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Abstract. Let X be a Banach function space over a nonatomic probability space.
We investigate certain martingale inequalities in X that generalize those studied by
A. M. Garsia. We give necessary and sufficient conditions on X for the inequalities to
be valid.
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1. Introduction. It is well known that, for each p € [1, co), the Hardy space H,
of martingales consists of those /' = ( f,)sez, for which Sf € L,, where S f denotes the
square function of f. It is also known to many researchers of martingale theory that,
for each ¢ € [2, oc], the space K, consists of those f = ( f,)sez, for which there exists a
random variable y € L, satisfying

E[ | foo = foot P 1 Fu] < ELy? | F]

almost surely (a.s.) for all n € Z, where f_; = 0. The norm of f € K, is defined to be
the infimum of |y ||, over all y € L, satisfying the inequality above.

The space K, plays a crucial role in studying the dual space of H,,. In fact, Garsia [5]
proved that if 1 <p <2 and ¢ is the conjugate exponent of p, then the dual space of
'H,, is isomorphic to K,. Since Ko, coincides with BM O (the space of martingales of
bounded mean oscillation), Garsia’s result includes Fefferman’s duality theorem which
asserts that the dual space of H; is isomorphic to BM O. On the other hand, Garsia
also proved that if 2 < g < 0o, then H, and X, coincide, and for all / € ICy,

V2/q1Sf 1, < I, < USSl,. (1.1)

Moreover, combining (1.1) with the Burkholder square function inequality (]2,
Theorem 9]), we see that if 2 < g < 0o, then there exists a constant C, > 0 such that for

any f'=(f,) € Ky,
C, ' fll, < £k, = Cqllfsollys (1.2)

where fo 1= lim, f, a.s.
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In this paper, we consider more general inequalities similar to those in (1.2).
Given a Banach function space X (see Definition 1 below) and a filtration F = (F,,),
we introduce a Banach space of martingales, which we denote by (X, F), and give
necessary and sufficient conditions on X for the inequalities

C M oo lly = I e ) < Cllfsolly

and

C'im, o /5 llx < 1 ler. 7 < Climnsoo [/ lly

to be valid. For a fixed filtration F = (F,), the definition of KC(L,, F)is slightly different
from that of K, (c¢f. Definition 3 in Section 3). However, K(L,, F) and K, in fact
coincide for all ¢ € [2, oco].

2. Preliminaries. We deal with martingales on a nonatomic probability space
(22, =, P). The assumption that 2 is nonatomic is essential. In addition, we have to
deal with another probability space; let I be the interval (0, 1] and let u be Lebesgue
measure on the o-algebra 9t consisting of all Lebesgue measurable subsets of /. The
reader may assume that these two probability spaces are the same. However, our
argument will not be very simple by doing so.

Let X and Y be normed linear spaces. We write X — Y if X is continuously
embedded in Y, that is, if X C Y and the inclusion map is continuous.

DEerINITION 1. Let (X, || - || x) be a Banach space of (equivalence classes of ) random
variables on €2, or measurable functions on /. We call (X, || - |y) a Banach function
space if it satisfies the following conditions:

(Bl) Lo > X — L;;
B2) if |x|<|ylas.andy € X, thenx € X and || x|y < ¥y
B3)if 0 <x, 1 x as., x, € X for all n, and sup, || x,||ly <oo, then x € X and
I xlly = sup, | xnllx-
If x ¢ X, welet| x|y :=o0.

Note that, in Definition 1, we may replace (B3) by the condition that

(B3) if 0<x,eX for all n and lim, ||x,|ly <oo, then lim,x, € X and

[lim,x, ||y < lim, [|x, .

Let x and y be random variables on 2, or measurable functions on /. We write
X >~ 4 y to mean that x and y have the same distribution.

DEFINITION 2. A Banach function space (X, || - | y) is said to be rearrangement-
invariant (r.1.) provided that
RD ifx~zyandy e X, thenx € X and || x|y = ||ylx-
A rearrangement-invariant Banach function space will be simply called a rearrange-
ment-invariant space or an r.i. space.

Typical examples of r.i. spaces are Lebesgue spaces L, Orlicz spaces L¢, Lorentz
spaces L, , and so on. An example of a Banach function space that is not r.i. is
a weighted Lebesgue space. Let w be a strictly positive random variable such that
Elw]=1,andlet 1 <p <oo. If w~ /"~ Visintegrable, then the Lebesgue space L with
respect to the measure w dP satisfies (B1)—(B3), and thus it is a Banach function space
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(with respect to P?). It is known that L can be renormed so as to be r.i. if and only if
0 <essinfw <esssupw < oo (cf. [6, Section 4]).

Let x be a random variable on Q2. The nonincreasing rearrangement of x, which we
denoted by x*, is the nonincreasing right-continuous function on I = (0, 1] defined by

x*(t) :=mnf{A > 0|P(|x| > A) <t} foralltel,

with the convention that inf # = co. Note that x* is characterized as the nonincreasing
right-continuous function that has the same distribution (with respect to ) as |x|.

