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GALOIS ACTION ON SOME IDEAL SECTION POINTS OF THE
ABELIAN VARIETY ASSOCIATED WITH A MODULAR
FORM AND ITS APPLICATION

FUMIYUKI MOMOSE

Introduction

For an integer N, let X,(N) be the modular curve defined over @
which corresponds to the modular group I';,(N). To each primitive cusp
form f = > a,q™, @, = 1, (= normalized new form in the sense of [1]) on
I'(N) of weight 2, there corresponds a factor JJ, of the jacobian variety
of X\(N) (cf. Shimura [19]). Shimura [20] and Ohta [11] etc. investigated
the Galois action on some ideal section points of J,. They treated the
case when f is a primitive cusp form on ['y(I) with the neben typus

character (L> for a prime number I/, [ =1 mod 4. We here treat the

forms on I'(I") (i.e., the Haupt form) for a prime number [ = 2. Put
K, = Qa,|1 <meZ) and d, be the ideal of the ring of integers @ of
+ 1

K, generated by a, for all primes q such that <~~) = —1. Here, the
q

sign =+ is chosen so that +/ =1 mod 4. When a form f is associated
with a Grossen-character of an imaginary quadratic field (cf. [18]), we
say that f has C.M. or f is a form with C.M. One of the results is the

following, which was conjectured in Saito [17]:

Prorposrrion (cf. (1.10), (1.16)). Let f be a primitive cusp form on I'y(I*)
of weight 2 for a prime number 1,1 = —1 mod 4. Assume tket there exists
a prime R of K, which divides &, but not divide 2. Then, there exists
a primitive cusp form © with C.M. on I'(l*) of weight 2 such that

f=06 mod f,

where B is an extension of P to Q. Further, if PY(I — 1)-1, f and O belong
to the same direct factor in Saito’s decomposition of the space SYI'(I%))
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20 FUMIYUKI MOMOSE

in [17] (¢f. (1.14), (1.15)).

The other topic considered in this paper concerns the endomorphism
algebra of J,. If f does not have C.M., , # (0) (cf. [14]). There are
many examples of the forms f without C.M. such that §, + (1), which
have non-trivial twists (cf. [4], [8], [17] ete.). Let f be a primitive cusp
form on I'(l") without C.M. and put F; = Q(a)|q: primes). Then, the
endomorphism algebra End J, ® @ is isomorphic to K, or a quaternion
algebra over F, which contains K, as a maximal commutative subfield
(cf. [10], [15]). In the latter case, n = 2 (cf. [13]) and the algebra is
generated by K, and the twisting operator (cf. [10], [15]). If ! =1 mod 4,
the algebra is isomorphic to a matrix algebra (cf. [16]). Except for the
one example of Koike [8], we have not known the example such that the
corresponding algebra is a division algebra. We give here other two
examples (which were calculated by Saito [17]) and their discriminants.

Notation. For an algebraic number field L of finite degree or a finite
extension L of Q,, ¢,, G, denote the ring of integers of L and the Galois
group Gal(L/L), respectively. For a prime p of ¢,, L, 0., #(p) and g,
respectively denote the p-adic completion of L, the maximal order of L,
the residue field @,/p and a Frobenius element of the prime p, and often
denote by 0, instead of ¢,, and by G instead of G,. For an abelian va-
riety A defined over a finite extension L of @ or Q,, A,, denotes the
Néron model of A over @,. Further, if the ring of the endomorphisms
End A of A contains an order ¢ of an algebraic number field, for an
ideal ¥ of 0, yA denotes the %B-ideal section points (M),y ker (x: A — A)
of A, and 34,,, denotes the schematic closure of yA in the Néron model
A,,. For a prime number p, g, denotes the group consisting of the
p-th roots of 1, and X, denotes the character of G induced from the
Galois action on p,.

§1. Galois action on division points

Let I = 3 be a prime number, n > 1 be an integer and f= >, a,q™,
a, =1, be a primitive cusp form on I'(l") of weight 2. Let J = J, be
the abelian variety (defined over @) associated with f (cf. Shimura [19])
and put K=K, =Q(a,|1<meZ), F=F,= Qal|q: primes). Denote
by V, =V, , the Tate module T,(J)Q) ® @, for each prime p, and put
Vs = V, ® K for each prime 8 of 0 = 0 lying over p. The Néron model
Jyzupy 18 an abelian scheme (cf. [3]). We can choose an abelian variety
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J’( /@) on which ¢ operates and which is isogenous to J over @ (cf. [21]
§7. Put k= Q(=*I) and G = Gal(Q/Q), G, = Gal(Q/k), where the sign
+ is chosen such that +=17=1 mod 4.

