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SUMMARY

If a polymorphic locus is maintained in finite populations by frequency-
dependent selection with selective neutrality at equilibrium, it is generally
accompanied by two genetic loads, i.e. the dysmetric and the drift loads.
The former arises because the fitness of the population may not be at a
maximum at the equilibrium gene frequency and the latter because genetic
drift in small populations displaces the gene frequency from its equi-
librium value.

In some simple models of frequency-dependent selection considered,
the drift load is independent of selection coefiicients and is approxi-
mately equal to (n—l)/(2Ne), where n is the number of alleles and Ne is
the effective population size.

As a possible mechanism for maintaining genetic variability in Mendelian
populations, a form of frequency-dependent selection in which each allele becomes
advantageous when rare was considered many years ago by several authors such
as Wright & Dobzhansky (1946), Wright (1949), andHaldane (1954). In particular,
in their analysis of chromosome polymorphism in Drosophila, Wright & Dobzhansky
(1946) considered, as an alternative to overdominance, a model of frequency-
dependent selection in which fitnesses of various genotypes become equal at
equilibrium.

Recently, this type of frequency-dependent selection with selective neutrality
at equilibrium has attracted much attention since Kojima & Yarbrough (1967)
proposed such a model to explain the prevalence of isozyme polymorphism in
natural populations.

This model has an advantage of having apparently no genetic loads at equi-
librium yet retaining enough selective force to keep polymorphism if gene fre-
quencies deviate sufficiently from their equilibrium values.

In actual populations, however, it is expected that gene frequencies may deviate
from their equilibrium as well as from 'optimal' values and this may create some
genetic load. In fact, we intend to show in this report that such a genetic system
generally is accompanied by two kinds of genetic load that may be called dysmetric
and drift loads: the dysmetric load (term first suggested by J. B. S. Haldane in 1959
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in his personal communication to J. F. Crow) arises if the equilibrium gene (or
genotype) frequencies differ from the optimum frequencies giving the maximum
mean fitness of individuals. The drift load arises if gene frequencies deviate from their
respective equilibrium values due to random genetic drift in finite populations.
Recently, Robertson (1970) has shown that for an overdominant locus with a pair
of alleles this load is approximately equal to l/(4i\^e), where Ne is the effective
population size.

Let us first investigate the model considered by Wright & Dobzhansky (1946) in
their analysis of the polymorphism involving ST and CH chromosomes. Let Ax and
i 2 b e a pair of alleles and assume that the absolute fitnesses (measured in selective
values) of the three genotypes A1A1, A±A2 and A2A2 are respectively C(l + a — bp),
C and 0(1 — a + bp), where a, b and C are constants and p stands for the
frequency of Ax. Under random mating, the mean fitness is

w = C{l-(a-bp)(l-2p)}> (1)

and the rate of change of p per generation by selection is

Ap = p(l-p)(a-bp)l{l-(a~bp)(l-2p)}. (2)

Thus the equilibrium gene frequency is ft — a\b and the corresponding mean fitness
is w = C. In this state the three genotypes have the same fitnesses, and also the
equilibrium is stable.

Note, however, that the gene frequency at equilibrium (ft) is not generally the
one which gives the maximum mean fitness of individuals. In fact, the maximum
occurs when the frequency of allele Ax is midway between 0-5 and ft. Namely, we

h a V e « W =C{l + (2a-&)*/(8&)}, (3)

wi thp m a x = l/4 + a/(26). Only when 0 = 1/2 = a/6 we have w = wmax =C. The
dysmetric load (denoted by L,jys) is denned as the relative amount of loss in fitness
due to ft deviating from pmax. Thus, we have

Ldys = (w m «-w)/«W = {2a-bfl{$b + {2a-bf}. (4)

For example, Wright & Dobzhansky (loc. cit.) estimated a = 0-902 and 6 = 1-288
for the relative fitnesses in the polymorphism involving ST and CH chromosomes in
Drosophila pseudoobscura. Thus, applying formula (4), we get LAys = 0-0252 if we
treat these values as absolute fitnesses. Namely, the dysmetric load in this case
amounts to about 2-5%. Also, applying the present model to Kojima and Yar-
brough's study on esterase 6 polymorphism in D. melanogaster, we made a rough
estimate of a and b using their Table 4. It gave a = 0-60, b =1-58 and ft =0-38
where # stands for the frequency of F allele. From formula (4), we get iydys = 0-0112
or about 1-1 %

These examples suggest that the dysmetric load may be considerable if a large
number of polymorphic loci are maintained by frequency-dependent selection,
even if apparent selective neutrality is attained at equilibrium.

Next, let us investigate the drift load, that is to say, the amount of loss in fitness
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in a finite population caused by random fluctuation of gene frequencies around
their equilibrium values. Still using the same model, if we express the mean fitness
as a function of p — ft, we have

w = C{1 + (b - 2a)(p -ft)- 2b(p - ft)2}. (5)

At steady state in which the tendency of p drifting away from ft by random
sampling of gametes is counterbalanced by the selective force pushing p back to
ft, the expected value of w becomes

E(w) = C{l-2b<ji'2-ft% (6)

where ji'2 = E(p2) is the second moment of p about zero with respect to the steady
state distribution. Note that ft = E(p).

