel} is a directed
family which is bounded above, then

and

(supl' #y) (A) =Ssupr iuy(A)

holds for all Ae % .
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The proof of this result proceeds by standard arguments and is therefore omitted.

A vector measure has a Jordan decomposition if it is the difference of two orthogonal
positive vector measures. As an immediate consequence of Theorem 2.1, we obtain the
following Jordan decomposition theorem which is essentially due to Faires and Morrison

(5]

Corollary 2.2. A vector measure pca(#,t) is order bounded if and only if it has a
Jordan decomposition. Moreover, if u is order bounded, then its Jordan decomposition is
unique and given by u=p* —pu".

A vector measure peoba(%,E) is order countably additive if u(} A,)=o0-Y u(4,)
holds for each sequence {4,e % |neN} of mutually disjoint sets satisfying ) 4,eZ. It
is not hard to see that a vector measure ue oba(Z,[E) is order countably additive if and
only if o-limu(B,)=0 holds for each decreasing sequence {B,eZ |neN} satisfying
ﬂ B,=. Let obca(#,E) denote the class of all order countably additive vector
measures in oba(F,E). A vector measure ueoba(F,[) is order purely finitely additive if
¢=0 holds for each vector measure ¢eobca(#,E) satisfying |§|<|u|. Let obpfa(F,E)
denote the class of all order purely finitely additive vector measures in oba(#,[E). We
have the following Yosida—Hewitt band decomposition theorem which is essentially due to
Congost Iglesias [2]:

Theorem 2.3. The classes obca(#,E) and obpfa(#,E) are order complete Riesz spaces
and projection bands in oba(Z,E), and oba(#,E) is the direct sum of obca(#,E) and
obpfa(#,E). In particular, if ueoba(#,E) has the decomposition p=p,+pu,, with
Hy €obca(F, ) and p, € obpfa(F,E), then |u|=|u|+|pa), |1s) =sup [0,|u]] ~ obca(F, E) and
o] =sup [0, |1 ~ obpfal#, E).

Proof. Let us first study the properties of the class obca(Z, E). Consider ueoba(Z,E).
If u is order countably additive and {4,e % |ne N} is a sequence of mutually disjoint
sets satisfying A:=) A,e %, then we have

0-Y.|ul(A4,) = |ul(4)
and, for all Be # and B,:=A4, B,
p(B)— u(A\B) = 0-Y_ 1(B,) — 0-3_ (A, \B,)
< 0-Y |u|(Bn) +0-Y |u|(4,\B,)
=0-y|ul(4,)

hence
|lul(4) < 0-Y|u|(4,),

which yields |u| € obca(#, E). Conversely, if |u| is order countably additive, then the same
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is true for u* and p~, and hence for u. Therefore, the class obca(#,[E) is a Riesz space
and an ideal in oba(Z, ).

Furthermore, if {y,€0bca(#,E)|yeT} is a directed family which is bounded above in
oba(#,), then p:=suprpu, exists in oba(#,[E), and we have u(A)=suprpu,A), for all
Ae%. We may and do assume that

0=y,
holds for all yeT". Then we have, for all yeI" and for each sequence {4, F |neN} of
mutually disjoint sets satisfying A:=> 4,6 Z,

)uv(A) = O_Z)uy(An) é O'Z#(An)’

hence
H(A) =suprp(A) S0-Y, p(A) S p(A),

which yields peobca(#,E). Therefore, the class obca(#,E) i3 even a band in oba(Z,[)
and, in particular, an order complete Riesz space.

Let us now study the properties of the class obpfa(#, E). Consider pueoba(Z,E). If u is
order purely finitely additive, then we have, for all ¢ €obca(Z,E), |u| A |¢|<|¢|, hence
|u| A |¢|€obca(#,E), and |u| A |$|<|u|, which yields |u| A |¢|=0. Conversely, if p is such
that |u| A |¢|=0 holds for all ¢eobca(Z,E), then we have ¢=0 for all ¢eobca(F,E)
satisfying |¢|§|u|. Thus we have obpfa(Z#,E)=o0bca(#,E)*. Therefore, the class
obpfa(#,[) is a band in oba(#, E) and, in particular, an order complete Riesz space.

Finally, since the Riesz space oba(#,[) is order complete, the bands obca(#,E) and
obpfa(#,E) are projection bands, and oba(#,E) is the direct sum of obca(#,E) and
obpfa(#,E). O

For the remainder of this section, let ¢ € oba(%,E) be a fixed vector measure and let
B({¢}) denote the principal band generated by {¢}.