Lemma (1.1). Under the notation as above, let p be a prime of k lying
over p and put M = J'(Q). Assume that p/2-1 and M decomposes into
a direct sum of r(B)[G,]-modules M, and M,:

M=M®M,,
where &(P) = O/B. Then, 4J',,, decomposes into a product of finite flat
group schemes “‘en k(R)-vectoriels” X, and X,:

SBJ//@p = Xl X oy Xz .

Proof. By our assumption, 4J’ ® k, decomposes into a product of two
finite group schemes X{ and Xj;:

g @k, = X{ X Xj.
Let X, (i = 1, 2) be the schematic closure of X/ in the Néron model g,
(, then X, are finite flat group schemes, because J’ /0, 18 proper (cf. [3],
[12])). Consider the following morphism g induced from the canonical
morphism of J’ onto J” = J’/X, by the universal property of the Néron
models:

g: J’,% —> Jl,/@p .

The morphism g|X;: X, — g(X)) (CJ”,,) is isomorphic over the generic
point of Spec 0, As ord,p =1 <p — 1, by the fundamental property of
the finite flat group schemes (cf. [12]), g|X; is an isomorphism. Then,
we have the following exact sequence:

X, =—>yJ'/ o, —2> g(X,).
u -~
X, >
Therefore, g’y = X, X o3 Xon Q.E.D.

Let 6 = 9, be the ideal of ¢ = 0 generated by a, for all primes g
which remain primes in 2 = Q(v/+1). For a prime B|p of @ = 0y, choose
a lattice M of V, = V, ® K, on which ¢ and G = Gal(Q/Q) operate. Let
7 be the representation of G on M = M/BM:
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p: G —> Aut, M = Auty (M ® F,) ~ GL(2, F,).
We set the following condition (C) of the prime 8 of @ = 0:

(1 Blo
@ Br2-1 if l]=—1 mod 4,
{%{’2 ifl= 1 mod 4.

©

Lemma (1.2). Let B be a prime of O satisfying the condition (C) above
and p be as above. Then, 5(G,) is contained in a Cartan subgroup and
9(G) is not contained in any Borel subgroup.

Proof. Put R = F,[p(G,)], then for all xe R and ge G — G,, tr p(g)x
= 0 so that R + My(F,) and p(G,) is contained in a Borel subgroup of
GL(2, F,). Let V be a 1-dimensional subspace of M ® F, which is a R-
module. If V=p(g)V for ge G — G,, V is an F,[p(G)]-module and 5(G)
is contained in a Borel subgroup. If V £ p(g)V for ge G — G,, then
M ® F, decomposes into a direct sum of R-modules

MQF, = VaugV.

Then, p(G,) is contained in the Cartan subgroup Aut V X Aut p(g)V and
o(G) is contained in the normalizer of this Cartan subgroup. If p(G) is
contained in a Borel subgroup of GL(2, F,), the semi-simplification of p
is equivalent to p @ p ® xP¢-1~ for a character p of G. Denote also by
¢ the corresponding Dirichlet character and put g, = pzx. If p#1, by
the fact that u® ® XP¢-"” = det-p = X,, we should have 4% = X, but such
a character y does not exist. If p =/ and / = 1 mod 4, then & = x¥®*v7
but such a character 4 does not exist. Q.E.D.

By this lemma (1.2), as a representation on M ® F,, 5|G, is equi-
valent to v, @ v, for some characters v, of G, and v, ® v, = X, 4. Let ¢,
be the character of kX (= the idéle group of k) corresponding to v,. For
an integer m + 0, denote by e(m) the idéle of & whose components divid-
ing m are 1 and the other components are all m.

Lemma (1.3) (cf. [21]). Let B|p be a prime of O = Oy salisfying the
condition (C). Then,

oe(m) = (i?l)m mod

for all integers m >0, (m, p-I) =1, and
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o) — o)

for all o= (a,), €kl such that a.,>0 (G =1,2) if Il =1 mod 4. Here,
+71=1 mod 4 and 1 + ¢ e Gal(k/Q).