Assuming that deviation oip from ft is small, p'2 — ft2 may be derived as follows.
Let p be the frequency of A1 in the present generation, then the frequency of A1

in the next generation is p' = p + Ap + £,, where £ is the amount of change in gene
frequency due to random sampling of gametes and it has the mean 0 and the
variance p(l—p)/(2Ne). Squaring this expression for p', taking expectation, but
neglecting the small term (Ap)2, we obtain, at equilibrium in which E(p'2) = E(p2),

E{2pAp+p(l-p)l(2Ne)} = 0 . (7)

At the neighbourhood of the equilibrium point, we have approximately

Ap =a{l-ft)(ft-p)

from (2). Therefore substituting this for Ap in (7), we get

ti-ft2 =ft{l-ft)l{±Nea{\-ft) + \), (8)

which gives, in combination with (6),

{w-E(w)}/w =2a(l-ft)l{4:Nea(l-ft) + l}. (9)

We have assumed in the above treatments that deviation of the gene frequency
from its equilibrium value is small. This amounts to the assumption, especially
when ft is not very near to 0 or 1, that 4Nea(l— ft) is much larger than unity.
Therefore we have, with good approximation

{W-E(w)}fi = ll(2Ne), (10)

where Ne is the 'variance' effective number of the population.
Formula (10) means that the drift load relative to the fitness at the equilibrium

in an infinite population is equal to l/(2Ne). Note that this load depends only on
the effective population size but is independent of selection coefficients a and b.
Note also that this value is twice as large as the corresponding value at an over-
dominant locus (cf. Robertson, 1970). If the drift load is defined relative to the
maximum fitness, we have

-( M ^
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Unless wmaK differs much from w, this load is approximately equal to l/(2iVe), i.e.

idrm = 1/(2^)- (11)

In the above model, we have assigned absolute fitnesses C(l+a — bp), C, and
— a + bp) to three genotypes A^AX, AXA2, A2A2, but we can show, using the

same procedure as above, that the drift load is unchanged if we assign G,
C(l — a + bp) and C{1 — 2(a — bp)} to the three genotypes, though the dysmetric load
changes with this new assignment. These models of frequency-dependent selection
may be called 'gene-frequency dependent' selection. On the other hand, selection
may be genotype-frequency-dependent as considered by Clarke & O'Donald (1964).
Two examples are as follows: (1) The heterozygotes are distinct and the absolute
fitnessess of AXAX, AXA2 and A2A2 are respectively C(l — spz), C(l — 2sp(l—p))
and C{1 — s(l —p)2} in which s is a positive constant. (2) There is complete domi-
nance between alleles so that the absolute fitnesses of the recessive homozygote
(AXAX) and of the two genotypes involving the dominant (A1A2, A2A2) are
respectively (7(1 — spz) and C{\ — s(\ — p2)}. In both cases, we can show that under
random mating the dysmetric load is zero, while the drift load is again approxi-
mately l/(2^e) if s is small.

We will now show that the total load for frequency-dependent selection with
selective neutrality at equilibrium may be expressed in general as a sum of
dysmetric and drift loads, still assuming a pair of alleles.

Let pmSLX be the gene frequency giving the maximum mean fitness. Then, at the
neighbourhood of pmaK, the mean fitness of individuals as a function of p may be
expressed in the form w =
where a > 0. For the model of Wright & Dobzhansky (1946) considered above, this
relation holds exactly for any gene frequency with a = 2bC, but in general this is
an approximation which is valid at the neighbourhood of pm&x. Writing

and noting E(p — $) = 0 , the expected value of w becomes

E(w) =Tdmax-oc(p-pm^)*-aE{(p-p)*}. (13)

The total load is then

L _^m_^-E(w)=cc(P-Pmax) { aE{(pm
« W « W " W

This is a sum of the dysmetric and the drift loads, that is

Aly8=(0-:PmaX)2Mnax> (15)

and Amft = <*#{te-0)2}/«W (16)

Since, at the neighbourhood of the equilibrium point, we can write approximately
Aj> = — k(p — P) in which k is a constant, we get from (7),
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so that the formula for the drift load becomes

ap(l-p)

So far, we have assumed a pair of alleles, but the above treatments may readily be
extended to multi-allelic cases.

Let us consider an w-allelic system with alleles Alt A2, ..., An, and assume that
the absolute fitness (wi3) of genotype AtA^ is given by C(l —SiPi — s^pj), where st

and Sj are positive constants and pi and Pj are the frequencies of alleles At and Aj
(i,j = 1, 2, ...,n). An equivalent model of frequency-dependent selection was
considered by Wright (1949).

Under random mating, the mean fitness of individuals and the rate of change in
gene frequency are respectively

w =C(l-2v),

and Apt = -pi{sipi-v)/(l-2v),

n

where v = £ s^f.
i=l

At equilibrium we have w = C(l — 2v) and ft{ = ^jsit where

®=1/ S (IK). (18)

In this case the set of equilibrium frequencies (^s) is the one which gives the
maximum mean fitness of individuals, as may easily be seen by writing w in the
f o r m i n )

! (19)

Therefore, there is no dysmetric load, i.e. wmax = w. The drift load is

SiE{p\)- «}/(l-28). (20)

If we note that Apt « -HPi~Pi)y in which k = 6/(1 - 2v), and use equation (7)
in which pt is substituted for p, we get

S «<•#(!>!) =Hn + 4Nek)l(l + 4:Nek).
i

Thus, we obtain from (20),
_ 2(tt-l)fl

Adrift- (4# e _ 2 ) $ + l '

or more simply, as a good approximation,

= (n-\)l(2Ne), (21)
assuming that Ne is large enough so that 4Nev > 1. This reduces to (11) if the
number of alleles is two (n = 2). Note that the drift load given by (21) is twice as
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large as the corresponding value obtained by Robertson (1970) for multi-allelic
overdominant system.

We would like to thank Dr Alan Robertson for helpful suggestions with regard
to the manuscript.
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