A vector measure peoba(#,E) is order ¢-continuous if pe B({¢}), and it is order
¢-singular if pe{¢p}*. We have the following Lebesgue band decomposition theorem.

Theorem 2.4. The classes B({¢}) and {¢}* are order complete Riesz spaces and
projection bands in oba(%,E), and oba(#,E) is the direct sum of B({¢}) and {¢}*. In
particular, if peoba(#,E) has the decomposition u=p,+p,, with p,eB({¢}) and
pa€{@}*, then |u|=|us|+|pa|, |11|=sup [0, |x|]] N B({¢}) and |u,|=sup [0, |u|] ~ {$}*.

Proof. Since the Riesz space oba(#,E) is order complete, the bands B({¢}) and {¢}*
are projection bands, and oba(Z,E) is the direct sum of B({¢}) and {¢}*. O

Corollary 2.5. If B is a band in oba(#,E) containing ¢, then every vector measure in
oba(#,E) has a unique decomposition into an order ¢-continuous vector measure in B and
an order ¢-singular vector measure.
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In the case where ¢ is order countably additive, a different decomposition theorem of
the Lebesgue type can be given under additional assumptions on & and E. Let ¢*(#,E)
denote the class of all vector measures peoba(%, E) for which |¢|(4) =0 implies |u|(4) =0,
and let s?(#, E) denote the class of all vector measures u € oba(%, E) for which there exists
aset NeZ satisfying |§|(N)=0 and |u|(Q\N)=0. We have the following Lebesgue null-set
decomposition theorem:

Theorem 2.6. Suppose [ is super Dedekind complete, % is a o-algebra, and ¢ is order
countably additive. Then the classes c*(F ,E) and s*(¥,E) are order complete Riesz spaces
and projection bands in oba(% ,F) and oba(F ,[) is the direct sum of c*(#,E) and s &, ).
In particular, if ueoba(#,E) has the decomposition p=p,+pu,, with u, ec®(#,E) and
pes(FED,  then  W=lp|+oh o= AED  and |
=sup[0, |uf] ~ s*(Z, D).

Proof. The classes c*#,E) and s%%,E) are ideals in oba(#,E), and we have
HF,E) nsHF,E)={0}. Let us now show that oba(#,E) is the sum of these ideals.
Consider peoba(#,E). We may and do assume that ¢ and p are positive.

Define A :={AeZ |¢(4)=0}. Since ¥ is a o-algebra and ¢ is order countably
additive, the class A" is a g-algebra too. Clearly,

z:=sup, u(A)

exists. Since E is super Dedekind complete, there exists a sequence {A,e A |ne N}
satisfying

z=supy i(A,).
Define N:=| Jy4,. Then we have Ne 4" and, for all neN,

u(A,) Su(N) =z,
hence

z=p(N).
Now define, for all 4%,
p1(A):=pu(A N (Q\N))

and
Ha(A):=p(A N N).

Then p, and u, are positive vector measures in oba(#,E) satisfying p=p,+ u,.
Furthermore, for all Ae A", we have N+ 4 n(Q\N)e 4", hence

HN) S U(N) + p(A N (@Q\N) = u(N + A0 (Q\N)) =z = p(N),
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which yields
p1(A)= (A N (Q\N)) =0,
and we also have

B(N) + p(Q\N) =0.

Therefore, we have u, € c®(#, ) and p, € s%(Z, E).

Thus we have shown that ¢*(&#,E) and s# &, E) are complementary ideals in oba(,”/ E).
It then follows that ¢*(&,E) and s%(#,[E) are projection bands, and that oba(Z,F) is the
direct sum of ¢?(%, ) and %%, E). O

For the class of all order countably additive vector measures, the Lebesgue null-set
decomposition theorem is essentially due to Pavlakos [8]; see also Congost Iglesias [2].
Their result is a consequence of Theorem 2.6 since obca(£, ) is a band in oba(Z, ).

More generally, all decomposition theorems of this section can be refined in the
following way: If B is a band in oba(#,E) and p is a vector measure in B, then u* and
u~ are contained in B, and if y=u, + u, is the Yosida-Hewitt band decomposition, a
Lebesgue band decomposition, or a Lebesgue null-set decomposition, of u, then u, and
U, are contained in B.