Proof. For a prime q of k dividing a prime g € Z, denote by e(q)
the idéle whose g-component is 1 and the other components are all q. It

is enough to treat the primes g|g prime to [-p. If (i:—l—> = —1, by our
q

assumption, ¢, = 0 mod ¥ and p(c}) = —q, where ¢, is a Frobenius ele-

ment of the prime q. If <ti) =1, put g0, = q-q°, then
q

OE@) 0 Ny oy _ (@) O
("5 soz(e<q=>>> #lo) = o) = ( 0 sol<e<q»>

for ge G — G,, where o,, 0, are the Frobenius elements of q and g¢°, re-
spectively. Therefore,

pi(e(a) = @e(q)) and  ¢i(e(q)) = pile(n)e(a?)) = pile(@)ele(q)) = g mod .
Q.E.D.

CoroLLARY (1.4) (cf. [11]). Under the assumption (C) and the nota-
tion as above, if =1 mod 4, p # I

Proof. Let oo, oo, be the infinite places of 2= Q(+ 1) and put ¢.,
= Puex - Here, we also denote by ¢, the corresponding Grossen-characters
of k. Then, 1 = ¢,((—1)) = @, (—Do.,(—1)-(—1) (cf. (1.3)). We may as-
sume that ¢.(—1)= —1 and ¢.(—1)= +1. Let u=(a+ bv 1)/2 be
the fundamental unit of k such that ¢.,(u) = —1 for some integers a
and b. If p = [, the values of ¢, on the principal ideal group of k are
determined by ¢., and a character mod (v 7). Then,

(@) = ¢..,(a)a™ mod P, for ac kX, (0, ) =1,

and a fixed integer m. But then, we have 1 = ¢, (¥)u™ = —u™ and 1 =
0o (W) W)™ = (u)™ mod B, so that [ + p, where 1 ¢ e Gal(k/Q). Q.E.D.

Let B|p be a prime of 0 = O, satisfying the condition (C) and p,
M = M/®M and ¢, be as before. We also denote by ¢, the Groéssen-
character of % corresponding to ¢, and let m,-n, (m, p) =1 and n,|p,
be the conductor of ¢,. The values of ¢, on the principal ideal group is
determined by a character +, of (0./m,)*, a character 2, of (0,/n,)* (and
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a character of k%, (i=1,2) if /=1 mod 4). If <£L> — —1, put
D

(21, 22) = (XZ;+ blp’ X;g+bzp)
for some integers a; and b;,, 0 < a;, b < p — 1. Here,
Xyt Gal(@,/Q5) —> pyr-(@,) —> F

is the fundamental character (of degree p” — 1 for r > 1) (cf. [12]). If

(;—t—l) =1, put p0@, = p-p* and
b

(xlla;s 22[0;) = (X?’ X?) ’

(zxm;u 22|0;s) = (XZ‘, X?f)
for some integers c; and d;, 0 < ¢;, d, < p — 1, where 0, = (0,), and 0,
= (@k)p"

LEmmA (1.5) (cf. [11]). Under the notation as above, we have

(al’ s, bly bz) = (1’ 0’ O’ 1) or (0, 1, ls 0) lf (%l‘) = _1’
ey dnd)=(10,0,) or 0110 if (EL)=1.
p

Proof. We can choose an abelian variety J’( /Q) on which 0 = 0,
operates and which is isogenous to J over Q. As p # [ (cf. (1.4)), the
Néron model J’/,gz, is an abelian scheme (cf. [3]) and 4J'),,5;, is a finite
flat group scheme. Let p” be a prime of k lying over p and r be the degree
of &(P)/F,, where () = O/B. If M = J'(Q) is a simple £(P)[p(G;)]-module,
2403 1s a character induced from the Galois action on (zJ ’,%)(Qp) and gJ'/,,
is a finite flat group scheme “en F,.-vectoriels” (cf. (1.2)). Then,

2”0:’ —_ xgg;ﬁ Qg2+ +ag,orp2r 1
for a,; =0 or 1 (=ord, p) 1 <j < 2r) (cf [12]). If M decomposes into
a direct sum of two +()[p(G,)]-modules
M = Mx @ Mz s
then 1, is the representation into Aut M, or into Aut M, We may as-
sume that 2, (i = 1, 2) corresponds to M, Then, 3"/, decomposes into

a product of two finite flat group schemes ‘“en F,-vectoriels”, say X,
and X,

J,/anz = Xl X Oy Xb ’
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where X(Q,) = M, (cf. Lemma (1.1)), and

— bi,1+bi,2°p+ecc+bi,rpt—1
'zi]o;» — xpr i,2°p 1,7 D

for b,;, =0 or1 1<j<r). We must treat the following four cases.
In the following discussion, note that ord, p =1 <p — 1.

