
14
Eguchi–Kawai model

The large-N reduction was discovered by Eguchi and Kawai [EK82] who
showed that the Wilson lattice gauge theory on a d-dimensional hyper-
cubic lattice is equivalent at N = ∞ to that on a hypercube with peri-
odic boundary conditions. This construction is based on an extra U(1)d

symmetry which is present in the reduced model to each order of the
strong-coupling expansion.
Soon after that it was recognized that a phase transition occurs in the

reduced model with decreasing coupling constant, so this symmetry is
broken in the weak-coupling regime. To cure the construction at weak
coupling, a quenching prescription was proposed by Bhanot, Heller and
Neuberger [BHN82] and elaborated by many authors. The quenching
prescription results in a reduced model which recovers multicolor QCD
both on the lattice and in the continuum.
We start this chapter with the simplest example of a matrix-valued

scalar theory. The quenched reduced model for this case was advocated
by Parisi [Par82] on the lattice and elaborated by Gross and Kitazawa
[GK82] in the continuum. Then we consider the Eguchi–Kawai reduction
of multicolor QCD both on the lattice and in the continuum.

14.1 Reduction of the scalar field (lattice)

Let us begin with the simplest example of a matrix-valued scalar theory
on a lattice, the partition function of which is defined by the path integral

Z =
∫ ∏

x

∏
i≥j

dϕij
x e

−S[ϕ] (14.1)
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326 14 Eguchi–Kawai model

with the action

S[ϕ] =
∑
x

N tr
[
−
∑
µ

ϕxϕx+aµ̂ + V (ϕx)
]
. (14.2)

Here ϕ(x) is an N × N Hermitian matrix field and V (ϕ) is a certain
interaction potential, say

V (ϕ) =
M

2
ϕ2 +

λ3
3
ϕ3 +

λ4
4
ϕ4 . (14.3)

The prescription of the large-N reduction is formulated as follows.
We substitute

ϕ(x) red.→ D†(x)ϕ̃D(x) , (14.4)

where

D(x) = e−iPµxµ (14.5)

with

Pµ = diag
(
pµ1 , . . . , p

µ
N

)
(14.6)

being a diagonal Hermitian matrix. Explicitly we have

ϕ kj(x) red.→ ei(pk−pj)
µxµϕ̃ kj. (14.7)

The matrix D(x) in Eq. (14.4) subsumes the coordinate dependence,
so that ϕ̃ does not depend on x.
The averaging of a functional F [ϕx] which is defined with the same

weight as in Eq. (14.1),〈
F [ϕx]
〉

= Z−1
∫ ∏

x

∏
i≥j

dϕij
x e

−S[ϕ] F [ϕx] , (14.8)

can be calculated at N =∞ using

〈
F [ϕx]
〉

red.= aNd

π/a∫
−π/a

d∏
µ=1

N∏
i=1

dpµi
2π

〈
F [D†(x)ϕ̃D(x)]

〉
RM

. (14.9)

Here the RHS is calculated [Par82, GK82, DW82] for the quenched reduced
model, for which the averages are defined by〈

F [ϕ̃]
〉
RM

≡ Z−1
RM

∫
dϕ̃ e−SR[ϕ̃] F [ϕ̃] (14.10)
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14.1 Reduction of the scalar field (lattice) 327

with the reduced action

SR[ϕ̃] = −N
∑
ij

|ϕ̃ij |2
∑
µ

cos
[
(pµi − pµj )a

]
+N trV (ϕ̃) . (14.11)

We have put the symbol “red.” on the top of the equality sign in
Eq. (14.9) to emphasize that it holds as a result of the large-N reduction.
The partition function of the reduced model is given by

ZRM =
∫
dϕ̃ e−SR[ϕ̃] (14.12)

which can be deduced, modulo the volume factor in the action (14.11),
from the partition function (14.1) by the substitution (14.4). The measure
dϕ̃ in Eqs. (14.10) and (14.12) (as well as that in Eqs. (14.1) and (14.8)) is
the one for integrating over N×N Hermitian matrices given by Eq. (13.2).
Similarly to Eq. (14.9), the free energy of the reduced model determines

at large N the free energy per unit volume of the d-dimensional theory:

1
N2

lnZ
V

red.= ad(N−1)
π/a∫

−π/a

d∏
µ=1

N∏
i=1

dpµi
2π

1
N2

lnZRM . (14.13)

Note that the integration over the momenta pµi on the RHS of Eq. (14.9)
is taken after the calculation of averages in the reduced model. Anal-
ogously, the logarithm of ZRM is integrated over pµi on the RHS of
Eq. (14.13), rather than ZRM itself. Such variables are usually called
quenched in statistical mechanics which clarifies the terminology.
Since N → ∞, it is not necessary to integrate over the quenched mo-

menta in Eq. (14.9) or Eq. (14.13). The integral should be recovered
if pi were uniformly distributed over a d-dimensional hypercube. This is
analogous to the self-averaging phenomenon in condensed-matter physics.
In order to show how Eq. (14.9) works, let us demonstrate how the

planar diagrams of perturbation theory for the matrix-valued scalar the-
ory (14.1) are recovered in the quenched reduced model.
The quenched reduced model (14.12) is of the general type discussed

in Chapter 11. The propagator is given by〈
ϕ̃ijϕ̃kl

〉
Gauss

=
1
N
G(pi − pj) δilδkj (14.14)

with

G(pi − pj) =
1

M − 2
∑

µ cos
[
(pµi − pµj )a

] . (14.15)
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Fig. 14.1. The simplest planar diagram of second order in λ3 for the propagator
in the quenched reduced model (14.12). The momentum pi flows along the index
line i. The momentum pi − pj is associated with the double line ij.

It is convenient to associate the momenta pi and pj in Eq. (14.15) with
each of the two index lines representing the propagator and carrying,
respectively, indices i and j. Remember, that these lines are oriented for
a Hermitian matrix ϕ̃ and their orientation can be associated naturally
with the direction of the flow of the momentum. The total momentum
carried by the double line is pi − pj.
The simplest diagram which represents the second order in λ3 correction

to the propagator is depicted Fig. 14.1. The momenta pi and pj flow along
the index lines i and j, while the momentum pk circulates along the index
line k. The contribution of the diagram in Fig. 14.1 is given by

Fig. 14.1 =
λ23
N2

G2(pi − pj)
∑
k

G(pi − pk)G(pk − pj) , (14.16)

where the summation over the index k is just a standard one over indices
forming a closed loop.
In order to show that the quenched-model result (14.16) reproduces

the second order in λ3 correction to the propagator in the d-dimensional
theory on an infinite lattice, we pass to the variables of the total momenta
flowing along the double lines:

pi − pj = p ,

pj − pk = q ,

pi − pk = p+ q .