Let us finally compare the Lebesgue band decomposition and the Lebesgue null-set
decomposition. From the following result, it can be seen that these two Lebesgue
decompositions usually differ from each other, except for order countably additive
vector measures in the case where the dimension of E is equal to one:

Corollary 2.7. Suppose E is super Dedekind complete, F is a o-algebra, and ¢ is order
countably additive. Then B({¢})Sc?(Z,E) and s®(F,E)c{p}t. Moreover, the identities
B({¢}) =c*(Z,E) N obca(ZF,E) and {¢p}* N obca(F , E)=s*F,E) N obca(F,E) hold for each
o-algebra & and for each vector measure ¢ eobca(#,E) if and only if the dimension of E
is equal to one.

Proof. We clearly have s*&,E) < {¢}'. By the Lebesgue null-set decomposition,
each vector measure ue B({¢}) is the sum of a vector measure u, € ¢c*(Z,E) n B({¢}) and
a vector measure p,es¥F,E)n B({¢}) c {¢} nB({¢})={0}. Thus we have
B({6}) € c%(Z, D).

Now suppose that the dimension of [ is equal to one. Consider pe{p}* nobca(Z,E)
and define y:=|¢|—|u]. Then we have y*=|¢| and ¥~ =|u| By the Hahn decom-
position of , there exists a set Ne& satisfying |¢[(N)+ (Q\N) 0, which yields
pes*&,E). Thus we have {d}* 0 obca(F,E) =sHF,E) N obca(F, E), and consequently
B({¢}) =c*(#,E) N obca(Z, E).

Finally, suppose that the dimension of E is greater than one. Then E fails to be totally
ordered, and it follows from the subsequent Example 2.8 that there exists a g-algebra &
and a vector measure ¢ € obca(Z, E) satisfying c¢®(Z, E) n {¢p}* N obca(Z, E) # {0}. O

Example 2.8. Consider a super Dedekind complete Riesz space E which fails to be
totally ordered. Then there exist x,,x,€ E satisfying x, £x, and x,£x,. Define e;:=
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(x;—x,) and e;;=(x,—x,)*. Then we have e; A e,=0. Let & denote the o-algebra
consisting of all Borel subsets of the interval [0,1], and let 1:%# —[0,1] denote the
Lebesgue measure on &. For all A€ &, define

(A):= AA)e,

and
u(A):=A(A)e,.

Then ¢ and p are positive vector measures in obca(#,E), and we have
pec®(F E)n {¢p}* N obca(#,E). In addition, we remark that the vector measure ¢—p
does not possess a Hahn decomposition.

3. Vector measures in a Banach space

Throughout this section, suppose that £ is a Banach space.
The semivariation |||u||: # - R of a vector measure puea(F,E) is defined by letting

[lealllC4): = sup |3 esa( 4D

for all Ae %, where the supremum is taken over all partitions {4,,A4,,..., A} e P(A)
and scalars o, a,,...,a,e[—1,1]. For all Ae %, we have

SUP#(4) “l‘(B)” s |||“|||(A) S2supg4 “l‘(B)”-

A vector measure pea(F,E) is bounded if the value |[|4]|(Q) is finite. Let ba(#, E) denote
the class of all bounded vector measures in a(%, E).

Let #(D, E) denote the Banach space of all bounded linear operators D —E, endowed
with the operator norm. For each vector measure ueba(Z,[E), there exists a unique
linear operator T e #(D, E) satisfying

T(Z X a) = Z (A,

for each simple function )" a;x,,€ D. This linear operator is called the representing linear
operator of u. Let

X :ba(F,E)— L(D, E)

denote the map associating with each vector measure in ba(%,E) its representing linear
operator. We have the following representation theorem for bounded vector measures:

Theorem 3.1. The class ba(#,E) is a Banach space for the norm ||| |||[(2), and the map
Z is an isometric isomorphism of ba(#,E) onto ¥ (D, E).

The variation ||u||: #—R ., of a vector measure pea(Z,E) is defined by letting

”I‘”(A)5 =SUPg 4 Z ”ﬂ(A.')“,
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for all Ae#. A vector measure uca(Z,E) has bounded variation if the value ||u||(§2) is
finite. Let bva(#,[E) denote the class of all vector measures of bounded variation in
a(#,E).

Let £/ (D,E) denote the Banach space of all cone absolutely summing operators
D —E, endowed with the norm ||-||, which is given by

>

| T|];: =sup ¥.|| Tx;

where the supremum is taken over all finite collections {x,,x,,...,x,} € D, satisfying
I x]||=1. We have the following representation theorem for vector measures of
bounded variation in a Banach space:

Theorem 3.2. The class bva(#,E) is a Banach space for the norm ||-|[(Q), and the
restriction of & is an isometric isomorphism of bva(#,E) onto ¥' (D,E). In particular,
i) < ||1|(R) kolds for all pe bva(Z, E).