(1.5.1). The case when (:t!:i) = —1.
b

(1.5.1.1). If M is irreducible,

Aei+oip — b AR AR
P2 — Apr ’

so that a,,=¢a,,=--- =0a;,, and a;,, =0a,, = --- = @;,,. Then, we
may assume that a, b, =0 or 1.

(1.5.1.2). If M is decomposable,

ai+birp . Ybi,1+bi, 2 precetbi,pepr—1
sz i — Xpr i i, ,

so that b,,=0b,,=---=b,, if r is odd and b,, =b,, = --- = b,y
b, =b,,=---=2b,, if r is even. Then, we may assume that a,, b, =0
or 1.

+17\
(1.5.2). The case when (=~ ) = 1.

p
(1.5.2.1). If M is irreducible,

X;i — X2§;1+m+a’i'2"p”—l

so that a,, = -+ =a,., and ¢, =0 or 1. By the same way, we get d, =0

or 1.

(1.5.2.2). If M is decomposable,

Y = Xb;‘_,1+-~-+b1;,r-jvr“
p P

so that b,;, = --- = b,, and ¢; = 0 or 1. By the same way, we get d, =0
or 1.
Therefore, we have a,;, b;,, ¢, and d;=0 or 1 (i =1, 2). Using the
relation that 2, ® 2, = X, and (1.3), we get the followings: If (El—) = —1,
p

ygrarp@itty) — ¥ - and m®** = m mod p for all me Z, (m, p) =1. Then,

(@, @, by, by) = (1,0,0,1) or (0,1,1,0). If (éi) S 1, e = e =,
p
and m%*% =m mod p for all meZ, (m, p) =1. Then, (c,c, d,, d;) =

1,0,0,1) or (0,1, 1, 0). Q.E.D.
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Under the notation as in Lemma (1.5), changing ¢, by ¢,, if necessary,
we may assume that

(Zh 22) = (xpe, ng) if (___t—l-> == — 1 .
b

(2113;" 22]0;) = (xpy ]-) } if (i— l) — 1 .
('21!@;5: lzm;s) = (1’ Xp)

(1.6)

b

Then, for all « ¢ k* such that (a, n,-1) =1 (n1 =pif (—ii) =1, n =9
D
if (i‘_i) = 1) and « > 0 (totally positive, if I =1 mod 4),
D
(L.7) ¢((@) = Y(e)a mod B,
where + is a character of (0,/m,)* and P N O, = p@, if (Ll> = —1and
p

= p0, if (i:£> = 1. Let + be the lifting of 4 to be a C*-valued character
D
(1.8) Ji (Ofm)< Y FX =5 @i = C*.

CoROLLARY (1.9) (cf. [11]). Assume that there is a prime P of O = O,
satisfying the condition (C). Then, n = 2 (the level of the form f is I"),
and if | =1 mod 4, (—l—) =1

D

Proof. Let p, be the representation of the inertia group I, of the
prime [ on the Tate module T, = T,(J'XQ,), then p = p, mod P. If the
level of the form f is the prime I, the Néron model J’,, is semi-stable
(cf. [3]) and the characteristic roots of p,(x) are all 1 for all xe I, (cf.
e.g. [14], note. p = [ (1.4)). But in our case, the characteristic roots of
p(x) are not 1 for some xel, (cf. (1.7)). When /=1 mod 4, let o, oo,
be the infinite places of k= Q(+ ) and put ¢., = ¢1ex - Then,

Por(—1) 0 (—1) = —1 (cf. (1.7)).

We may assume that ¢, (—1) = —land ¢ (—1)=1. Letu=(a+ bv 1)/2
be the fundamental unit of % such that ¢.,(u) = —1 for integers a, b.
Then,

2:((0)) = g (@)¥(e)e mod P

for all ack*, (o, p-1) =1 (cf. (1.7)). Here,  is a character mod (v )"

for an integer r > 0, satisfying the following condition: J(m) = (_l_) mod
m
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for all meZ (m, 1) =1 (cf. (1.3)). As ¥(uw) = ¥(a/2Qv(1 + (bla)v 1), the

order of y(u)* is I* for an integer s, and 1 = y{(uw)*u’ mod R. If s =0,

w=1mod . If s >0, [ divides p* — 1. Therefore, (i) =1 QE.D.
D

ProposITION (1.10). Let | be a prime congruent to —1 mod 4. As-
sume that there exists a prime B of O = Oy satisfying the condition (C).
Then, there exists a primitive cusp form © with C.M. (i.e., @ is associated
with a primitive Gréssen-characrer of k= QW — 1) (cf. [18])) on I'y(I") of
weight 2 such that

f=6 mod P.