If ¢ is a measurable function on 7, then the nonincreasing rearrangement ¢* is
defined by regarding ¢ as a random variable on the probability space (I, I, w).

Let x and y be integrable random variables on €2, or measurable functions on /.
We write x < y if

t t
/ x*(s)ds < / V*(s)ds foralltel.
0 0

Then it is obvious that x >~; yif and only if x < y < x.
A Banach function space (X, | - ||y) is said to be universally rearrangement-invari-
ant (u.r.i) provided that

(URD) ifx <yandy e X,then x € X and || x|y < [yl y.

Clearly condition (URI) implies condition (RI), while the converse is not true in
general. However, if the underlying measure space is nonatomic, then condition (RI)
implies condition (URI) (cf. [1, Theorem 4.6, p. 61]). Thus, in our argument, we need
not distinguish u.r.i. spaces from r.i. spaces.

Now let us recall Luxemburg’s representation theorem. If X' is an r.i. space over
Q, then there exists a unique Banach function space X over [ such that:

e x € Xifand only if x* € X;
o x|y =Illx*|lgforall x € X.
In fact X consists of those functions ¢ for which

1
¢z = sup {/0 () y () dsl lyllx < 1} < 09,

where
[ylly = sup{E[|xy|]|x € X, [x[ly < 1}. (2.1

We call (;X; , |- lg) the Luxemburg representation of (X, |- |ly). For example, the
Luxemburg representation of L,(2) is L,(I). For more details, see [1, pp. 62-64].

Now let Z; and Z; be r.i. spaces over I, and let T be a linear operator whose
domain contains Z;. We write T € B(Z;, Z,) to mean that the restriction of T to
Z, is a bounded operator on Z; into Z,. If Z} =7, =7, we also write T € B(Z) for
T € B(Z, 2).

In order to state our results, we need the notion of Boyd indices, which are defined
as follows. Given a measurable function ¢ on I, we define a function Dyp on I by
setting

o(st) ifstel,
0 otherwise.

(D)) = {
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If Z is an r.i. space over I, then Dy € B(Z) and || Dy || gz, < (1/s) v 1 for all s > 0, where
| Ds | z) denotes the operator norm of Dy (restricted to Z). The lower and upper Boyd
indices of an r.i. space Z are defined by

log || D,- log || D,-
ay = sup gl D1 [l gz and B, = inf 2 | Dy-1 1l )
0<s<l1 IOgS l<s<oo logs
respectively. Then we have
log || Dy~ log || D~
ay = lim gl Dy ”B(Z)’ B, = lim gl Ds-1 1l gz
510 log s stoo log s

and
O<a,<p,<l

If X is an r.i. space over 2, we define the Boyd indices of X by ey :=a 3 and 8, :=87%,
where X is the Luxemburg representation of X. For instance, « ,=Br,=1/p for all
p € [1, oo]. See [1, pp. 148-149] for details.

‘We conclude this section by introducing operators P, @ and R. For a measurable
function ¢ on I, we define

1 t
(Po)(1) = ;/0 o(s)ds, tel,

1
@ = as e
and
ARG
(Ro)(t) := e ds, tel,

provided that these integrals exist for all € /. It is easy to verify that if ¢ is nonnegative
and integrable, then

%(Pqﬁ +Q¢) <Rp <Pp+ Q¢ onl, (2.2)
P(Q¢) =P¢+ Q¢ onl, (2.3)
and
1
Q(P¢) =Pé + Qo — /0 ¢(s)ds onl. (2.4)

Note that each of the operators P and Q is the (formal) adjoint of the other. It is known
that P € B(Z) (resp. Q@ € B(Z)) if and only if 8, <1 (resp. a, > 0). Furthermore, by
(2.2) we have that R € B(Z) if and only if &, > 0 and B, < 1. See [1, p. 150] for details
(¢f- [10]).

3. Results. Let [ denote the collection of all filtrations of (2, X, P), where by
filtration of (22, ¥, P) we mean a nondecreasing sequence of sub-o-algebras of X.
Given F = (F,)nez, € [, we denote by M(F) the space of all martingales with respect
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to F and P, and we denote by M, (F) the linear subspace of M(F) consisting of all
uniformly integrable martingales. Recall that every f =(f,) € M, (F) converges a.s.;
we let f, := lim,, f;, a.s. for each /' =(f,) € M (F).

Henceforth we adopt the convention that /| = 0 for any f = (f,,) € M(F).