In the previous result, the Banach space #'(D,E) can be replaced by the Banach
space of all absolutely summing operators D —E. This is due to the fact that D is an
AM-space.

A vector measure pea(Z,E) is countably additive if p(}’ A,)=> u(A,) holds for each
sequence {A,eF | ne N} of mutually disjoint sets satisfying Y 4,6 %. A vector measure
pebva(#,E) is countably additive if and only if its variation |u|| is countably additive.
Let bvca(&,E) denote the class of all countably additive vector measures in bva(ZF,E). A
vector measure pcbva(F,E) is purely finitely additive if $=0 holds for each vector
measure ¢ € buca(F, E) satisfying ||¢|| < ||| Let bvpfa(#,E) denote the class of all purely
finitely additive vector measures in bva(%#,E). We have the following Yosida—Hewitt
decomposition theorem which is due to Uhl [14]:

Theorem 3.3. The classes bvca(,E) and bvpfa(Z,E) are Banach spaces, and bva(#,[E)
is the direct sum of bvca(#,E) and bvpfa(#,E). In particular, if pebva(#,E) has the
decomposition p=p, + pi,, with p, € buca(#, E) and p, € bopfa(F, E), then ||u||= ||uy||+||12]|-

For the remainder of this section, let Aeba(#,R) be a fixed (real-valued) bounded
additive set function. A vector measure pebva(#, E) is A-continuous if ||u|| € B({2}), and it
is A-singular if ||u||€ {4}*. These definitions are in accordance with those given in [14]
and [4]; see [12; Lemma 3.1.8]. Let bva*(#,E) denote the class of all i-continuous
vector measures in bva(Z,E), and let bva’S(%, E) denote the class of all A-singular vector
measures in bva(#,[E). We have the following Lebesgue decomposition theorem which is
due to Rickart [9] and Uhl [14]:

Theorem 3.4. The classes bva* (%, ) and bva*(#,[) are Banach spaces, and bva(#,E)
is the direct sum of bva*(#,E) and bva*(F,E). In particular, if pebva(#,E) has the
decomposition p=p, + p,, with p, € bva*(Z,E) and p, € bva*(F,E), then ||u||= ||us || + ||l

The previous decomposition theorems can be proven by a Stone space argument. For
the details, see [14] and [4].

https://doi.org/10.1017/50013091500017375 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017375

DECOMPOSITION OF VECTOR MEASURES 31

4. Vector measures in a Banach lattice

Throughout this section, suppose that [ is an order complete Banach lattice.
Let #'(D,E) denote the order complete Banach lattice of all regular operators D —E,
endowed with the canonical order and the norm ||-||, which is given by

Tl =71 1l

see [10; Proposition IV.1.4]. We have the following representation theorem for order
bounded vector measures:

Theorem 4.1. The class oba(Z,E) is an order complete Banach lattice for the norm
|11 ||, and the restriction of Z is an isometric vector lattice isomorphism of oba(¥,F)
onto &L'(D,E). In particular, | |/,t|||(Q)§”| |u| |H(Q)=|| |ut(Q)|| holds for all ueoba(#,E).

Proof. It is clear that each order bounded vector measure is bounded, and it is not
hard to verify that a bounded vector measure is order bounded if and only if its
representing linear operator is regular. For the details, see [12; Theorem 4.1.2]. O

For a large class of Banach lattices, we shall now study the decomposition properties
of vector measures of bounded variation. The following representation theorem for
vector measures of bounded variation in a Banach lattice having property (P) will be
essential in all further investigations of this section:

Theorem 4.2. Suppose E has property (P). Then the class bva(#,E) is an order
complete Banach lattice for the norm ||-||(Q) and an ideal in oba(#,E), and the restriction
of & is an isometric vector lattice isomorphism of bva(%,[E) onto L' (D,E). In particular,
Il@) I <1l ull@) = lull(@) holds for all pebva(;E).

Proof. Since E has property (P), the class #!(D,[E), endowed with the canonical
order and the norm ||-||,, is an order complete Banach lattice and an ideal in L"(D,E);
see [10; Theorem IV.4.3]. Now the assertion follows from Theorem 3.2 and Theorem
4.1. g

As an immediate consequence of Theorem 4.2, we obtain the following general Jordan
decomposition theorem [11]:

Corollary 4.3. Suppose £ has property (P). Then each vector measure pebva(F,E) is
the difference of two orthogonal positive vector measures in bva(¥,E). Moreover, the
decomposition is unique and given by u=pu* —pu-.