Proof. Under the notation in (1.7) and (1.8), the character ¢, can

be lifted to be a primitive Grdssen-character ¢ of k: Define & by

(@) = ¥
for all wek*, (a, ) = 1, which is well defined (, because p/2-l). Then,
¢ is lifted to be a primitive Grossen-character such that ¢(a) = ¢,(a) mod P
for all ideal a of k&, (a, n,-1) = 1 (cf. (1.7)). Let
O(z) = Z(a,z>=1¢°(a) exp (2rv —1 N(@)2) = 2 inzibng™

be the form associated with the primitive Grossen-character ¢, where
N =N, and g = exp (27v/—1-2). The form O is a new-form on I'\(I")
for n’/ =1+ ord.y=; m; and m, = the conductor of  (cf. [20]). By the
definition of O, we have the congruences: a, = b, for all primes g/l p.
As n>2 (cf. (1.4) and n' > 2, @, = b, = 0 (cf. [1]). If (:pi) — —1, by
our assumption, a, = 0 mod ¥, so that ¢, = b, (=0) mod ®. If (Tbrl) =1,
put p0, = p-p’. By (1.6) above, M decomposes into a direct sum of two
&(P)[3(Gal(k,/k,)]-modules: M = M, ® M, (, because, if not, 1, = a7,
which contradicts to (1.6), where r is the degree of #()/F,). Therefore,

J’,,, decomposes into a product of two finite flat group schemes “en
F,~vectoriels” (cf. (1.1))

SBJ//% = Xl X%Xz s
one of them is étale and the other is multiplicative (cf. (1.6), [12]). By
the congruence relation: =, + =} = a, (cf. [2], [21] chapter 7), ¢, acts on

w(J’ /%)(/E(p)) = X,(&(p)) as p,(e(p)), where e(p) is the ideéle of & whose p-com-
ponent is 1 and the other components are all p. Then,

(1.11) a, = ¢,(e(y’)) mod P
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(cf. [11], (1.3)). On the other hand, by the definition of ¢, we know that
b, = @) + ¢() = () = e(e(p’)) mod B. Therefore, we get the congru-
ence: f =60 mod P. The rest of this proposition owes to the following
sublemma.

For each g = (“ 3) e GL(©, Q), det g > 0, put
C

fllgl = (ad — bo) ez + d)*f( T 0.
cz+d
SuBLEMMA (1.12). Let f and g be primitive cusp forms on ['(I") and
on I'(I™) of weight 2, respectively. Let p be a prime number which does
not divide 2.1, and R be the ring of integers of Q, with the maximal ideal
B. Regard K, and K, as subfields of Q,. Assume that f = g mod B, then

n = n'. Further, f|[w], =f (resp. = —f), then g|lw], =g (resp. =—g),
0 -1
where w = (l” 0).

Proof of Sublemma (1.12). We may assume that n>n/. Put h=f
—g, then h = a-h, for «€®P and a cusp form A, on I'(I") whose Fourier
coefficients are integers of R. By the general theory (cf. [7] Corollary
(1.6.2)), h,|[w], has the integral coefficients. Ash|[w],= +f+1"""-g(@"™ "),
f=+0""g@" ") mod B. Comparing the first coefficients, we have
n=n'. If f and g have the different eigen values of [w],, then f — g =
f+g=0mod T, so that f = g =0 mod %, which is a contradiction.

Q.E.D.

CoroLLARY (1.13). Assume that there exists a prime 3 satisfying the
condition (C). Then, n =2 or n = 3 odd.

Proof. Under the notation in (1.8), ¥ is a character of conductor
(V= 1) which satisfies the condition

= (5

for meZ, (m,l)=1. Then, r=1 or r=2 even. If /= —1 mod 4, by
(1.11) above, n=n"=14r. If I=1 mod 4, put p0, = p-p’ and let
be the lifting of the character ¢,:

5 bx Pl Ex o X —
[ R > F N cx.
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Then, g(2) = 2 u,n-18:(a) exp 2zv/ —1-N(a)2) (cf. (1.6)) is a new form on
I',(I"-p) of weight 1 with the neben typus character X such that X(e) = a
mod P for all aez, (a,p) =1, where n’ =1+ r. By the method of
Koike [9] Ishii [5], we get a primitive cusp form f on I',(I™) of weight 2
such that

f=g=f mod .
(cf. (1.9), (1.11)). Then, by Sublemma (1.12), n = n'. Q.E.D.