DEFINITION 3. Let (X, | - ||x) be a Banach function space over 2. We denote by
['s(X, F) the set of all nonnegative, o(|_J;— , F,)-measurable random variables y € X
satisfying

supE[| /i — foal | Tl < B[y | Fu] as, nelZ,. (3.1)
m=n

The space K(X, F) is defined to be the set of f=(fi)wez, € M(F) for which
(X, F)# 9. The norm of f € K(X, F) is given by

I/ lcex, 7 = nf{lly Iy ¥ € Tp(X, F)}.
For martingales /" € M(F) that are not in K(X, F), we let [|f [l .y, ) = 00.
Note that if f =(f,,) € M,(F), then (3.1) can be rewritten as

Ellfo —fumtl | Ful <E[y | Fu] as., neZ,.

Note also that (X, F)is a Banach space. Indeed, it is not hard to show that IC(X, F)
has the Riesz-Fischer property, that is, that if { f®¥} is a sequence in (X, F) such that
Y W ®llicex, 7) < 00, then the series Y po, /® converges in K(X, F). As is well
known, a normed linear space that has the Riesz-Fischer property is complete. Thus
K(X, F)is a Banach space.

We can now state the main result of this paper.

THEOREM 1. Let (X, || - ||x) be a Banach function space over Q. Then the following
are equivalent:

(i) there exists a positive constant C such that for any F =(Fy)nez, € F and any
S =nez, € M(F),

CMim,, o I/ llx < 1f ke, < Climysoo filly s 3.2)

(ii) there exists a positive constant C such that for any F =(Fp)uez, € F and any
fz(fn)nel+ € Mu(f),

C M f Iy < I/ e 7 < Cllfsollxs (3.3)

(iii) there exists a norm ||| - |||y on X which is equivalent to || - ||y and with respect to
which X is a rearrangement-invariant space such that ay >0 and By < 1.

REMARK 1. Suppose that (iii) of Theorem 1 holds. Then (3.2) can be rewritten as

K~ sup Ifullly < 1f lieer, ) < K sup llfollx, (3.4)

neZy neZy

where K is a positive constant, independent of f. To see this, let F=(F,) € F and
f=(fn) € M(F). Then f,, < f,+1 for all n (see [7, Remark 4.3]), and hence (URI) with
|l - Il y replaced by ||| - ||l y implies that ||| £, [l y < lllfu+1 |l y for all n. Thus we may replace
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both lim || £, || y and lim || £;, || in (3.2) with a constant multiple of sup |||/, |ll y to obtain
(3.4).

As we shall see in the last section, Theorem 1 is a consequence of Propositions 1,
2, and 3 below.

PROPOSITION 1. Let (X, || - || x) be a Banach function space over Q2. Suppose that one
of the following four conditions holds:
(i) the first inequality of (3.2) holds for any F = (Fp)nez, € Fand any f = (fu)nez. €
M(F),
(i) the second inequality of (3.2) holds for any F=(Fy)sez, € F and any
S=nez, € M(F);
(iii) the first inequality of (3.3) holds for any F = (Fy)uez, € Fand any f =(fi)nez, €
Mu(F);
(iv) the second inequality of (3.3) holds for any F=(F,)pez, € F and any
fz(ﬁ1)neLr € Mu(f)
Then there exists a norm ||| - |||y on X which is equivalent to || - ||y and with respect to
which X is a rearrangement-invariant space.

PROPOSITION 2. Let (X, ||-|lx) and (Y, |- |ly) be rearrangement-invariant spaces
over , and let (X/, |- ll%) and (?, Il - |3) be their Luxemburg representations. Then the
following are equivalent:

(i) there exists a positive constant C such that for any F =(F,)sez, € F and any

S =wnez. € M(F),

I/ e, 7 < Csup llfully; (3.5

neZy

(ii) there exists a positive constant C such that for any F =(Fp)nez, € F and any

S =nez, € Mu(F),
1 ey < Clfoolly s (3.6)
(iii) P € B(Y, X).
REMARK 2. As mentioned before, P € B(X’ ) if and only if B3 < 1. Hence by
Propositions 1 and 2, the following are equivalent:

e the second inequality of (3.2) holds for any F=(F,),ez, € F and any

S =wnez, € M(F);
e the second inequality of (3.3) holds for any F =(F,).cz, € F and any

S =wnez, € Mu(F);

e X can be renormed so that it is an r.i. space with 8y < 1.

ProPOSITION 3. Let (X, ||-|lx), (Y, II-1y) ()A(, II-1l%), and (?, I-1l3) be as in
Proposition 2.

(1) Suppose that R € B(?, X ). Then there exists a positive constant C such that for
any F =(Funez, € Fand any [ =(fu)nez, € M(F),

sup Ifolly < IMf Iy < CUf Iy 5 - (3.7)

neZ.

Here Mf denotes the maximal function of f, that is, Mf := sup,cz |ful-
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(i) Suppose that there exists a positive constant C such that the inequality

sup Ifully < Clf ey, 7 (3.8)

neZ,

holds for any F = (Fy)nez, € F and any f = (fy)nez, € M(F). Then Q € B(T’, 5\()

REMARK 3. From (2.2), (2.3), and (2.4), we see that the hypothesis R € B(Y, X)
in (i) of Proposition 3is equivalent to each of the following:

(a) P e BY, X) and Q € B(Y, X);

(b) PQ € B(Y X X);

(c) QP € B(Y, X).
Incidentally, in order to prove that (c) implies (a), we have to use the hypotheses
Loo(I) > X and Y < Ly(I) (cf. (B1)).