 (14.17)

This is obviously consistent with the momentum conservation at each of
the two vertices of the diagram in Fig. 14.1.

https://doi.org/10.1017/9781009402095.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402095.015


14.1 Reduction of the scalar field (lattice) 329

Since pk are uniformly distributed over the hypercube, the summation
over k can be substituted as N →∞ by the integral

1
N

∑
k

f(pk) ⇒ ad
π/a∫

−π/a

ddq
(2π)d

f(q) . (14.18)

The prescription (14.9) then gives the correct expression

G(2)(p) = ad
λ23
N

G2(p)

π/a∫
−π/a

ddq
(2π)d

G(q)G(p + q) (14.19)

for the second-order contribution of the perturbation theory for the prop-
agator on the lattice.
It is now clear how a generic planar diagram is recovered by the re-

duced model. We first represent the diagram by the double lines and as-
sociate the momentum pi to an index line carrying the index i. Then we
write down an expression for the diagram in the reduced model with the
propagator (14.15). Passing to momenta flowing along the double lines,
similarly to Eq. (14.17), we obtain an expression which coincides with the
integrand of the Feynman diagram for the theory on the d-dimensional
lattice. It is crucial that such a change of variables can always be made
for a planar diagram consistently with momentum conservation at each
vertex. The last step is that a summation over indices of closed index
lines reproduces an integration over momenta associated with each of the
loops according to Eq. (14.18). It is assumed that the number of loops
is much less than N which is always true for a given diagram since N is
infinite.
Thus, we have shown how planar diagrams of the lattice theory de-

fined by the partition function (14.1) are recovered in the reduced
model (14.12). The lattice was needed only as a regularization to make
all integrals well-defined and was not crucial in the consideration. In the
next section we shall see how this construction can be formulated directly
for the continuum theory.

Remark on large but finite N

If N is large but finite, the summation on the LHS of Eq. (14.18) runs
over N different momenta. Similarly, if a theory is defined on a periodic
lattice of size La, the momentum takes on Ld different values. One might
think, therefore, that the quenched reduced model at very large but finite
N can be associated with a quantum field theory on a periodic lattice
with L = N1/d.
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330 14 Eguchi–Kawai model

14.2 Reduction of the scalar field (continuum)

The quenched reduced model can be formulated directly for the contin-
uum theory. The proper formulas can be easily obtained from those of
the previous section by setting a→ 0.
Equations (14.4)–(14.7) remain the same, while the derivative ∂µ in the

kinetic part of the continuum action

S[ϕ] =
∫
ddxN tr

{
1
2
(∂µϕ)2 + V (ϕ)

}
(14.20)

is substituted by iPµ acting in the adjoint representation.
The continuum reduced action

SR = v N tr
{
−1
2
[Pµ, ϕ̃]2 + Ṽ (ϕ̃)

}
(14.21)

determines the propagator of the matrix ϕ̃ij in the continuum quenched
reduced model, which is given by Eq. (14.14) with

G(pi − pj) =
v−1

(pi − pj)2 +m2
. (14.22)

The dimension of the reduced field ϕ̃ is [mass](d−2)/2, i.e. the same as
that of the field ϕ(x) in the d-dimensional theory.
The normalizing factor of v on the RHS of Eq. (14.21) (and therefore

Eq. (14.22)) plays the role of the volume element for a given regularization
and depends on the region for integration over the momenta pi. If pi are
restricted to a hypercube of size 2Λ, the proper formulas look like their
lattice counterparts (cf. Eq. (14.18)) with

v = ad lattice regularization (14.23)

and

a =
π

Λ
. (14.24)

Lorentz invariance is restored as Λ→ ∞ at least for renormalizable the-
ories.
A Lorentz-invariant regularization can be achieved by choosing pi inside

a hypersphere. Alternatively, one can include the regularizing factor of
exp
(
−p2i /Λ2

)
in the integral over pi [GK82] by defining∫ Λ

ddp · · · =
∫

ddp

(Λ
√
π)d

e−p2/Λ2 · · · . (14.25)
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14.2 Reduction of the scalar field (continuum) 331

Then,

v =
(
2π
Λ2

)d/2
regularization (14.25) (14.26)

and 〈
F [ϕ(x)]

〉
red.=
∫ Λ N∏

i=1

ddpi
〈
F [D†(x)ϕ̃D(x)]

〉
RM

(14.27)

which is similar to Eq. (14.9) on the lattice.
Analogously to the lattice case, we expect the self-averaging phe-

nomenon as N → ∞ so that, instead of integration over pi according
to Eq. (14.25), we can simply choose them at N = ∞ to be distributed
spherically symmetrically with Gaussian weight

ρ(p) =
(√

πΛ
)−d e−p2/Λ2

. (14.28)

A comment is needed concerning the normalization factors. A consid-
eration similar to the topological analysis of Sect. 11.4 leads us to the
conclusion that a planar diagram with n2 loops possesses a factor of v−n2

in the reduced model. It will normalize correctly the integral over mo-
menta circulating along the n2 loops, which remains to be done after the
N − n2 momenta pi (which do not appear in the diagram) are integrated
out. The analogous factor for the free energy is v−n2+1 owing to the extra
v in the definition (14.21).

Problem 14.1 Substituting (14.22) into Eq. (14.27), obtain a regularized prop-
agator in the d-dimensional theory.

Solution Inserting (14.22) into Eq. (14.27), we find explicitly

G(x) ≡
〈
ϕij(x)ϕji(0)

〉
red.=
∫ Λ N∏

k=1

ddpk ei(pi−pj)x
〈
ϕ̃ij ϕ̃ji

〉
RM

=
(
Λ2

2π

)d/2 ∫ ddpi
(Λ
√
π)d

ddpj
(Λ
√
π)d

e−(p2i+p
2
j )/Λ

2 ei(pi−pj)x

(pi − pj)
2 +m2

.