Since AL-spaces and, more generally, KB-spaces have property (P), the previous
result generalizes the Jordan decomposition theorems obtained by Diestel and Faires
[3] and by Faires and Morrison [5]. This generalization is a proper one since dual
Banach lattices and order complete AM-spaces with unit have property (P). The Jordan
decomposition of vector measures in an AM-space will be discussed in Section 5.
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Corollary 4.4. The following are equivalent:
(a) E is an AL-space.
(b) bva(#,E) is an AL-space.

Moreover, if £ is an AL-space, then the Banach lattices bva(#,E) and oba(#,E) are
identical.

Proof. Since D is an AM-space, the assertion follows from Theorem 4.2, Theorem
4.1, and [10; Proposition IV.4.5]. |

In general, however, the Banach lattice bva(#, E) need not inherit the properties of E.
For example, there exists a KB-space £ such that, for the c-algebra & consisting of all
Borel subsets of the interval [0,1], the Banach lattice bva(#,[E) fails to be order
continuous and thus cannot be a KB-space; see Talagrand [13]. Furthermore, the class
bva(#,[E) can be strictly smaller than oba(#, E). More precisely, the ideal bva(#, E) may
fail to be a o-ideal in oba(Z, ), as can be seen from the following Example 4.5:

Example 4.5. Consider the Banach lattice I, endowed with the canonical order and
the sup-norm, and let {e,|neN} denote its canonical basis. Note that /® is an order
complete AM-space with unit and therefore has property (P). Let % denote the
o-algebra consisting of all subsets of N. For all neN and 4 € %, define

ﬂn(A):=ZAn(1 ..... n} ej'

Then each p, is a positive vector measure in buva(#,1*), and the sequence
{u,ebva(#,1°)[neN} increases to a vector measure peoba(Z,I*) satisfying
[lll(€) = co.

In particular, the ideal bva(#,E) need not be a band in oba(#,E), and the order
complete Banach lattice oba(#,E) may fail to be the direct sum of bva(#,E) and
bva(F,E)*. ’

Let us next study the Yosida~Hewitt decomposition.

Lemma 4.6. Suppose E has property (P). Then, for each vector measure e bva(Z,[E),
the following are equivalent:

(a) u is countably additive.
(b) |p| is countably additive.
(©) ||ull is countably additive.

Proof. The equivalence of (a) and (c) is well-known. Consider A€ #. Then R,u and
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R |u| are vector measures in bva(F(A),E), and we have |R u|=R,|u|. By Theorem 4.2,
bva(#(A), E) is a Banach lattice for the norm ||||(A), which yields

eflIcA) = 1R al e llC4) = [[| R asel|C4) = [ R aseliC) =l 4).

Thus we have |||u||| =]y, and the equivalence of (b) and (c) now follows from the
equivalence of (a) and (c), applied to the vector measure |y| € bva(# , ). O

The following result can be proven by using similar arguments:

Lemma 4.7. Suppose E has property (P). Then, for each vector measure pebva(#,[),
the following are equivalent:

(a) u is purely finitely additive.
(b) |1 is purely finitely additive.
(©) ||ul| is purely finitely additive.

We can now improve the Yosida-Hewitt decomposition theorem:

Theorem 4.8. Suppose £ has property (P). Then the classes bvca(%,E) and bupfa(F,E),
are order complete Banach lattices and projection bands in bva(#,E), and bva(Z,[E) is the
direct sum of bvca(#,E) and bupfa(F,E). In particular, the associated band projections are
continuous, and if pebva(#,E) has the decomposition u=u, + pu,, with p, e bvca(¥,E) and
s bopfa( 7, ), them |u] = + o] and [ =[J|+ 1l

Proof. By Theorem 3.3 and Lemma 4.6, the class bvca(#,E) is a Banach lattice and
an ideal in bva(%, ). _

If {u,ebvca(F,E)|yel} is a family of positive vector measures which are bounded
above by ¢ebuca(#,), then p:=suprpu, exists in bva(#,E). From 0<u<¢ and the
ideal property of bvca(#,E), it follows that u is countably additive. Thus bvca(F,E) is
an order complete Banach lattice, and the same is true for bvpfa(Z, E). By Theorem 3.3,
the ideals bvca(#,E) and bupfa(#,E) are complementary ideals in bva(#,E). Since
bva(#,E) is order complete, these complementary ideals are even projection bands, and '
bva(#,E) is the direct sum of bvca(#,E) and bvpfa(#,E). The continuity of the
associated band projections is due to the fact that bva(#,[E) is a Banach lattice. |

Corollary 4.9. Suppose E is a KB-space. If u is a vector measure in bva(Z, E), then

(a) u is countably additive if and only if u is order countably additive, and
(b) u is purely finitely additive if and only if u is order purely finitely additive.