REMARK 4. Let (X, || - |lx) be an r.i. space over Q2. There is a characterization of
those r.i. spaces Y for which P € B(’I7 X’) Define H(X) to be the set of all x € L(2)
such that ||x||H(X) = | Px*|lz <oo. Then (H(X), |- | zx)) is an r.i. space and P €
B(H(X) X) Moreover P € B(Y, X) if and only if ¥ — H(X).

There is a similar result concerning the boundedness of Q. Define K(X) to be the
set of all x € Li(€2) such that || x| k) := [ @x" |3 <oo. If the function 7 — —log?
belongs to )?, then K(X)isanr.i.space and Q € B(K'(X), )7) Moreover Q € B(Y, ?()
if and only if ¥ — K(X), provided that —logt € X. See [7] for details.

4. Proof of Proposition 1. We begin with a lemma.

LEMMA 1. Let (X, || - |lx) be a Banach function space over 2, and let S be the set
of all nonnegative simple random variables on Q. Then the following are equivalent:
() there is a constant ¢ >0 such that if x, ye Sy, x>~,4y, and x Ny =0, then
Iylly <clixly;
(ii) there is a constant ¢ > 0 such that if x, y € X and x ~4 y, then || y|ly <clxlly;
(ii1) there is a norm ||| - |||y on X which is equivalent to || - || y and with respect to which
X is an r.i. space.

A complete proof of this lemma can be found in [8]. For convenience, we sketch
the proof here (cf. [9]).

Proof. (iii)) = (i). Obvious.

(1) = (i1). Assume that (i) holds. We first show that if x, y € X, x ~; y, and
|x| A1yl =0, then ||y|ly < cllx|ly. For such x and y, there are sequences {x,} and {y,}
in S, such thatx, ~, y,foralln € Z,,and suchthat0 <x, 4 |x|and0 <y, 1 |y|. Since
by assumption ||y, ||y <c || X, |y for all n, we can apply (B3) to obtain || y|ly <cllx|y.
Next we show that (ii) holds, or equivalently, that

sup{llylly [ x, y€ X, x =gy, llxlly =1} < oo. (4.1)

Suppose x, ye X, x >, », and || x|y <1. We choose a positive number A so that
P(x|>x)=P(ly| > 1) <1/3, and let X’ := |x|1{> ) and )" := |y|1y|> ;. Here, and in
what follows, 1,4 denotes the indicator function of A. Then, since P(x' =0, y =0) >
1/3, there exists a random variable z such that {z# 0} C {x'=0, y)=0} and
z~ygx (cf. [4, (5.6), p. 44]). Since ¥ Az=0 and ) Az=0, we have that
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1V lx <cllzlly <c*|X'|lx <c*. Hence, letting 1 denote the constant function with
value one, we obtain

Iyl <1V llx + 201y < 4+ 201y,

which proves (4.1).
(i1) = (iii). For each x € L;(2), we define

1
11l := sup {/0 X () y () ds I yly = 1} ;

where ||y ||y is defined as in (2.1). Then the set of all x € L;(€2) such that ||| x |||y < oo
forms an r.i. space. Moreover, under the assumption that (ii) holds, one can show
that ||| x|||y < oo if and only if x € X, and in this case || x|y <|[|x|llx <c| x|y for all
xeX. O

Proof of Proposition 1. Suppose first that (ii) of Proposition 1 holds. We show that
(i) of Lemma 1 holds. Let x and y be nonnegative simple random variables such that
x >~y yand x A y = 0. Then we can write

¢ ¢
xzz:ozle/. and y=Zoej13/,
Jj=1

J=1

where ; > 0 foreachj € {1, 2, ..., £}, and where {Aj}]‘f=l and {Bj}f.=1 are sequences of
sets in X such that:

o P(4;,)=P(B;) foreachje {1,2,...,¢};

o A;N Ar=B; N B, =¢ whenever j # k;

* (Uf:lAj) N (Uf:lBj):@-

Let Aj:=A4;UB; for each je{l,2,...,£}. We define F=(F,) eF and f=(f,) €
M. (F) by

ofAjlj=1,2,...,¢}if n=0,

Fn = and f:=Fx|F,], neZ,.

z if n>1.

Suppose that y € I'/(X, F). Then since fo=2"!(x + y) and f,, = x forn > 1,

S <h=Hh—AlIF]<EHy|F]l=y as
Hence ||ylly <21y lly, which implies [|y{ly <2[fllxx. - Combining this with the
second inequality of (3.2), we obtain || y|y <2C | x| y. Thus (i) of Lemma 1 holds.