(14.29)

Introducing p± = pi ± pj and accounting for a Jacobian, we have

G(x) =
∫

ddp+
(2πΛ2)d/2

e−p
2
+/2Λ

2
∫
ddp−
(2π)d

e−p
2
−/2Λ

2 eip−x

p2− +m2

=
∫

ddp

(2π)d
e−p

2/2Λ2 eipx

p2 +m2
(14.30)

which gives a regularized propagator with the correct normalization.
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332 14 Eguchi–Kawai model

Remark on higher genera

The quenched reduced model reproduces only planar graphs of the orig-
inal theory and fails to reproduce nonplanar graphs. This can be easily
seen for the simplest nonplanar graph depicted in Fig. 11.3 where the
same momentum circulates along the closed index line, so that the total
momentum flowing along each of the two crossing double lines is zero
in the reduced model. Of course, this is not the case for the original
d-dimensional theory.
Similarly, the quenched reduced model reproduces only the factorized

part of the correlators of “colorless” operators, for example trϕ2(xi)/N ,
and cannot reproduce the connected correlators.

14.3 Reduction of the Yang–Mills field

The large-N reduction of the Yang–Mills fields has its specific features
owing to gauge invariance. In order to make the results rigorous, we
begin in this section with the lattice formulation of Yang–Mills theory
introduced in Chapter 6 and then describe the continuum case in the
next section.
The general prescription (14.4) and (14.5) of the large-N reduction is

applicable for gauge fields. For the lattice gauge field Uµ(x), it gives

Uµ(x)
red.→ D†(x)ŨµD(x) , (14.31)

where d unitary N ×N matrices Ũ ij
µ (µ = 1, . . . , d) are x-independent.

It is easy to deduce what transformation of the reduced gauge field Ũµ

is compatible with the lattice gauge transformation (6.13), where Ω(x) is
to be reduced by

Ω(x) red.→ D†(x)Ω̃D(x) . (14.32)

Here Ω̃ is again an x-independent unitary matrix.
If we first perform the gauge transformation (6.13) and then the reduc-

tion of the gauge-transformed field Uµ(x), we obtain

Ω(x+ aµ̂)Uµ(x) Ω†(x)
red.→ D†(x+ aµ̂) Ω̃D(x+ aµ̂)D†(x)ŨµD(x)D†(x) Ω̃†D(x)

= D†(x)D†
µΩ̃DµŨµΩ̃†D(x) , (14.33)

where

Dµ
def= D(x+ aµ̂)D†(x) = e−iPµa (14.34)

for D(x) given by Eqs. (14.5) and (14.6).
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14.3 Reduction of the Yang–Mills field 333

This determines the proper transformation of the reduced field Ũµ to
be

Ũµ
g.t.−→ D†

µΩ̃DµŨµΩ̃† . (14.35)

This transformation is referred to as the gauge transformation of the
reduced gauge field.
The substitution of (14.31) into the Wilson action (6.18) results in the

reduced action

SR =
1
2

∑
µ�=ν

{
1− 1

N
tr
[
Ũ †
νD

†
νŨ

†
µDνD

†
µŨνDµŨµ

]}

=
1
2

∑
µ�=ν

{
1− 1

N
tr
[ (

Ũ †
νD

†
ν

)(
Ũ †
µD

†
µ

)(
DνŨν

)(
DµŨµ

) ]}
,

(14.36)

where the equality between the first and second lines is because Dµ and
D†

ν commute.
The structure of the RHS of Eq. (14.36) prompts us to introduce a new

variable

Uµ = DµŨµ . (14.37)

Then we obtain for the reduced action

SR[U ] =
1
2

∑
µ�=ν

(
1− 1

N
trU †

νU
†
µUνUµ

)
(14.38)

and the gauge transformation (14.35) also simplifies to

Uµ
g.t.−→ Ω̃Uµ Ω̃† . (14.39)

If the measure dŨµ for averaging over Ũµ is the Haar measure, it is not
changed under (left) multiplication by a unitary matrix Dµ: dŨµ = dUµ.
Finally, we arrive at the reduced model discovered originally by Eguchi
and Kawai [EK82].
Its partition function

ZEK =
∫ ∏

µ

dUµ e−NSR[U ]/g
2

(14.40)

is of the same type as Wilson’s lattice gauge theory on a unit hyper-
cube with periodic boundary conditions. There is no dependence on the
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334 14 Eguchi–Kawai model

quenched momenta pi in the action of the Eguchi–Kawai model since the
Ds have mutually canceled owing to the local gauge invariance of the
lattice action (6.16).
In addition to the gauge symmetry (14.39), the Eguchi–Kawai model

possesses symmetry under multiplication of Uµ by an element of U(1),
the center of U(N), which depends on the direction µ:∗

Uµ → ZµUµ (Zµ ∈ U(1)) . (14.41)

Such a global symmetry is also present, of course, for the Wilson ac-
tion (6.16) but plays no special role there because of local gauge invari-
ance. It will be crucial in providing the equivalence of the d-dimensional
theory and the Eguchi–Kawai model at large N .
The equivalence of the d-dimensional lattice gauge theory and the

Eguchi–Kawai model at N =∞ states

〈
F [Uµ(x)]

〉
red.= aNd

π/a∫
−π/a

d∏
µ=1

N∏
i=1

dpµi
2π

〈
F
[
D†(x+ aµ̂)UµD(x)

] 〉
EK

,

(14.42)
which is similar to Eq. (14.9) for scalars. Here the LHS is given by
Eq. (6.39) and the RHS is calculated in the Eguchi–Kawai model:〈

F [Uµ]
〉
EK

= Z−1
EK

∫ ∏
µ

dUµ e−NSR[U ]/g
2
F [Uµ] . (14.43)

The commutativity of Dµ was used in representing the argument of F
on the RHS of Eq. (14.42) as D†(x+ aµ̂)UµD(x). Note that it looks like
a gauge transformation of a constant field in the d-dimensional theory.
For the latter reason Eq. (14.42) simplifies for the averages of gauge-

invariant quantities when it takes the form〈
F [Uµ(x)]

〉
red.=
〈
F [Uµ]
〉
EK

gauge invariant F (14.44)

as N → ∞. In this formula there is no dependence on D(x) and corre-
spondingly the quenched momenta pi because F [Uµ(x)] is gauge invariant.
As has already been explained in Sect. 12.1, gauge-invariant observables

in Yang–Mills theory can be expressed via the Wilson loops. Applying
Eq. (14.44) for the Wilson loop averages (6.42), we obtain〈

1
N
trU(C)

〉
red.=
〈
1
N
trP
∏
i

Uµi

〉
EK

(14.45)