Proof. Note that E is an order continuous Banach lattice having property (P). By
the Jordan decomposition, we may and do assume that y is positive.
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If 4 is countably additive, then it is order countably additive, by [10; Lemma II.5.8].
Conversely, if 4 is order countably additive, then it is countably additive since E is order
continuous.

If u is purely finitely additive and ¢ is a vector measure in obca(Z,E) satisfying
|#|<p, then we have ||¢||<||u||, hence ¢=0, which means that y is order purely finitely
additive. Conversely, if u is order purely finitely additive, then p A |¢|=0 holds for all
¢ ebvca(F,E) < obca(#,[E), by (a), which means that u is purely finitely additive, by
Theorem 4.8. O

Thus, for a vector measure of bounded variation in a KB-space, the Yosida—Hewitt
band decomposition and the Yosida-Hewitt decomposition are the same.

Let us now study the Lebesgue decomposition. For the remainder of this section, let
Aeba(#,R) be a fixed (real-valued) bounded additive set function.

Lemma 4.10. Suppose E has property (P). Then, for each vector measure pe bva(F,[E),
the following are equivalent:

(a) p is A-continuous.

(b) |/,t| is A-continuous.

(c) ||,u|| is A-continuous.

Lemma 4.11. Suppose E has property (P). Then, for each vector measure pe bva(F,[),
the following are equivalent:

(a) u is A-singular.
(b) |u| is A-singular.
(©) ||u|| us A-singular.

These two results can be proven in the same way as Lemma 4.6, and the arguments
used in the proof of Theorem 4.8 also yield the following improved Lebesgue
decomposition theorem:

Theorem 4.12. Suppose [E has property (P). Then the classes bva*(%,E) and
bva’(#,E) are order complete Banach lattices and projection bands in bva(Z,E), and
bva(F,E) is the direct sum of bva*(Z,E) and bva*(#,E). In particular, the associated
band projections are continuous, and if pebva(#,E) has the decomposition p=p, +p,,
with p1, € bva*(F,E) and p, € bva*(F,E), then |u|=|p,|+ |u,| and ||| =] || + |||

For the remainder of this section, let ¢ €bva(F,E) be a fixed vector measure. The
following result, when compared with Corollary 4.9, reveals a remarkable difference
between the decomposition theorems of the Yosida-Hewitt type and those of the
Lebesgue type:
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Corollary 4.13. Suppose E has property (P). Then

(a) each ||¢||-singular vector measure in bva(%,E) is order ¢-singular, and

(b) each order ¢-continuous vector measure in bva(¥, ) is ||¢||-continuous.

Moreover, the converse implications hold for each algebra & and for each vector measure
¢ ebva(ZF,E) if and only if the dimension of E is equal to one.

Proof. Consider uebva(#,E). For all Ae%, we have
el A Bl =l 1] |14+l 1] ~ []]](@\4)

<[lullca)+[l¢li€\A4),
which yields
I[ef ~ (DI = ludl A (¢

Therefore, ||u|| A ||¢]|=0 implies |u| A |#|=0, which proves (a). If u is order ¢-
continuous, then |u| A |y|=0 holds for all Yy e{¢}*. In particular, by (a), we have
lu| A [¥]=0 for all Y ebva5(F,E). Now it follows from Theorem 4.12 that u is ||¢||-
continuous, which proves (b).

Now suppose that the dimension of E is equal to one. Then the modulus and the
variation of a vector measure in bva(#,E) coincide, which means that the implications
in (a) and (b) can be reversed.

Finally, suppose that the dimension of E is greater than one. Then E fails to be totally
ordered, and it follows from the subsequent Example 4.14 that there exists an algebra #
and a vector measure ¢ € bva(Z, E) satisfying bva?!l5(#,E) n {¢}* + {0}.