If (iv) of Proposition 1 holds, we can use exactly the same argument as above to
show that (i) of Lemma 1 holds.

Suppose next that (i) of Proposition 1 holds. Let x and y be as above, and let C
be the constant appearing in (3.2). Of course, we may assume that C > 1. (In fact,
one can deduce that C > 1.) For each j € {1,2,...,¢}, we choose B; € ¥ so that
B, C Bjand P(B)) = C~'P(B;). This is possible, since (Q, T, P)is nonatomic. Now let
Aji=A4;U B; foreachj e {1,2,..., ¢}, and define F =(F,) € Fand f = (f,) € M, (F)
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as above. Then, letting y' := Zle ajlp, we have

P { CC+ D x+y) if n=0,

X if n>1.
It is easy to see that (C + 1)~!(x + C?)') € T/(X, F). Since )’ <y, we have

1 C?
[ [ .
||f||;c(x,}')_ C+1 x|y + C+1 IIyIIX

On the other hand, the first inequality of (3.2) implies || x|y < Cf llxx, 5)- Therefore

3

C C
< — PR
Ixlly < C11 xllx + C11 (B2

which implies || x ||y < C?||y|ly. Thus (i) of Lemma 1 holds. Exactly the same argument

applies if (iii) holds, and Proposition 1 is proved. O

5. Proof of Proposition 2. In order to prove Proposition 2, we need four lemmas,
which will also be used in the proof of Proposition 3.

Lemma 2. Let (X, [y, (Y, I-1ly) (X, 1-15), and (Y, |- l5) be as in
Proposition 2, and let f = (f,)nez, be a martingale.

() If'f = (fidnez. is uniformly integrable, then

Ifoolly = Hm (£ llx = sup [l fully-
n— o0 ne”Z

(i) If P € B(Y, X) and sup,z, |Ifully < oo, then Mf = sup,z, |fs| € X and

IMfllx < IPligw. 3 - sup Ially.

nez,

where || P || gy 3 stands for the operator norm of P: Y - X

Proof. (1) Assume that f = ( f,,) is uniformly integrable. Then f,, < f, 11 < fo for all
n € Z4 (see [7, Remark 4.3]). Hence, by (URI) and (B3'),

sup lfully < lfoclly < Him (1fally = sup lfallx,

nely nely

as desired. Of course, if foo ¢ X, then || fs ||y = sup, L/ lly = o0.
(i1) As shown in the proof of [6, Proposition 3], foreachn € Z,

(M) (1) = (PIDW), 1€l
where M, f := supy,,<, [/m|. Therefore

IMof Ilx = 1MW) Iz < IPf g < P lgw, %) - sup Ifally < oo.

nezy
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Since M,f 1+ Mf, it follows from (B3) that Mf € X and

IMfllxy < IPllsw. %) - sup Ifully .

neZ.

as desired. O

LEMMA 3. Let (X, || - |ly) and (Y, || - ||y) be r.i. spaces over Q.

(i) If (3.6) holds for any F =(Fy)nez, € F and any f=(fu)nez, € Mu(F), then
Y < X, or equivalently Y — X.

(i1) If (3.8) holds for any F = (Fy)nez, € Fand any f = (fu)nez, € M(F), then Y —
X, or equivalently Y — X.

Proof. Let x € Y. We define F =(F,) € F and f =(f,) € M,(F) by

,._|w)itn=o, 5 s )
=l s ifas1, O SesEXIAL neZy

Then, for any y € T'y(X, F),
lx —E[x]l =E[li —AlIA]<Ey|FA]l=y as,

and hence |x| <y + ||x|l; <y +d | x|y a.s., where d is a positive constant such that
-1y <dll-lly on Y. Therefore [[x|ly < [y ly +dI1lx [l x|y, which implies

Ixllx < 1/ e, +d Iy Ix]y

Suppose that (3.6) holds for this ' =(f;). Then

Ixlly = Clifsolly +d My I xlly =(C+dl1lx)lIx]y,

which shows that Y < X. Moreover, if ¢ € /Y, then there exists y € Y such that
y*=¢* onl (see[4, (5.6), p. 44]). Hence [z = lylly =C'llylly =C li¢lly, where
C':= C+d| 1| y. This shows that ¥ — X and (i) is proved.

To prove (ii), suppose that (3.8) holds for f'=(f,) defined above. If we let n :=
|x| + Il x|y, then n € T'y(Y, F) and hence

I/ e, 7 = Inlly = Ixlly + 10y Ixll = A+ d0Ty) Ixly -

Then by (i) of Lemma 2 and (3.8),

[xlly = sup Ifully = CA+d1y)lIx]y.

neZ,

Thus ¥ <> X and Y < X. This completes the proof. O

Before stating the next lemma, we introduce the following notation: if Z is a
Banach function space over 7, then D(Z) denotes the set of all functions in Z that are
nonnegative, nonincreasing, and right-continuous.