∗ For the gauge group SU(N), it is an element of Z(N) rather than U(1) for the Haar
measure dUµ to be invariant.
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as N →∞. In other words, the Wilson loop in the Eguchi–Kawai model
is constructed as an (ordered) product of the constant matrices Uµi along
the links forming the contour C. It is nontrivial since Uµ do not commute.
The equality (14.45) is possible since the Wilson loop averages in the

original theory do not depend on the position of the beginning of the
contour C owing to translational invariance.
The simplest example of the Wilson loop average is that for a rect-

angular contour depicted in Fig. 6.6 on p. 111. It is represented in the
Eguchi–Kawai model by

W (R× T ) =
〈
1
N
trU † T

d U †R
1 UT

d U
R
1

〉
EK

. (14.46)

There is an important difference between the averages of open Wilson
loops in the d-dimensional theory and the Eguchi–Kawai model. In the
former case, the averages of open Wilson loops always vanish because of
the local gauge invariance which cannot be broken spontaneously owing to
Elitzur’s theorem, which was already mentioned in Sect. 7.3. In the latter
case, open Wilson loops are invariant under the transformation (14.39)
since Ω̃ is the same at the beginning and the end of the contour:

1
N
trP
∏
i

Uµi

(14.39)−→ 1
N
tr
(
Ω̃ P
∏
i

UµiΩ̃
†
)
=

1
N
trP
∏
i

Uµi .

(14.47)

They are not invariant however under the U(1)d transformation (14.41):

1
N
trP
∏
i

Uµi

(14.41)−→
∏
i

Zµi

1
N
trP
∏
i

Uµi . (14.48)

Only closed Wilson loops, where each link occurs with an equal number of
positive and negative orientations, are invariant. This symmetry is global
and can be broken spontaneously as N →∞.
It is easy to see that no such breaking occurs within the strong-coupling

expansion of the Eguchi–Kawai model, which is pretty much similar to
that described in Sect. 6.5. For this reason the equivalence (14.44) holds
at least for large enough values of g2N . It was shown [BHN82] that the
U(1)d symmetry is spontaneously broken for small values of g2N and
therefore in the continuum. We shall return to this point in Sect. 14.5.
Two modifications of the Eguchi–Kawai model were proposed: the

quenched Eguchi–Kawai model (described later in Sect. 14.6) and the
twisted Eguchi–Kawai model (described later in Sect. 15.3). These two
models are equivalent, in the large-N limit, to the d-dimensional theory
both on the lattice and in the continuum.
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Problem 14.2 Derive the loop equation for the Eguchi–Kawai model.

Solution The derivation is similar to Problem 12.6 on p. 265. We perform the
shift of Uµ:

Uµ → Uµ (1− iεµ) , U †
µ → (1 + iεµ)U †

µ (14.49)

which is same as in Eq. (6.22) for x-independent ε. The resulting loop equation
is given as [EK82]∑

p

[
WEK(C ∂p)−WEK

(
C ∂p−1

)]
= g2N

∑
l∈C

τν(l)WEK(Cyx)WEK(Cxy) .

(14.50)
It is similar to Eq. (12.65) except the Kronecker symbol δxy is missing on the
RHS of Eq. (14.50). It is restored if the averages of the open Wilson loops vanish,
as prescribed by the unbroken U(1)d symmetry, since then we can substitute

WEK(Cxy) = δxyWEK(Cxx) . (14.51)

The coincidence of the loop equations proves the equivalence of the two theo-
ries at N =∞.

Problem 14.3 Verify Eq. (14.51) by an explicit calculation to zeroth order in
g2.

Solution Extrema of the Eguchi–Kawai action (14.38) are given modulo a gauge
transformation by diagonal matrices

U cl
µ = e−iPµa . (14.52)

This determines the Wilson loop average to zeroth order in g2 to be

WEK(Cyx) = aNd

π/a∫
−π/a

N∏
i=1

ddpi
(2π)d

1
N

N∑
k=1

eipk(x−y)

= ad
π/a∫

−π/a

ddp

(2π)d
eip(x−y) = δxy , (14.53)

where the integration over Pµ accounts for equivalent classical extrema. The
Kronecker symbol in Eq. (14.53) appears because of the translational symmetry
in momentum space.

14.4 The continuum Eguchi–Kawai model

The Eguchi–Kawai reduced model can be formulated directly for the con-
tinuum theory. The proper formulas can be derived from their lattice
counterparts of the previous section by substituting

Uµ = eiaAµ (14.54)

with a→ 0.
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The continuum Eguchi–Kawai model describes a reduction of the d-
dimensional Yang–Mills theory at N = ∞ to a point. The action of the
continuum Eguchi–Kawai model is given by

SEK[A] = −
(
2π
Λ2

)d/2 1
4g2

tr [Aµ, Aν ]2 , (14.55)

where Aµ are d space-independent matrices.
The parameter Λ has the dimension of mass, same as has Aµ in d = 4.

As we shall see in a moment, Λ is to be associated with a momentum-space
ultraviolet cutoff in the spirit of Sect. 14.2. In this chapter we assume the
Lorentz-invariant regularization (14.25) when the normalization factor in
Eq. (14.55) is given by Eq. (14.26). For the lattice regularization, Λ is
related to the lattice spacing a by Eq. (14.24) and the normalization factor
in Eq. (14.55) is to be changed according to Eq. (14.23).
Therefore, the very formulation of the continuum Eguchi–Kawai model

implies a regularization.
The action (14.55) is obviously invariant under the gauge transforma-

tion

Aµ
g.t.−→ Ω̃Aµ Ω̃† . (14.56)

It is worth noting that, owing to Eqs. (14.37), (6.10), and (14.34), Aµ

is associated with the reduction of the covariant derivative i∂µ + Aµ(x)
rather than the field Aµ(x) itself:

i∂µ +Aµ(x)
red.→ D†(x)AµD(x) . (14.57)

This explains why Eq. (14.56) is consistent with the gauge transformation
of the covariant derivative

i∂µ +Aµ(x)
g.t.−→ Ω(x) [i∂µ +Aµ(x)] Ω†(x) (14.58)

rather than Aµ(x) itself.
Similarly to Eq. (14.44),〈
F [i∂µ +Aµ(x)]

〉
red.=
〈
F [Aµ]

〉
EK

gauge invariant F (14.59)

as N →∞ for gauge-invariant functionals F , where the LHS is calculated
using the action (11.72) and the RHS is calculated using the Eguchi–
Kawai action (14.55). For instance, the averages of closed Wilson loops
coincide in both cases〈

1
N
trP ei

∮
dξµAµ(ξ)

〉
red.=
〈
1
N
trP ei

∮
dξµAµ

〉
EK

. (14.60)

This is a continuum version of Eq. (14.45).
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The continuum analog of the U(1)d symmetry (14.41) is the invariance
of the Eguchi–Kawai action (14.55) under the shift of Aµ by a unit matrix:

Aij
µ → Aij

µ + rµδ
ij , (14.61)

where rµ is a parameter of the transformation. It is often called the Rd

symmetry.
Under the transformation (14.61), an open Wilson loop is transformed

as
1
N
tr
(
P ei
∫

Cyx
dξµAµ
)
→ ei(y

µ−xµ)rµ
1
N
tr
(
P ei
∫
Cyx

dξµAµ
)
.