Now consider the case when n > 3. Following Ishikawa [6] and Saito
[17], we can decompose the space SYI*) (= the C-vector space spanned by
the new-forms on I'(I*) of weight 2). Denote by W the automorphism

[(ZQ, _(1)>] of S)(I"). For a primitive character ¥ mod 2, 0 < v < n/3,
2

let R, be the twisting operator (cf. [17], [21] Chapter 3)

R, = E(l_zf S wmoar 22 [((1) u{lﬂz

where g(7) is the Gauss sum associated with y = %~'. Define the op-
erator U, by

U, =R, W-R,-W.
Then, any primitive cusp form belonging to SY(I*) is an eigen form of

U, (cf. [17] §1). Let ¢ be the character <££), + 1! =1 mod™4, and define

the subspaces S;, Sy, Si, and Sy of Si(I™) by

Sy = {feSIN| fIW=/, fIU. = f}

Sy ={fe SN fIW=F, fIU. = —f}
Su, = {fe S| fIW= —f, fIU. = —f}
S = {fe S| fIW= —f, flU. = f}.

Then SY(I") decomposes into a direct sum
S(z)(ln) = SI @® Sn @ Sns @ SIII )

which is compatible with the action of the Hecke algebra T = Z[T,],..,
where T, is the Hecke operator for each prime q (cf. [17] § 1). Further,

(1.14)

these spaces S; and S;; have the finer decompositions. Put p = [n/3]
(= 1) and X(/") be the group of the characters whose conductors divide
p*. Define the subspaces S,(I*, @, +1) of SYI") by
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S a, 1) = {fe S(IM| fIW =, fIU, = Xa)f for all X e X(I")}
S(I*, a, —1) = {fe SYI™)| fIW = —f, fIU, = Ka)f for all X e X(")},
which are the T-modules (cf. [17] § 3). Then,
Si= @ S a, 1)

(1.15) f@et
S = G‘)d S(I*, a, —1).

a mod p

e(a)=1

LemMA (1.16). Under the notation and the assumption as above. Let
f and g be primitive cusp forms belonging to SYI"), R be the ring of inte-
gers of Q, with the maximal ideal ®. Suppose that f= g mod P and p
does not divide 1-(I — 1). Then, f and g belong to the same subspace in
the decomposition of (1.14). If f and g belong to S; or Sy, f and g belong
to the same subspace in the decomposition of (1.15).

Proof. Let h be a cusp form on I'\(I") of weight 2. If the Fourier

coefficients are integers of R, then A|W and h, [((1) u{l)] have also the
2

integral coefficients for integers ¢ and v, 0 < v < p (cf. [7] Corollary (1.6.2)).
Therefore, we have

fIlU,=g|U, mod B,

for all X e X(I"), so that f and g belong to the same direct factor in (1.14)
(cf. (1.13)). If f|U, = x(a)f and g|U, = 2(b)g for some a, b e (Z[l*Z)* and
for all xe X(I"), then X(a-b) =1 mod P for all xe X(!*). By our as-
sumption pf(I — 1)-I, the congruences above lead the rest of this Lemma
(1.16). Q.E.D.

In the rest of this section, we consider the Galois action on zJ'(Q),
for the prime P dividing ([, §). Let ! = p be a prime number congruent
to —1mod 4 and f= > a,q™ be a primitive cusp form on I'y(I"*) of weight
2 (n>2). We assume that f does not have C.M. and has a twist

(g, (:_P>> (cf. [10], [15]). Then, the endomorphism algebra End J, ® Q

is isomorphic to K @ Kz, where 5 is the twisting operator defined over
E=QW—p) and 5 = —y for 1+ cecGal(k/Q) (cf. [19]). The algebraic
structure of D = K@ Ky is defined by
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for all primes q # p. Let d = d, be the discriminant of D, and § = 4,
be the ideal of 0 = 0, defined before (cf. (C)). Let p, be the l-adic re-
presentation on the Tate module 7T,(J')(Q) and put a(q, r) = p,(o) +
q'po;"), for each prime g # | = p, where ¢, is a Frobenius element of q.
Then, a(g, 1) = a, and a(g, r) € K.