LEMMA 4. Let (Zy, || - | z,) and (Z3, || - | z,) be r.i. spaces over 1.

(i) If there is a constant ¢ > 0 such that |P¢ |z, <cl ¢z, for all $ € D(Zy), then
P e B(Zy, Z3) and | Pllpz,. z,) <c¢
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(i) If there is a constant ¢ > 0 such that | Q¢ ||z, <c ¢ |lz, for all € D(Zy), then
Q € B(Z, Z>) and || Qllgz,, z,) <c¢.

Proof. (i) Suppose [Pl <cll¢ll, for all ¢ € D(Z;), and let ¢y € Z; be
arbitrary. According to [1, Lemma 2.1, p. 44], we have |Py| < Py *. Since ¥* € D(Z)),
it follows that

1PV Nz, < IPY Nz, <™z, =clivlly,
as desired.

(i1) Suppose | Q¢ llz, <cl¢llz forall ¢ € D(Z)), and let ¢ € Z; be arbitrary. As

shown in the proof of [6, Lemma 3], |Qv| < Q|y¥| < Qv*. Hence

1QV Iz, < 19V Iz < | v, =l
as desired. O

Note that since (2, X, P) is nonatomic, there exists a random variable & such
that

£*(f)=1—1t forallzel. .1

It is easy to prove the following:

LEMMA 5. Let & be a random variable satisfying (5.1), and define a family of sets
{A(r) € = |t €0, 1]} by setting

A(t) = {w e Q2|&(w)>1—1t} foreachte€]0, 1].
Let ¢ € Li(I) and let x := ¢p(1 — &). Then:

1) x*(t) = @™ (1) forallt € I;
(1) A(s) C A(t) whenever 0 <s<t <1;
(1i1) P(A(t)) =tforallt €0, 1];

(V) [y XdP = [g ¢(s)ds for all t € [0, 1].
We are now ready to prove Proposition 2.

Proof of Proposition 2. (iii) = (i). Assume that P € B(Y, X ). Let F =(F,) € Fand
let f = (f,) € M(F). To prove (3.5), we may assume sup,, ||/, ||y < oo. Then by (ii) of
Lemma 2, Mf € X and

IMflly <Pl %) - sup lfully-

neZ,

On the other hand, since 2Mf € T'r(X, F), we have that ||/l 7 <21 Mflly.
Therefore

1/ ey < 21Plgco. 2 - sup Ifollys

neZy

as desired.
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(1) = (i1). This is an immediate consequence of (i) of Lemma 2.
(i1) = (iii). Assume that (3.6) holds forany 7 = (F,) € Fandany f = (f,,) € M, (F).
In view of Lemma 4, it suffices to show that for all ¢ € D(Y),

IPollz <kllolly (5.2)

with some constant k >0, independent of ¢. Let ¢ € D(Y) and define (Pg)(0) :=
lim,o(P@)(f). Then (P¢)(0) is finite if and only if ¢ € Lo(/), and in this case
(P#)(0) = || ¢l Bearing this in mind, we define a nonincreasing sequence {#,},cz, in
[0, 1] by setting

to:=1 and ¢, :=inf{s € [0, 1]| (Po)(s) < 2(Pp)(t,—1)}, n>1.
Then t, — 0 and
(Po)(1n) < 2(Pp)(ty—1) foralln > 1. (5.3)

(In fact, equality holds if and only if 2(P¢)(z,—1) < (P¢)(0).)
Let x and {A(¢) |t € [0, 1]} be as in Lemma 5. Define F = (F,) € F and f =(f,) €

M. (F) by
Foni=0{A\A(t)|A€eX}, neZ,, and f,:=Fx|F,], neZ,. 5.4)
Then by Lemma 5
1
A —) xdP + x Iovaw,) = (PO)(tn) Law,) + X lavae,) (@s),

— PAt) Jaay

foreachn € Z,. Since A(t,) | ¥ a.s., we have f, = x a.s. and hence for each n > 1,

{(PP)(tn-1) = IxHaq, nacy = oo = Fa=1l Lat-inac)
= E[|foo = fuo=1l | Fu ) Luq,pany (@s).  (5.5)
Now let y € I'r(X, F). Then for eachn > 1,
B[l foo = fu-tll Ful Lact,oonacy < B0y T Fa] Lac, o\ac)
=Yy 1A(tn—l)\A([n) (a.s.). (56)

From (5.5) and (5.6), it follows that

Z(qu)(fnfl) Lag nawy = v +1x1 (@s).

n=1

We write 7 for the sum on the left-hand side (which is a finite sum if ¢ € Ly ()). Then
by (5.3), we have foreach t € I,

(Po)1) < > (P)t) 1y, 1, (D)

n=1

<2) (P)ta) 1y, 4, (0 = 207(0) < 2y + X)) (2).

n=1
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Therefore
IPollz <20 +IxD* g =2lly + Ixlllx =20y lx + lIxlx),
which implies
IPolls <21/ licex, 7 + 2 1 X1y

By Lemma 3, we may replace || x|y with d || x|y =d | ¢y, where d is a positive
constant that is independent of x, and by (3.6) we may replace [f . 5
with Clfslly =Cli¢lly. Thus (5.2) holds with k=2(C+d). This completes
the proof. ]

6. Proof of Proposition 3. In addition to lemmas in the previous section, we need
one more lemma.

LEMMA 6. Let F =(Fu)nez, € F and f =(fu)nez, € M(F). If y € Ty(L1, F) and
if §=(8,)nez, is the martingale defined by g, =E[y | F,], n € Z, then

E[ Mf] < 16 E[ Mg].