(14.62)

This guarantees, if the symmetry is not broken, the vanishing of the
averages of open Wilson loops

WEK(Cyx) ≡
〈
1
N
trP ei

∫
Cyx

dξµAµ

〉
EK

= 0 for y �= x (14.63)

in the Eguchi–Kawai model.
Such vanishing in the d-dimensional theory is provided by the local

gauge invariance under which(
P ei
∫
Cyx

dξµAµ(ξ)
)
ij
→
(
Ω(y)P ei

∫
Cyx

dξµAµ(ξ)Ω†(x)
)
ij
. (14.64)

In contrast, the global symmetry (14.56) does not guarantee the vanishing
of the averages of open Wilson loops in the Eguchi–Kawai model.
When and only when the Rd symmetry (14.61) is not broken spon-

taneously, is the Eguchi–Kawai model equivalent to the d-dimensional
Yang–Mills theory at large N .
The equivalence of the two theories can then be shown using the loop

equation which is given for the Eguchi–Kawai model by

∂xµ
δ

δσµν (x)
WEK(C) = i

〈
1
N
trP [Aµ, [Aµ, Aν ]] e

i
∮
Cxx

dξµAµ

〉
EK

= −iλ
(
Λ2

2π

)d/2〈 1
N
trP

∂

∂Aν
ei
∮

Cxx
dξµAµ

〉
EK

= λ

(
Λ2

2π

)d/2 ∮
C

dyν WEK(Cyx)WEK(Cxy) ,

(14.65)

where λ = g2N . The RHS is pretty much similar to that in Eq. (12.59),
while (Λ2/2π)d/2 is present instead of δ(d)(x− y).
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In order to show how the two RHSs are essentially equal to each other
providing the Rd symmetry is not broken, we need to remember that the
continuum Eguchi–Kawai model is, in fact, somehow regularized.
While the action (14.55) is formally invariant under the transforma-

tion (14.61) for arbitrary rµ, admitable values of rµ should be much
smaller than the cutoff Λ. This is clear, in particular, from the lattice
formula (14.41) where

Zµ = eiarµ (14.66)

and to obtain Eq. (14.61) we expand in a which destroys the compactness.
For this reason we expect the average of an open Wilson loop to vanish

in the continuum Eguchi–Kawai model only when the distance |y − x|
between the end points x and y is much larger than the ultraviolet cutoff
1/Λ. Otherwise, we may regard the loop to be essentially closed since
distances smaller than the cutoff make no sense in the theory.
Introducing a smeared delta-function δ

(d)
Λ (x− y), for example, by

δ
(d)
Λ (x) =

(
Λ2

2π

)d/2
e−x2Λ2/2 , (14.67)

we therefore expect something like∗

WEK(Cyx) ≈
δ
(d)

Λ/
√
2
(x− y)

δ
(d)

Λ/
√
2
(0)

WEK(Cxx) (14.68)

for the averages of open Wilson loops in the continuum Eguchi–Kawai
model.
Finally, the delta function is recovered on the RHS of Eq. (14.65) as

(
Λ2

2π

)d/2 δ(d)Λ/√2(x)
δ
(d)

Λ/
√
2
(0)

2 =
(
Λ2

2π

)d/2
e−x2Λ2/2 = δ

(d)
Λ (x) → δ(d)(x) ,

(14.69)
reproducing the delta function on the RHS of Eq. (12.59).
This demonstrates the equivalence of the continuum Eguchi–Kawai

model and the d-dimensional Yang–Mills theory at large N under the
assumption that the Rd symmetry is not broken. The consideration sim-
ply repeats the proof of the equivalence given in Problem 14.2 on p. 336
by using the lattice regularization.

∗ Why it should be δ(d)

Λ/
√

2
rather than δ

(d)
Λ is clear from Eq. (14.69) and Problem 14.4.
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Problem 14.4 Verify Eq. (14.68) by explicit calculation to zeroth order in g2,
regularizing the integral over the zero modes of Aµ by Eq. (14.25).
Solution The calculation is similar to that in Problem 14.3 for the lattice
case. Extrema of the continuum Eguchi–Kawai action (14.55) are given modulo
a gauge transformation by diagonal matrices Acl

µ = −Pµ. This determines the
Wilson loop average to zeroth order in g2 to be

WEK(Cyx) =
∫ Λ N∏

i=1

ddpi
1
N

N∑
k=1

eipk(x−y)

=
∫

ddp

(Λ
√
π)d

e−p
2/Λ2

eip(x−y) =
δ
(d)

Λ/
√
2
(x− y)

δ
(d)

Λ/
√
2
(0)

, (14.70)

where the integration over Pµ accounts for the zero modes of Aµ.

The Rd symmetry is, in fact, broken spontaneously in the continuum
Eguchi–Kawai model for d > 2 as is discussed in the next section. For
this reason the equivalence between the d-dimensional theory and the
naive continuum Eguchi–Kawai model described in this section is valid,
strictly speaking, only in d = 2. The reduced model should be slightly
modified to be equivalent to the d-dimensional theory for d > 2. Such a
modification, which is based on the quenched momentum prescription, is
described later in Sect. 14.6.

14.5 Rd symmetry in perturbation theory

Since N is infinite, the Rd symmetry can be broken spontaneously. The
point is that the large-N limit plays the role of a statistical average,
as has already been mentioned in Sect. 11.8, and phase transitions are
possible for an infinite number of degrees of freedom. This phenomenon
occurs [BHN82] in perturbation theory for the naive Eguchi–Kawai model
with d > 2.
A perturbation theory can be constructed by expanding the fields

around solutions of the classical equation

[Aµ, [Aµ, Aν ]] = 0 . (14.71)

An arbitrary diagonal matrix

Aclµ = − Pµ (14.72)
is a solution to Eq. (14.71) associated with the minimal value SEK = 0 of
the action (14.55).
The perturbation theory of the reduced model can be constructed by

expanding around the classical solution (14.72):

Aµ = Aclµ + gbµ , (14.73)
where bµ is off-diagonal.
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Substituting (14.73) into the action (14.55), we obtain

SEK = −
(
2π
Λ2

)d/2
tr
{
1
2
[Pµ, bν ]2 −

1
2
[Pµ, bµ]2

}
+ higher orders .