Example 4.14. Consider a Banach lattice E having property (P) which fails to be
totally ordered. Then there exist x,,x,€[E satisfying x, £x, and x,£x,. Define e:=
(x;—x;)* and e;:=(x,—x,)*. Then we have e, A e,=0. Let & denote the g-algebra
consisting of all Borel subsets of the interval {0,1], and let 1:% —[0,1] denote the
Lebesgue measure on &, For all 4 €%, define

P(A):=A(A)e,

and

WA):=Ae,.

Then ¢ and pu are positive vector measures in bvca(#,E), and we have
pebuaPIF, E) N {$}-.

Thus, for a vector measure u of bounded variation in a Banach lattice £ having
property (P), the Lebesgue band decomposition of p with respect to ¢ usually differs
from the Lebesgue decomposition of u with respect to ||¢||, except for the case where the
dimension of E is equal to one.
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The following results will be used to compare the Lebesgue null-set decomposition
and the Lebesgue decomposition:

Lemma 4.15. Suppose E has property (P), # is a o-algebra, and ¢ is countably
additive. Then, for each vector measure uebvca(ZF,E), the following are equivalent:

(@) p is ||@||-continuous.

(b) ||¢||(A)=0 implies ||,u||(A)=0.
(c) |¢|(A)=0 implies |u|(4)=0.

Proof. The equivalence of (a) and (b) is well-known, and the equivalence of (b) and
(c) is obvious. O

Lemma 4.16. Suppose E has property (P), & is a o-algebra, and ¢ is countably
additive. Then, for each vector measure pebvca(#,E), the following are equivalent:

(a) uis ||¢||-singular.
(b) There exists a set Ne Z satisfying ||¢||[(N) + ||u/[(Q\N)=0.
(c) There exists a set N e F satisfying |p|(N)+|u/(Q\N)=0.

Proof. The equivalence of (a) and (b) is immediate from the Hahn decomposition of
||#|| =1|x||, and the equivalence of (b) and (c) is obvious. O

Thus, for a countably additive vector measure u of bounded variation on a g-algebra
&% and in a KB-space [E (which is super Dedekind complete and has property (P)), the
Lebesgue null-set decomposition of u with respect to ¢gebvca(#,E) and the Lebesgue
decomposition of u with respect to ||¢|| are the same.

We finally remark that the Yosida—Hewitt decomposition theorem and the Lebesgue
decomposition theorem can be refined for bands in bva(#,E) in the same way as
explained in Section 2.

5. Remarks

In the Jordan decomposition theorem for vector measures of bounded variation, it is
not sufficient to assume that the Banach lattice £ is order complete. This can be seen
from the following Example 5.1:

Example 5.1. Consider the Banach lattice ¢y, endowed with the canonical order and
the sup-norm, and let {e,|neN} denote its canonical basis. Note that c, is an order
complete AM-space which does not possess a unit and therefore does not have property
(P). Let &# denote the g-algebra consisting of all Borel subsets of the interval [0, 2x],
and let A: »[0,2n] denote the Lebesgue measure on . For all neN and Ae %, define

.

A(A):= [ sin nt dA(z)
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and, for all Ae #, define

A=Y 2 A)e,

Then u is a vector measure in bva(%,c,) which does not possess a Jordan decomposition
in bva(Z, cy). However, if g:co—I° denotes the evaluation map, then the vector measure
qou€bva(#,1°) has a Jordan decomposition in bva(#,1*) since I* is an order complete
AM-space with unit and therefore has property (P).

More generally, in order complete AM-spaces with unit, the Jordan decomposition
theorem can be extended to the class of all bounded vector measures:

Theorem 5.2. Suppose E is an order complete AM-space with unit. Then the class
ba(#,E) is an order complete Banach lattice for the norm |||-|||(Q), and the map Z is an
isometric vector lattice isomorphism of ba(# ,E) onto £(D, E). Moreover, the Banach lattices
oba(F ,E) and ba(# ,E) are identical.

Proof. Since E is an order complete AM-space with unit, we have #"(D,E)=
Z(D,[E), by [10; Theorem IV.1.5]. Now the assertion follows from Theorem 3.1 and
Theorem 4.1. d

An elémentary proof of the Jordan decomposition theorem contained in the previous
result was given in [11].

In order to complete the discussion of the Jordan decomposition for vector measures
in an AM-space, we include two further results.

A vector measure pea(%,E) has relatively compact range if the set {u(A)|AeF} is
relatively compact. Let cpa(#,[E) denote the class of all vector measures of relatively
compact range-in a(%, E).

Let (D, E) denote the Banach space of all compact operators D—E, endowed with
the operator norm.