Proof. Let 0 <8 <1 <b<oo and let 0 <A < o0o. We define stopping times p, o,
and 7 by

p=minfneZ,|g,> 51}, o :=min{n e Z||f,| > A},
and
T :=min{n € Z, || f,| > bA}.
Here we follow the usual convention that min @ = co. Then, on the one hand,

{Mf > b, Mg < 38A} = {t < 00, p =00} 6.1)
Cllfr =forl = (b= DA, o < p}.

On the other hand, by assumption,
[E[ |fr _f;7—1| 1{6<p} |fa] = ggl{a<p} = 3)‘1{a<oo} = 8)“1{Mf>)~} (a.s.). (62)
Using (6.1) and (6.2), we have that

PMf > bx, Mg <)) <P(f —fo-1l = (b= DA, o < p)

1
= m [E[ |fr = fo-1l 1{0‘<p}]
)

= h_1 P(Mf > 2).

Hence, by [3, Lemma 7.1],
b(b—1)
E[ M; — M
(M) = 50— 35— EL Mg

provided b — b8 — 1 > 0. Setting b = 2 and § = 1/4 gives the desired result. O
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Let F=(F,), f =(fs), and g=(g,) be as in Lemma 6. Givenn € Z, and 4 € F,,,
we define F := Fiin, f} := (fiwn — fum1) Lu, and g, := gy, Ly = E[y 14| F} ]for each
ke€Z. Then F'=(Fez, €F, ' =(fkez, € M(F), & =(gkez, € M(F'), and
vy 14 € Tp(Ly, F'). Hence by Lemma 6,

E[(Mf — M1 /)14l < E[Mf'] < 16 E[Mg'] < 16 E[(Mg) 14].
Thus, under the same assumption as Lemma 6,
E[Mf — M, f | F,]<16E[Mg|F,] as.forallneZ,. (6.3)
Proof of Proposition 3. (i) The first inequality of (3.7) is obvious. To prove
the second inequality, suppose R € B(Y X ) Then QP € B(Y X ) Let f=(fy) €
K(Y, F),lety e Ty(Y, F), and let g=(g,) be the martingale defined as in Lemma 6.
Then (6.3) holds. According to [7, Theorem 3.3] (or [6, Lemma 4]), we have that

(Mf)* < 16 Q(Mg)*. Furthermore we know that (Mg)* < Pgi =Py* on I (see the
proof of [6, Proposition 3]). Therefore (Mf)* < 16 Q(Py*), which implies that

IMfllxy = 1 (Mf)* Iz < 161 Py iz
<1611 QPllgr. 2 vy =1611QP Iz, 2l vly-

Thus the second inequality of (3.7) holds with C =16 | QP |l g7, 7).

(i1) Suppose that (3.8) holds for any F =(F,) € F El\l‘ld any f =(f,) € M(F). In
view of Lemma 4, it suffices to show that for all € D(Y),

Q¥ g <kllviy (6.4)
with some constant k > 0, independent of . To this end, we may assume that v = 0;

then ¥ > 0 on some interval (0, §], and hence (Q¥)(¢) 1 coast | 0. Let ¢ > 0 be given.
Since (Q1)(¢) is continuous, we can find a sequence {#,},cz, in I such that

to=1 and (Qy)(1,)=(QY)(ty-1)+e n=1 (6.5)
It is obvious that {#,} is strictly decreasing and 7, — 0. Let ¢ := (Qv) — ¥, and let
x and {A4(?) | t € [0, 1]} be as in Lemma 5. We again consider the martingale f = (f,)
defined as in (5.4). Since P¢p =P(Qv) — Py = Qvr, we now have

S = Q@Q)(t) Luw,y + x 1ovaq,) (as)forallneZ,.