(14.74)
To fix the gauge symmetry (14.56), it is convenient to add

Sgf = −
(
2π
Λ2

)d/2
tr
{
1
2
[Pµ, bµ]2 + [Pµ, c̄][Pµ, c]

}
, (14.75)

where c and c̄ are ghosts.
The sum of (14.74) and (14.75) gives

S2 = −
(
2π
Λ2

)d/2
tr
{
1
2
[Pµ, bν ]2 + [Pµ, c̄][Pµ, c]

}
(14.76)

to quadratic order in bµ.
Performing the Gaussian integral over bν , we find at the one-loop level:∫
dPµ dbµ e−S2 · · · =

∫ N∏
k=1

ddpk
∏
i<j

[
(pi − pj)2

]2−d
· · · , (14.77)

where the integration over Pµ accounts for the moduli space of classical
solutions.
For d = 1 the product on the RHS of Eq. (14.77) reproduces the square

of the Vandermonde determinant (13.14). For d = 2 the exponent 2 − d
vanishes so that the product equals unity and does not affect the dynam-
ics. For d ≥ 3 the measure is singular and the eigenvalues collapse. This
leads us to a spontaneous breakdown of the Rd symmetry in perturbation
theory.

Remark on supersymmetric case

In a supersymmetric gauge theory, there is an extra contribution from
fermions to the exponent on the RHS of Eq. (14.77). Since the integration
over fermions results in the extra factor of [(pi − pj)2] tr I, this finally yields
the exponent 2 − d + tr I. It vanishes in d = 4 for either Majorana or
Weyl fermions and in d = 10 for the Majorana–Weyl fermions. This
explicit calculation [IKK97] confirms, at first sight, the claim [MK83]
that Rd symmetry is not broken perturbatively in supersymmetric Yang–
Mills theory and no quenching is needed in the supersymmetric case. This
statement seems, in fact, to be not quite correct because of fermionic zero
modes [AIK00].
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14.6 Quenched Eguchi–Kawai model

Soon after the breakdown of the Rd symmetry in perturbation theory
was discovered for the Eguchi–Kawai model, a cure for the problem was
proposed [BHN82]. The idea was to treat the eigenvalues of the Hermitian
matrix Aµ as being quenched rather than dynamical variables.
In order to separate the degrees of freedom associated with the eigen-

values, we represent Aµ in a canonical form

Aµ = −VµPµV †
µ , (14.78)

where Pµ is diagonal and Vµ is unitary. The measure for integration over
Aµ is then represented in a standard Weyl form

dAµ = dPµ dVµ∆2(Pµ) , (14.79)

where dVµ denotes the Haar measure∗ on U(N) and ∆(Pµ) is the Vander-
monde determinant defined by Eq. (13.14). Equation (14.79) is the same
as Eq. (13.13) for the one-matrix case.
Note that the substitution (14.78) is consistent with the gauge symme-

try (14.56), which is equivalent to the left multiplication

Vµ → Ω̃Vµ . (14.80)

The Haar measure dVµ is invariant under such a multiplication.
In the quenched Eguchi–Kawai model, Aµ is substituted by Eq. (14.78)

both in the reduced action (14.55) and in the averaging functionals. But
the averaging is taken only with respect to the Vµ variables considering
Pµ as quenched variables. The averages are then integrated over Pµ which
is quite analogous to Eq. (14.27):〈

F [i∂µ +Aµ(x)]
〉

red.=
∫ Λ N∏

i=1

ddpi
〈
F
[
−D†(x)VµPµV †

µD(x)
] 〉

QEK
.

(14.81)
The average on the RHS of Eq. (14.81) is defined for the quenched

Eguchi–Kawai model by〈
F
[
VµPµV

†
µ

] 〉
QEK

= Z−1
QEK

∫ ∏
ν

dVν ∆2(Pν) e−SEK[VµPµV
†
µ ] F
[
VµPµV

†
µ

]
(14.82)

∗ Strictly speaking, Vµ in Eq. (14.78) should be off-diagonal to match the number of
degrees of freedom, so the measure dVµ should be the Haar measure on the coset
U(N)/U(1)N . But nothing depends on these diagonal degrees of freedom of Vµ

since Pµ is diagonal. We simply normalize the proper (compact) integrals over these
diagonal degrees of freedom of a unitary matrix to unity.
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and

ZQEK =
∫ ∏

ν

dVν ∆2(Pν) e−SEK[VµPµV
†
µ ] (14.83)

is the partition function of the quenched Eguchi–Kawai model.
Similarly to Eq. (14.13), the free energy per unit volume is given as

N →∞ by

1
N2

lnZ
V

=
(
Λ2

2π

)d/2 ∫ Λ N∏
i=1

ddpi
1
N2

lnZQEK . (14.84)

This prescription for constructing the quenched Eguchi–Kawai model
is very similar to what is described in Sect. 14.2 for scalars. The measure
dAµ is split according to Eq. (14.79) but the integration in Eq. (14.82) or
Eq. (14.83) is solely over Vµ, keeping Pµ quenched. Only these averages
of the quenched Eguchi–Kawai model (or the logarithm of the partition
function in Eq. (14.84)) are integrated over the quenched momenta pi
according to Eq. (14.81).
This is crucial to cure the breakdown of the Rd symmetry in perturba-

tion theory. The perturbative calculation in the quenched Eguchi–Kawai
model looks like that of the previous section since now the classical vac-
uum is associated with Vµ = 1 (modulo a gauge transformation). Instead
of integrating over the distinct classical vacua as in the naive Eguchi–
Kawai model, we have in the quenched Eguchi–Kawai model integration
over the quenched variables pi which enters differently. The factor of∏

i<j [(pi − pj)2]
2−d, which resulted in the breaking of the Rd symmetry

in Eq. (14.77), appears now both in the numerator and denominator of
the averages and thus cancels. Similarly, its logarithm is integrated over
pi in Eq. (14.84) which does not result in a collapse of eigenvalues in the
quenched Eguchi–Kawai model. The Rd symmetry is not broken pertur-
batively in the quenched Eguchi–Kawai model and it is equivalent to the
d-dimensional Yang–Mills theory in the N =∞ limit.
Just as in the scalar case, we can substitute the integration over pµi

in Eq. (14.81) at N = ∞ by distributing them with a proper weight.
It is again convenient to choose the weight (14.28) as is prescribed by
Eq. (14.25). In contrast to the momentum regularization in the d-
dimensional gauge theory, this results in a gauge-invariant regularization
of perturbation theory since the eigenvalues of Aµ are gauge invariant (cf.
Eq. (14.57)).
In fact, the precise form of the measure for integrating over pi on the