Theorem 5.3. Suppose E is an AM-space. Then the class cpa(#,E) is a Banach lattice
for the norm |||-||(Q), and the restriction of & is an isometric vector lattice isomorphism of
cpa(Z,E) onto (D, E).

Proof. It is not hard to verify that a bounded vector measure has relatively compact
range if and only if its representing linear operator is compact. Since E is an 4AM-space,
the class #(D,E), endowed with the canonical order and the operator norm, is a
Banach lattice; see [10; Theorem 1V.4.6 Corollary 2]. O

Corollary 5.4. The Banach lattices cpa(F ,co) and oba(F,c,) are identical.

Proof. By Theorem 5.3, we have cpa(Z, c,) S oba(#,c,). Since the order intervals in
¢o are relatively compact, we also have oba(ZF,c;) S cpa(Z,cy). Also by Theorem 5.3,
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the norm |||-|||() is a lattice norm on cpa(%Z, c,), which yields

Iellle2y =l M) =l sy Il
for all uecpa(#,co) =oba(ZF,cy). O

Corollary 5.4 can be used to establish the existence of a Jordan decomposition for
countably additive vector measures in ¢, which are defined on the o-algebra consisting
of all subsets of Q; for the details, see Diestel and Faires [3] and Faires and Morrison
[5]. A result which is closely related to Corollary 5.4 was also given by Niculescu [7].

In a Banach lattice E having property (P), the projections associated with the Yosida—
Hewitt decomposition of bva(#,E) are orthogonal (with respect to the order of E) and
they are unique-nearest-point maps (with respect to the variation norm ||-||(€). In fact,
if u=p,+pu, is the Yosida—Hewitt decomposition of uebva(#,E), with u, ebvca(Z, )
and p, € bupfa(#,E), then we have |u,| A |u,|=0. Moreover, for all ¢ebvca(#,E), the
Yosida-Hewitt decomposition of u— ¢ is given by u— ¢ =(u, — )+ u,, which yields

[t =4[ = [l Q) = [ty — I + 122 1(Q) = |11 — & + 12| = |1 — S,

by Theorem 4.8. Thus we have |ju—u||(Q)=inf, s llt—¢||(Q). The previous in-
equality also reveals that ¢=p, holds for all ¢ebvca(F,E) satisfying ||u—¢||(Q)=
|l —14]|(Q). Therefore, the projection bva(#,E)—bvca(#,E) is a unique-nearest-point
map, and the same is true for the projection bva(%, E) - bvpfa(#, E).

In the case where E is a Banach space, the relationship between the Yosida—Hewitt
decomposition and some type of orthogonality and optimal approximation was also
studied by Bilyeu and Lewis [1]. Let cpca(#,E) denote the class of all countably
additive vector measures in cpa(#,[E). A vector measure pecpa(%,E) is purely finitely
additive if e o pebuvpfa(#,R) holds for each ¢'e[’; this definition is in accordance with
the definition given in Section 3. By the Yosida—Hewitt decomposition theorem of Uhl
[14], each vector measure in cpa(Z, E) is the sum of a vector measure in cpca(Z,E) and
a purely finitely additive vector measure in cpa(#,E), and the decomposition is unique.
Recall that a vector xeE is James orthogonal to yeE if ||x||=infg|[x+ay||, and that a
Banach space H is smooth if, for each heH satisfying |h||=1, there exists a unique
W e H' satisfying |h’ | =H'(h) = 1. Bilyeu and Lewis [1] proved the following result:

Theorem 5.5. Suppose B has a smooth dual. Then a vector measure in cpa(¥F,E) is
purely finitely additive if and only if it is James orthogonal to each vector measure in
cpca(F,E), and the projection cpa(F,E)—cpca(#,E) associated with the Yosida—Hewitt
decomposition of cpa(%,E) is a unique-nearest-point map with respect to the semivariation
norm ||| ||[(€).

It appears, however, that in this result the role of purely finitely additive vector
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measures and of countably additive vector measures cannot be interchanged since the
relation of James orthogonality fails to be symmetric.

We finally remark that the Lebesgue null-set decomposition theorem remains valid if
the vector measure ¢ is assumed to take its values in a different Riesz space H; in
particular, ¢ may be assumed to be real-valued. Similarly, the Lebesgue decomposition
theorem (of Rickart and Uhl) remains valid if the real-valued set function 4 is replaced
by a vector measure ¢ which takes its values in some Banach space H and if
A-continuous and A-singular vector measures are replaced by ||¢||-continuous and
||#||-singular vector measures.
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