It then follows that

n

+Ix = (CYV)t—D| Lu,_ 04y (as)forallme Z,. (6.6)

L
Bl U — 111 ] = 22 /A (@) P

Since (Q¥)(1 — &) 14,y = (Q¥)(10) Laq,) > (LY )(tn—1)1 4(,), We have that

[x — (Q¥ )t L,y < QYN — &) — (LY )(t1) + (1 — &)} Ly,
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and hence

L[ v—@piap

tn Jaw)
1 1
<1 (Q¥)(1—£)dP + ~ f W1 = £)dP — (Q¥)(tr_1)
I Jii—g<1) I Jii—g<1,)

1 [ 1 [
=L ["@nds+ L ["words - @i,
By (6.5) the right-hand side is equal to

(P(RQU(tn) + (PY)(Ln) — (L) (tn-1)
= 2(Py)(tn) + (LQ¥)(1n) — (Qu)(tn-1) = 2PY)(1n) + &

Thus
L,

. / lx = (QU)(tu—)I AP < {2(PY)(1n) + €} Lags,)- (6.7)
n A(ty)

As for the second term on the right-hand side of (6.6), we have
[x = (QV) (ta—)I Lag, )\ 4
<{Q¥)(tn) — (Q¥)(tn-1) + ¥ (1 — E)} Lagt, )4, (6.8)
={y(1 — &)+ &} Lag,_ 4

From (6.6), (6.7), and (6.8), we see that for each n > 1,
E[lfoo = a1l 1 Fu] = 2(PY)(t) Lary + (1 = &) Lag,ipai) € (as). (6.9)
If we set z_1 = 1, then (6.9) remains valid for n=0. Indeed,
sl Fol=lIxly = 1Q¥ I + 1Y 1y =211¥ 1, = 2(P¥)(10) (as.).
Lety, :=2¢y(1 —&)+e. Theny=2¢ +¢c € Y and
ELye | Ful = 2(PY)(tn) Lag,) + 2% (1 — &) lavaq,) +6  (as.).
Comparing this with (6.9), we see that y, € T'y(Y, F). Thus

I Mecr. s = lvelly =209l +ellly . (6.10)

On the other hand, by (B3’) we have that

1RV Iz — ¥z <llollz =lxly <lm,  llfully < sup Ifully- (6.11)

nezy

Using (3.8), (6.10) and (6.11), we obtain

1RQ¥ 1z = CQIY Iy +elllly) + ¥z

According to Lemma 3, there is a positive constant d such that || - [ < d | - ||y on Y.
Replacing || ||y by d || ¥ || ¢ and letting ¢ | 0, we see that (6.4) holds with k=2C + d.
This completes the proof. U
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7. Proof of Theorem 1. We conclude the paper with the proof of our main

theorem.
Proof of Theorem 1. (1) = (iii). Suppose that (i) of Theorem 1 holds. Then by
Proposition 1, there exists a norm ||| - |||y on X which is equivalent to | - ||y and

with respect to which X is an r.i. space. If 7 =(F,) € F and f =(f,,) € M(F), then
I/l < /sl for all n € Z, (¢f: Remark 1), and hence by (3.2),

K=" sup fully < I/ e, 7 < K sup £ lly- (7.1)

neZ neZ

Here [IIf lcx, 7 = mf{lly il x | vy € I'r(X, F)} and K is a constant that is independent
of f. It then follows from Propositions 2 and 3 that P € B(:Y\) and Q € B(:Y\), where

X stands for the Luxemburg representation of (X, ||| - ||| y). As mentioned at the end of
Section 2, this means that ¢y > 0 and 8, < 1.

(iii) = (ii). Suppose that (iii) holds. This implies that P € B(f )and R € B(y ).
It then follows from Propositions 2 and 3 that (7.1) holds for any F =(F,) € F and
any f' = (f,) € M(F).Iff =(f,)is uniformly integrable, then ||| fx |l y = sup,, I/ |l x by
(1) of Lemma 2. Since the norms || - ||y and ||| - ||| y are equivalent, we obtain (3.3).

(i) = (i). Given a martingale /' = (f,), we let ™ denote the stopped martingale
(fark)kez, - Let F=(F,) € F and f =(f,) € M(F), and suppose that (ii) holds. Then,
by the first inequality of (3.3),

Il < CUf "l 7 < Clf Ny, 7 foralln e Zy,

where the second inequality follows from the fact that I'y(X, F) C T'ym(X, F).
From the inequality above, we easily obtain the first inequality of (3.2). Hence, by
Proposition 1, there is a norm ||| - |||y on X which is equivalent to || - |y and with
respect to which X is an r.i. space.

‘We now turn our attention to the second inequality of (3.2). Note thatif f =(f),) €
M(F) is uniformly integrable, then by the second inequality of (3.3) and (B3’),

1f e, 7 < Cllfsclly < Clim, o I fully < Climyoo 1fally - (7.2)

Thus the required inequality holds for uniformly integrable martingales. Moreover,
since the first inequality of (7.2) can be rewritten as ||/ lllcx, z) < Klllfoolllxs
Proposition 2 implies that P € B(;Y\ ).

Finally, let f=(f,) € M(F) be such that lim,|f,lly <oo. Then, since
sup, lIlf2llly < oo, Lemma 2 shows that Mf € X. Therefore f is uniformly integrable,
and satisfies (7.2). This completes the proof. [
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