Lemma (1.17). Let p be a prime of F = F, dividing (p, d) and 3 be
the prime of K = K, lying over p. Then we have the following congruences

a(q, h) = q(p—1+2h)/4 + q(l—p+2h)/4 mod ;43

for all primes q + p, where h = h(—p) is the class number of k = Q(v — p).
Further p divides 6.

Proof. Let p be the representation of G = Gal(Q/Q) on V, = V, ® K,
o: G—> Au’cK\B Ve = GL(2, Ky) .

By our assumption, the prime ideal p remains a prime or is ramified in
K. There is an element a e F,-7 such that ¢*€ 0, ord, ¢* =0 or 1 and
a'= —a for 1+ ceGal(k/Q). There is an element be Ky such that
b’ed, ord,b> =0o0r1l and a-b = —b-a. First assume that ord, d is even,
then ord, b* = 0, so that ord,a’ = 1 and P = p0x. As Oy + Oya is a ring,
we can choose a lattice M of V, on which @ua] and G operate. Put
M = MJ/BM, and let 5 be the representation of G induced from p by the
reduction mod B

o: G—— Aut, M = GL(2, () .

where £(8) = ¢/®. Then, a-M is a 1-dimensional vector subspace of M
(as £(B)-vector spaces), and is G-invariant, because ord,a* = 1 and p(g)-a
= X®@-9(g)a-p(g) for all ge G. Choose an element m,e M such that
a-m;, + 0, and put m, = a-m,. Then {m,, m,} is a basis of M as a x(%)-
vector space and a operates on M as follows: xm, + ym, — x’m, for «x,
yek(R). Let 2 be the representation of G on Mja-M

A G——)AUtK(sB)M/a‘M = K(%)Xy

then G operates on a-M by the character 72*-"2® 2°, where 2’ is a
character defined by 2°(g) = A(g)° for all ge G. But 2 is unramified outside
of p, so that 2 is a character mod v —p valued in F}(=—> ()*), hence
27 = 2. Further, by the relation X, =det-p =21 ® 15" "2 we have
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A8 = x@@+1/2 gnd
alg, ) = g*" + ¢“" mod P

for all primes q = p. Since A is odd, we get congruences to be proved.
Now consider the case when ordy ¢ is odd, so ord, b* = 1. Put ¢0* = 0,[a]
if ord, a* =0 and O0* = ¢,[a-b/a’] if ord, a* = 1, and put P* = pO*. Then
0* 4+ 0*b is a ring and P* is a prime ideal, because p|d and pf2.
Choose a lattice M of V, on which ¢*[b] and G operate, then b-M is a
O*[b]-submodule of M and which is G-invariant. Put M = M/b-M, which
is a 1-dimensional vector space over x(F*) = O0*,. Consider the repre-
sentation 5 of G on M induced from p

p: G—> Aut,, M —— GL(2, £(p)) .

Then p(G,) is contained in the non-split Cartan subgroup ~ £($*)*, so that
p(@) is contained in the normalizer of the non-split Cartan subgroup.
The automorphism of x($*): x — p(g)xp(g)~! is non-trivial for ge G — G,
because p(g)ap(g)' = 18@-v(g)a for all geG. Therefore, p(G) is not
contained in this Cartan subgroup. Let 2 be the character of G, corre-
sponding to p|G;

A Gk——*} Aut.(gs*)M = IC(%*)X L)F; ,

then p ~ Indg 2, where Indg is the induced representation. As 1 is
k k
unramified outside of p, so that 1®* is a character of the conductor
(V—p) valued in FY. Then, Indg A®* is an abelian representation,
k

which is equivalent to g @ p®@ x2®-” for a character ¢ of G. For a
prime ¢ splitting in %, put 90, = q-q°, then 2(¢,)A(¢,) = q and 2%*(s,) =
®a,) = plo,), so that u(s,) = q@-"m+»/ for an odd integer m. There-
fore,

a(g, h) = q@-1+mn 4 qu-prma mod R
for all primes q # p. QED.

§2. Discriminant of End J,® Q

Let [ be a prime number congruent to —1 mod 4, n = 2 be an in-
teger, and f, J=J,, K=K, F=F, and § =4, be as in Section 1.

Assume that f has a twist (*, <:—L>) (cf. [10], [15]) but does not have
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C.M. Let d be the discriminant of D = K 4 Ky ~ End J ® Q, d, be the

product of primes p of F such that ordy 6 is odd, ptl and (71{7(5)‘) = —1,
where N = Ny, q, for p|p. Further, let d, be the product of the primes
of F dividing (I, 9).