RHS of Eq. (14.81) is not essential as N →∞. All that is needed from the
measure is for the integral over pi to converge, which would protect the
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eigenvalues from collapsing in perturbation theory. Any other measure
performing the same job is as good as this one.
For the same reason, the precise form of the distribution of the quenched

momenta, substituting the integration at N = ∞, is not essential if it is
smooth. The distribution (14.28) simply provides a nice gauge-invariant
regularization of perturbation theory which is of the same type as the
proper-time regularization.
Given a distribution of the eigenvalues pµi , Eq. (14.81) simplifies to〈

F [i∂µ +Aµ(x)]
〉

red.=
〈
F
[
−D†(x)VµPµV †

µD(x)
] 〉

QEK
. (14.85)

In particular, the averages of closed Wilson loops are given by〈
1
N
trP ei

∮
dξµAµ(ξ)

〉
red.=
〈
1
N
trP e−i

∮
dξµVµPµV

†
µ

〉
QEK

. (14.86)

The averages of open Wilson loops in the quenched Eguchi–Kawai model
obey Eq. (14.68).
A formal proof of the equivalence of the d-dimensional Yang–Mills the-

ory in the large-N limit and the quenched Eguchi–Kawai model can be
given [GK82, Mig82] using the loop equation. To derive the equation for
the Wilson loops in the quenched Eguchi–Kawai model, which are de-
fined by the RHS of Eq. (14.86), we perform the right shift of the unitary
matrix Vµ:

δVµ = iVµεµ , (14.87)

where εµ is Hermitian. Substituting into Eq. (14.78), we obtain

δAµ = iVµ [Pµ, εµ]V †
µ (14.88)

under the shift (14.87).
Using the gauge symmetry (14.80), we can always choose the gauge

where Vµ = 1 for the given µ. Then

δAµ = i [Pµ, εµ] (14.89)

does not depend on Vµ.
The variation (14.89) is almost the same as that which resulted in the

loop equation (14.65) of the Eguchi–Kawai model. The only difference re-
sides in the fact that the variation (14.87) does not change the eigenvalues
of Aµ. When we expand the induced variation of Aµ, given by Eq. (14.89),
in the Lie algebra basis, no diagonal generators appear. But their number
is ∼ N and hence O

(
N−1) of the total number of generators. For this

reason, the Wilson loop averages in the quenched Eguchi–Kawai model
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obey at N = ∞ the same loop equation as in the naive Eguchi–Kawai
model. Additional terms of order 1/N appear in the loop equation of
the quenched Eguchi–Kawai model since diagonal generators, which are
needed for the completeness condition (11.6), are missing. Hence, correc-
tions to the N =∞ loop equation of the quenched Eguchi–Kawai model
are ∼ 1/N rather than ∼ 1/N2 as in the d-dimensional Yang–Mills theory.
This demonstrates once again that quenched reduced models can re-

produce only planar diagrams of the d-dimensional theories but cannot
reproduce diagrams of higher genera.
The representation (14.82) of the averages in the quenched Eguchi–

Kawai model does not look like that in gauge theories where the averaging
is over quantum fluctuations of Aµ. The quenched Eguchi–Kawai model
can, however, be represented in such a form as is shown by Gross and
Kitazawa [GK82].
Let us introduce

1 =
∫
dAµ δ
(
Aµ + VµPµV

†
µ

)
(14.90)

into the numerator and denominator on the RHS of Eq. (14.82).
Changing the order of integration over dAµ and dVµ, we obtain

〈
F [A]
〉
QEK

=

∫ ∏
µ
dAµ C(A,P ) e−SEK[A] F [A]∫ ∏
µ
dAµC(A,P ) e−SEK[A]

, (14.91)

where

C(A;P ) =
∫ ∏

µ

dVµ δ
(
Aµ + VµPµV

†
µ

)
∆2(Pµ) . (14.92)

And analogously,

ZQEK =
∫ ∏

µ

dAµC(A,P ) e−SEK[A] (14.93)

for the partition function of the quenched Eguchi–Kawai model from
Eq. (14.83).
Substituting

Aµ = −Pµ + gbµ , (14.94)

we can calculate C(A,P ) at least perturbatively in g. Evaluating the
integral on the RHS of Eq. (14.92), we find

C(A,P ) =
∏
µ

N∏
i=1

δ

(
bµii + g

∑
j �=i

|bµij |2

pµi − pµj
+O
(
b3µ
))

(14.95)

to quadratic order in bµ.
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The meaning of this constraint is obvious: diagonal elements of bµ are
expressed via off-diagonal elements for the eigenvalues of Aµ to coincide
with −pµi . In particular, the diagonal elements of bµ vanish to the leading
order. This vanishing of bµii is however not a gauge-invariant condition to
higher orders in g. The role of the higher terms in the argument of the
delta-function in Eq. (14.95) is to ensure gauge invariance to all orders in
g as C(A,P ) is gauge invariant according to the definition (14.92).
The constraint (14.95) restricts only N out of N2 degrees of freedom,

which explains why it is inessential, say, in the large-N limit of the loop
equations in the quenched Eguchi–Kawai model.
The presence of the delta-function affects, however, the dynamics of

the degrees of freedom associated with the diagonal elements Aii. In
particular, the analog of the continuum propagator (14.22) is given by

〈
bµijb

ν
ji

〉
QEK

=


(
Λ2

2π

)d/2
δµν

(pi − pj)
2 i �= j

0 i = j

(14.96)

which cures the divergence of a massless propagator at i = j.
If the constraint (14.95) is solved for bµii versus off-diagonal components

and the result is substituted into the action, this will generate new inter-
actions. The diagrams of perturbation theory in the quenched Eguchi–
Kawai model coincide with the integrands of the planar Feynman graphs
in the d-dimensional Yang–Mills theory except for diagrams with the new
vertices which are needed for gauge invariance of the quenched Eguchi–
Kawai model. The sum of these additional diagrams vanishes [GK82]
after averaging over the quenched momenta.

Problem 14.5 Derive Eq. (14.95) to quadratic order in bµ.

Solution We need to solve the equation

Pµ − gbµ = VµPµV
†
µ (14.97)

for Vµ iteratively in g. Substituting

Vµ = eighµ , (14.98)

we find that Eq. (14.97) is reduced to the linear order in g to

bµij = i
(
pµi − pµj

)
hµij . (14.99)

This equation requires bµii = 0 and fixes off-diagonal components of h
µ
ij to be

hµij = −i
bµij

pµi − pµj
. (14.100)
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Fig. 14.2. Index-space diagram for the average of closed Wilson loop to order
g2. The momentum pi or pj flows along the index line i or j. The momentum
pi − pj is associated with the double line ij. The diagram is associated with an
analytic formula given in Eqs. (14.102) and (14.103).

To the quadratic order in g, only hµij to the linear order contributes to the
diagonal components of Eq. (14.97) since a commutator with the diagonal matrix
Pµ has no diagonal components. Then Eq. (14.97) yields

bµii = g
∑
j �=i

(
pµi − pµj

)
hµijh

µ
ji = − g

∑
j �=i

∣∣bµij∣∣2
pµi − pµj

(14.101)

which reproduces the argument of the delta-function in Eq. (14.95).

Problem 14.6 Calculate the average of a closed Wilson loop in the quenched
Eguchi–Kawai model to order g2.

Solution The calculation is similar to that in Problem 14.1 on p. 331. Substi-
tuting Eq. (14.94) into the RHS of Eq. (14.86) and expanding to order g2, we
obtain

W
(2)
QEK(C) = −λ

2

∮
C

dxµ
∮
C

dyν
1
N2

N∑
i,j=1

ei(pi−pj)(y−x) 〈bµijbνji〉QEK

(14.102)

since Pµ and bν do not commute. The associated index-space diagram is depicted
in Fig. 14.2. For the distribution of eigenvalues given as N →∞ by the Gaussian
weight (14.28), we have using Eq. (14.96)

W
(2)
QEK(C) = −λ

2

∮
C

dxµ
∮
C

dyµ

×
(
Λ2

2π

)d/2 ∫ ddpi
(Λ
√
π)d

ddpj
(Λ
√
π)d

e−p
2
i /Λ

2−p2j/Λ
2 ei(pi−pj)(y−x)

(pi − pj)
2 .

(14.103)

Introducing the variables p± = pi ± pj and accounting for a Jacobian, we have
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quite similarly to Problem 14.1:

W
(2)
QEK(C) = −λ

2

∮
C

dxµ
∮
C

dyµ
∫

ddp

(2π)d
e−p

2/2Λ2 eip(y−x)

p2
(14.104)

which reproduces (a regularized version of) Eq. (12.17) with the correct normal-
ization.

Remark on the quenched Eguchi–Kawai model on the lattice

The quenched Eguchi–Kawai model was originally formulated on a lattice
[BHN82]. All the formulas are analogous to those given above in this
section, while taking into account the fact that Uµ is compact on the
lattice.
The analogs of Eqs. (14.78) and (14.79) are given by

Uµ = Vµ e−iPµa V †
µ (14.105)

and

dUµ = dPµ dVµ∆2
(
e−iPµa

)
, (14.106)

where explicitly

∆
(
e−iPµa

)
=
∏
i<j

2 sin
(pµi − pµj

2
a
)
. (14.107)

The quenched variables pµi ∈ (−π/a,+π/a] play the role of the lattice
momenta restricted to the Brillouin zone.
The measure dUµ of the naive Eguchi–Kawai model (14.43) is multiplied

by

C(U,P ) =
∫ ∏

µ

dVµ δ
(
Uµ − Vµ e−iPµaV †

µ

)
∆2
(
e−iPµa

)
. (14.108)

Correspondingly, the partition function of the lattice quenched Eguchi–
Kawai model is given by

ZQEK =
∫ ∏

µ

dUµ C(U,P ) e−NSR[U ]/g
2
, (14.109)

where the eigenvalues pµi are distributed uniformly over the hypercube.
The U(1)d symmetry is not broken in the lattice version of the quenched

Eguchi–Kawai model for all values of the coupling g2N . This is illus-
trated by the one-loop calculation in Problem 14.7. The lattice quenched
Eguchi–Kawai model is equivalent to an N = ∞ Wilson lattice gauge
theory on a d-dimensional lattice for all values of g2N . This is verified,
in particular, by numerical simulations.
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Problem 14.7 Calculate the partition function (14.109) to the leading order in
g2, fixing the gauge by Vd = 1.

Solution Since the gauge is fixed by Vd = 1, the vacuum state is simply

U cl
µ = e−iPµa (14.110)

or Vµ = 1. This can be seen representing the action (14.38) in an equivalent
form by rewriting

SR =
1
4N

∑
µ�=ν

tr
∣∣ [Uµ, Uν ] ∣∣2 . (14.111)

We expand

V µ
ij = δij − iga

bµij
Sµij

µ = 1, . . . , d− 1 , (14.112)

where

Sµij = 2 sin
(pµi − pµj

2
a
)
. (14.113)

Here bµ is the off-diagonal Hermitian matrix as has already been explained.
Equation (14.112) reproduces the continuum equations (14.98) and (14.100) as
a→ 0.
Keeping the terms which are quadratic in bµ in the action, we have

S2 =
1
2

d−1∑
µ,ν=1

∑
i,j

∣∣Sµijbνij − Sνijb
µ
ij

∣∣2 , (14.114)

while the measure is

d−1∏
µ=1

dVµ =
d−1∏
µ=1

∆−2
(
e−iPµa

)
dbµ (14.115)

to this level of accuracy.
The calculation of the Gaussian integral over bµ reduces for the given indices

i and j to a calculation of the determinant of the (d− 1)× (d− 1) matrix

Rµν =
d∑

ρ=1

S2
ρδµν − SµSν , (14.116)

which has one eigenvalue S2
d and d− 2 eigenvalues

∑d
ρ=1 S

2
ρ . This can be easily

seen using the rotational symmetry, which allows us to choose Sµ = 0 for µ =
2, . . . , d− 1. Therefore, we have

det
µν

Rµν = S2
d

(
d∑

ρ=1

S2
ρ

)d−2

. (14.117)
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Finally, we obtain∫ d∏
µ=1

dVµ∆2
(
e−iPµa

)
e−S2 =

∏
i<j

(∑
µ

4 sin2
pµi − pµj
2

a

)2−d
, (14.118)

which reproduces the integrand in Eq. (14.77) as a→ 0. There is no collapse of
eigenvalues of Uµ thanks to the quenching procedure.
In this Problem we have followed the calculation of [KM82].
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