LEmma (2.1). Under the notation and assumption as above, we have
() dy|d and (ii) d|d,-d,.

Proof. There is ac K* such that «*c @, and «a-y = —y-a (then,
D =F + Fa + Fp+ Fa-p). If p|(, d), by Lemma (1.17), p|5. When p|l,
the prime p is unramified in F[y], so that (¢, —I), = —1 if and only if

3 -1
ord, o is odd and (-d_—-— = —1. E.D.
’ N(p)> @

Using the results in Section 1 and Lemma (2.1) above, we can de-
termine the discriminants of the algebras of the examples in [17]). Let
f=>.a,q™ be a primitive cusp form on ['(l*), n = 3, then K, contains
a, = exp 2rv —1/I) + exp (—2zxv/—1/I) (cf. [17] Corollary (3.4)). First dis-
cuss the case for / = 11. From the table in [17],

Sy(11%, 4, +1) = CO, D S?
82(113, 4, —‘1) = CO D Sgn

where ©; and @, are the forms associated with some primitive Grdssen-
characters of Q(v—11) with conductor (11), and S? and S%; are the
orthogonal complements of CO; and COy, respectively. The space SY,
whose dimension is 2, is spanned by a primitive cusp form f= > a,q™
and its conjugate of = >, as,g™, for an isomorphism ¢ of K, into C, and
Ngola) = —199. By Lemma (2.1), End J,®Q is a matrix algebra.
Denote by g, the characteristic polynomial of the Hecke operator T, on
S{, then

NQ(au)/Q(gTz(O)) == —‘25 . 99527 B

and dim S%; =2-3. As (;:231> = (@3512177) = —1 and the degree of the

ideal (2) in Q(ay,) is 5, so that by Lemma (2.1), there is a primitive cusp
form g = 3 b,.q™ € St such that Ny (d,) = 2°-99527 (unique up to con-
jugation). Therefore, we get the following.

ProprosiTioN (2.2). Under the notation as above,

df = (1): dg = P.- Poeser »
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where p, = (q, b,) for the primes q.
Next consider the case for [ = 19.

82(1939 4’ +1) = C@I @ S(I)
82(193: 4, "‘1) = C@m @® S(I)II ’

where ©; and @, are the forms associated with some primitive Grossen-
characters of Q(v' —19) with conductor (19), and S? and S%; are the or-
thogonal complements of CO; and COy, respectively. Denote by f, (resp.
gr,) the characteristic polynomial of the Hecke operator T, on S{ (resp.
SY%). From the table in [17], we know that

No(aroya(fr(0)) = —37*-56536856647
Noarsa(8r,(0) = —2°-192.5736557-6463381 ,

and dim S} = 2-6, dim S}; =2.8. Let f= > a,9™ be a primitive cusp
form belonging to S!. If d, # (1), by Lemma (2.1), ¥870,, = B, ., R, # L.,
where 4/~ is the radical of the ideal

<, because, (—i) = +1> .
56536856647

Then, by virtue of Proposition (1.2) and Lemma (1.15), we should have
the following congruences

@IEf mOd %t,

where B, (i = 1, 2) are the primes of 0, lying over P, Let 2 be the
Grossen-character corresponding to 6, then

(T AL i

for i = 1, 2, so that 37* must divides

Moo = (P 0)) - A(F57)).

But we know that

14+ 4/-19 1—+4/-19
S R ()
— 387.227-150707 - 56536856647
(cf. [17] §4). Hence, d, = (1). Next consider the forms belonging to SY%;.
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The degree of the ideal (2) in Q(x,) is 9, and

(;19_> = <g-.:__1..9w,ﬁ) = —1 and (;19—) = 41.

2 6463381 5736557

Therefore, by Lemma (2.1), there is a primitive cusp form g = > b,,¢" € S}
such that d, #+ (1). To determine the discriminant d,, we must consider

the primes p[19. If a prime p of F, divides (d,, 19), we should have the
following congruence

b, =54 5% mod p
(cf. Lemma (1.17)). But, we know by a calculation that

19/1/NQ(a19)/Q(gT5(55 + 5“)) ’

hence Ny, (d,) = 2°-6463381 (and g is unique up to conjugation). There-
fore, we get the following.

ProrosiTioN (2.3). Under the notation as above,

df = (1), dg = D2 Posssser
where p, = (g, b,) for the primes q.
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